765 lines
21 KiB
C
765 lines
21 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2006 Blender Foundation.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup gpu
|
|
*
|
|
* Manages materials, lights and textures.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "DNA_material_types.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_world_types.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_listbase.h"
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_string.h"
|
|
|
|
#include "BKE_main.h"
|
|
#include "BKE_node.h"
|
|
#include "BKE_scene.h"
|
|
|
|
#include "GPU_material.h"
|
|
#include "GPU_shader.h"
|
|
#include "GPU_texture.h"
|
|
#include "GPU_uniformbuffer.h"
|
|
|
|
#include "DRW_engine.h"
|
|
|
|
#include "gpu_codegen.h"
|
|
|
|
/* Structs */
|
|
#define MAX_COLOR_BAND 128
|
|
|
|
typedef struct GPUColorBandBuilder {
|
|
float pixels[MAX_COLOR_BAND][CM_TABLE + 1][4];
|
|
int current_layer;
|
|
} GPUColorBandBuilder;
|
|
|
|
struct GPUMaterial {
|
|
Scene *scene; /* DEPRECATED was only useful for lights. */
|
|
Material *ma;
|
|
|
|
eGPUMaterialStatus status;
|
|
|
|
const void *engine_type; /* attached engine type */
|
|
int options; /* to identify shader variations (shadow, probe, world background...) */
|
|
|
|
/* for creating the material */
|
|
ListBase nodes;
|
|
GPUNodeLink *outlink;
|
|
|
|
/* for binding the material */
|
|
GPUPass *pass;
|
|
ListBase inputs; /* GPUInput */
|
|
GPUVertAttrLayers attrs;
|
|
int builtins;
|
|
int alpha, obcolalpha;
|
|
int dynproperty;
|
|
|
|
/* for passing uniforms */
|
|
int viewmatloc, invviewmatloc;
|
|
int obmatloc, invobmatloc;
|
|
int localtoviewmatloc, invlocaltoviewmatloc;
|
|
int obcolloc, obautobumpscaleloc;
|
|
int cameratexcofacloc;
|
|
|
|
int partscalarpropsloc;
|
|
int partcoloc;
|
|
int partvel;
|
|
int partangvel;
|
|
|
|
int objectinfoloc;
|
|
|
|
/* XXX: Should be in Material. But it depends on the output node
|
|
* used and since the output selection is difference for GPUMaterial...
|
|
*/
|
|
int domain;
|
|
|
|
/* Only used by Eevee to know which bsdf are used. */
|
|
int flag;
|
|
|
|
/* Used by 2.8 pipeline */
|
|
GPUUniformBuffer *ubo; /* UBOs for shader uniforms. */
|
|
|
|
/* Eevee SSS */
|
|
GPUUniformBuffer *sss_profile; /* UBO containing SSS profile. */
|
|
GPUTexture *sss_tex_profile; /* Texture containing SSS profile. */
|
|
float sss_enabled;
|
|
float sss_radii[3];
|
|
int sss_samples;
|
|
short int sss_falloff;
|
|
float sss_sharpness;
|
|
bool sss_dirty;
|
|
|
|
GPUTexture *coba_tex; /* 1D Texture array containing all color bands. */
|
|
GPUColorBandBuilder *coba_builder;
|
|
|
|
#ifndef NDEBUG
|
|
char name[64];
|
|
#endif
|
|
};
|
|
|
|
enum {
|
|
GPU_DOMAIN_SURFACE = (1 << 0),
|
|
GPU_DOMAIN_VOLUME = (1 << 1),
|
|
GPU_DOMAIN_SSS = (1 << 2),
|
|
};
|
|
|
|
/* Functions */
|
|
|
|
/* Returns the address of the future pointer to coba_tex */
|
|
GPUTexture **gpu_material_ramp_texture_row_set(GPUMaterial *mat, int size, float *pixels, float *row)
|
|
{
|
|
/* In order to put all the colorbands into one 1D array texture,
|
|
* we need them to be the same size. */
|
|
BLI_assert(size == CM_TABLE + 1);
|
|
UNUSED_VARS_NDEBUG(size);
|
|
|
|
if (mat->coba_builder == NULL) {
|
|
mat->coba_builder = MEM_mallocN(sizeof(GPUColorBandBuilder), "GPUColorBandBuilder");
|
|
mat->coba_builder->current_layer = 0;
|
|
}
|
|
|
|
int layer = mat->coba_builder->current_layer;
|
|
*row = (float)layer;
|
|
|
|
if (*row == MAX_COLOR_BAND) {
|
|
printf("Too many color band in shader! Remove some Curve, Black Body or Color Ramp Node.\n");
|
|
}
|
|
else {
|
|
float *dst = (float *)mat->coba_builder->pixels[layer];
|
|
memcpy(dst, pixels, sizeof(float) * (CM_TABLE + 1) * 4);
|
|
mat->coba_builder->current_layer += 1;
|
|
}
|
|
|
|
return &mat->coba_tex;
|
|
}
|
|
|
|
static void gpu_material_ramp_texture_build(GPUMaterial *mat)
|
|
{
|
|
if (mat->coba_builder == NULL)
|
|
return;
|
|
|
|
GPUColorBandBuilder *builder = mat->coba_builder;
|
|
|
|
mat->coba_tex = GPU_texture_create_1d_array(CM_TABLE + 1, builder->current_layer, GPU_RGBA16F,
|
|
(float *)builder->pixels, NULL);
|
|
|
|
MEM_freeN(builder);
|
|
mat->coba_builder = NULL;
|
|
}
|
|
|
|
static void gpu_material_free_single(GPUMaterial *material)
|
|
{
|
|
/* Cancel / wait any pending lazy compilation. */
|
|
DRW_deferred_shader_remove(material);
|
|
|
|
GPU_pass_free_nodes(&material->nodes);
|
|
GPU_inputs_free(&material->inputs);
|
|
|
|
if (material->pass != NULL) {
|
|
GPU_pass_release(material->pass);
|
|
}
|
|
if (material->ubo != NULL) {
|
|
GPU_uniformbuffer_free(material->ubo);
|
|
}
|
|
if (material->sss_tex_profile != NULL) {
|
|
GPU_texture_free(material->sss_tex_profile);
|
|
}
|
|
if (material->sss_profile != NULL) {
|
|
GPU_uniformbuffer_free(material->sss_profile);
|
|
}
|
|
if (material->coba_tex != NULL) {
|
|
GPU_texture_free(material->coba_tex);
|
|
}
|
|
}
|
|
|
|
void GPU_material_free(ListBase *gpumaterial)
|
|
{
|
|
for (LinkData *link = gpumaterial->first; link; link = link->next) {
|
|
GPUMaterial *material = link->data;
|
|
gpu_material_free_single(material);
|
|
MEM_freeN(material);
|
|
}
|
|
BLI_freelistN(gpumaterial);
|
|
}
|
|
|
|
eGPUBuiltin GPU_get_material_builtins(GPUMaterial *material)
|
|
{
|
|
return material->builtins;
|
|
}
|
|
|
|
Scene *GPU_material_scene(GPUMaterial *material)
|
|
{
|
|
return material->scene;
|
|
}
|
|
|
|
GPUPass *GPU_material_get_pass(GPUMaterial *material)
|
|
{
|
|
return material->pass;
|
|
}
|
|
|
|
ListBase *GPU_material_get_inputs(GPUMaterial *material)
|
|
{
|
|
return &material->inputs;
|
|
}
|
|
|
|
GPUUniformBuffer *GPU_material_uniform_buffer_get(GPUMaterial *material)
|
|
{
|
|
return material->ubo;
|
|
}
|
|
|
|
/**
|
|
* Create dynamic UBO from parameters
|
|
*
|
|
* \param inputs: Items are #LinkData, data is #GPUInput (`BLI_genericNodeN(GPUInput)`).
|
|
*/
|
|
void GPU_material_uniform_buffer_create(GPUMaterial *material, ListBase *inputs)
|
|
{
|
|
material->ubo = GPU_uniformbuffer_dynamic_create(inputs, NULL);
|
|
}
|
|
|
|
/* Eevee Subsurface scattering. */
|
|
/* Based on Separable SSS. by Jorge Jimenez and Diego Gutierrez */
|
|
|
|
#define SSS_SAMPLES 65
|
|
#define SSS_EXPONENT 2.0f /* Importance sampling exponent */
|
|
|
|
typedef struct GPUSssKernelData {
|
|
float kernel[SSS_SAMPLES][4];
|
|
float param[3], max_radius;
|
|
int samples;
|
|
} GPUSssKernelData;
|
|
|
|
static void sss_calculate_offsets(GPUSssKernelData *kd, int count, float exponent)
|
|
{
|
|
float step = 2.0f / (float)(count - 1);
|
|
for (int i = 0; i < count; i++) {
|
|
float o = ((float)i) * step - 1.0f;
|
|
float sign = (o < 0.0f) ? -1.0f : 1.0f;
|
|
float ofs = sign * fabsf(powf(o, exponent));
|
|
kd->kernel[i][3] = ofs;
|
|
}
|
|
}
|
|
|
|
#define GAUSS_TRUNCATE 12.46f
|
|
static float gaussian_profile(float r, float radius)
|
|
{
|
|
const float v = radius * radius * (0.25f * 0.25f);
|
|
const float Rm = sqrtf(v * GAUSS_TRUNCATE);
|
|
|
|
if (r >= Rm) {
|
|
return 0.0f;
|
|
}
|
|
return expf(-r * r / (2.0f * v)) / (2.0f * M_PI * v);
|
|
}
|
|
|
|
#define BURLEY_TRUNCATE 16.0f
|
|
#define BURLEY_TRUNCATE_CDF 0.9963790093708328f // cdf(BURLEY_TRUNCATE)
|
|
static float burley_profile(float r, float d)
|
|
{
|
|
float exp_r_3_d = expf(-r / (3.0f * d));
|
|
float exp_r_d = exp_r_3_d * exp_r_3_d * exp_r_3_d;
|
|
return (exp_r_d + exp_r_3_d) / (4.0f * d);
|
|
}
|
|
|
|
static float cubic_profile(float r, float radius, float sharpness)
|
|
{
|
|
float Rm = radius * (1.0f + sharpness);
|
|
|
|
if (r >= Rm) {
|
|
return 0.0f;
|
|
}
|
|
/* custom variation with extra sharpness, to match the previous code */
|
|
const float y = 1.0f / (1.0f + sharpness);
|
|
float Rmy, ry, ryinv;
|
|
|
|
Rmy = powf(Rm, y);
|
|
ry = powf(r, y);
|
|
ryinv = (r > 0.0f) ? powf(r, y - 1.0f) : 0.0f;
|
|
|
|
const float Rmy5 = (Rmy * Rmy) * (Rmy * Rmy) * Rmy;
|
|
const float f = Rmy - ry;
|
|
const float num = f * (f * f) * (y * ryinv);
|
|
|
|
return (10.0f * num) / (Rmy5 * M_PI);
|
|
}
|
|
|
|
static float eval_profile(float r, short falloff_type, float sharpness, float param)
|
|
{
|
|
r = fabsf(r);
|
|
|
|
if (falloff_type == SHD_SUBSURFACE_BURLEY ||
|
|
falloff_type == SHD_SUBSURFACE_RANDOM_WALK)
|
|
{
|
|
return burley_profile(r, param) / BURLEY_TRUNCATE_CDF;
|
|
}
|
|
else if (falloff_type == SHD_SUBSURFACE_CUBIC) {
|
|
return cubic_profile(r, param, sharpness);
|
|
}
|
|
else {
|
|
return gaussian_profile(r, param);
|
|
}
|
|
}
|
|
|
|
/* Resolution for each sample of the precomputed kernel profile */
|
|
#define INTEGRAL_RESOLUTION 32
|
|
static float eval_integral(float x0, float x1, short falloff_type, float sharpness, float param)
|
|
{
|
|
const float range = x1 - x0;
|
|
const float step = range / INTEGRAL_RESOLUTION;
|
|
float integral = 0.0f;
|
|
|
|
for (int i = 0; i < INTEGRAL_RESOLUTION; ++i) {
|
|
float x = x0 + range * ((float)i + 0.5f) / (float)INTEGRAL_RESOLUTION;
|
|
float y = eval_profile(x, falloff_type, sharpness, param);
|
|
integral += y * step;
|
|
}
|
|
|
|
return integral;
|
|
}
|
|
#undef INTEGRAL_RESOLUTION
|
|
|
|
static void compute_sss_kernel(
|
|
GPUSssKernelData *kd, float radii[3], int sample_len, int falloff_type, float sharpness)
|
|
{
|
|
float rad[3];
|
|
/* Minimum radius */
|
|
rad[0] = MAX2(radii[0], 1e-15f);
|
|
rad[1] = MAX2(radii[1], 1e-15f);
|
|
rad[2] = MAX2(radii[2], 1e-15f);
|
|
|
|
/* Christensen-Burley fitting */
|
|
float l[3], d[3];
|
|
|
|
if (falloff_type == SHD_SUBSURFACE_BURLEY ||
|
|
falloff_type == SHD_SUBSURFACE_RANDOM_WALK)
|
|
{
|
|
mul_v3_v3fl(l, rad, 0.25f * M_1_PI);
|
|
const float A = 1.0f;
|
|
const float s = 1.9f - A + 3.5f * (A - 0.8f) * (A - 0.8f);
|
|
/* XXX 0.6f Out of nowhere to match cycles! Empirical! Can be tweak better. */
|
|
mul_v3_v3fl(d, l, 0.6f / s);
|
|
mul_v3_v3fl(rad, d, BURLEY_TRUNCATE);
|
|
kd->max_radius = MAX3(rad[0], rad[1], rad[2]);
|
|
|
|
copy_v3_v3(kd->param, d);
|
|
}
|
|
else if (falloff_type == SHD_SUBSURFACE_CUBIC) {
|
|
copy_v3_v3(kd->param, rad);
|
|
mul_v3_fl(rad, 1.0f + sharpness);
|
|
kd->max_radius = MAX3(rad[0], rad[1], rad[2]);
|
|
}
|
|
else {
|
|
kd->max_radius = MAX3(rad[0], rad[1], rad[2]);
|
|
|
|
copy_v3_v3(kd->param, rad);
|
|
}
|
|
|
|
/* Compute samples locations on the 1d kernel [-1..1] */
|
|
sss_calculate_offsets(kd, sample_len, SSS_EXPONENT);
|
|
|
|
/* Weights sum for normalization */
|
|
float sum[3] = {0.0f, 0.0f, 0.0f};
|
|
|
|
/* Compute integral of each sample footprint */
|
|
for (int i = 0; i < sample_len; i++) {
|
|
float x0, x1;
|
|
|
|
if (i == 0) {
|
|
x0 = kd->kernel[0][3] - fabsf(kd->kernel[0][3] - kd->kernel[1][3]) / 2.0f;
|
|
}
|
|
else {
|
|
x0 = (kd->kernel[i - 1][3] + kd->kernel[i][3]) / 2.0f;
|
|
}
|
|
|
|
if (i == sample_len - 1) {
|
|
x1 = kd->kernel[sample_len - 1][3] + fabsf(kd->kernel[sample_len - 2][3] - kd->kernel[sample_len - 1][3]) / 2.0f;
|
|
}
|
|
else {
|
|
x1 = (kd->kernel[i][3] + kd->kernel[i + 1][3]) / 2.0f;
|
|
}
|
|
|
|
x0 *= kd->max_radius;
|
|
x1 *= kd->max_radius;
|
|
|
|
kd->kernel[i][0] = eval_integral(x0, x1, falloff_type, sharpness, kd->param[0]);
|
|
kd->kernel[i][1] = eval_integral(x0, x1, falloff_type, sharpness, kd->param[1]);
|
|
kd->kernel[i][2] = eval_integral(x0, x1, falloff_type, sharpness, kd->param[2]);
|
|
|
|
sum[0] += kd->kernel[i][0];
|
|
sum[1] += kd->kernel[i][1];
|
|
sum[2] += kd->kernel[i][2];
|
|
}
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (sum[i] > 0.0f) {
|
|
/* Normalize */
|
|
for (int j = 0; j < sample_len; j++) {
|
|
kd->kernel[j][i] /= sum[i];
|
|
}
|
|
}
|
|
else {
|
|
/* Avoid 0 kernel sum. */
|
|
kd->kernel[sample_len / 2][i] = 1.0f;
|
|
}
|
|
}
|
|
|
|
/* Put center sample at the start of the array (to sample first) */
|
|
float tmpv[4];
|
|
copy_v4_v4(tmpv, kd->kernel[sample_len / 2]);
|
|
for (int i = sample_len / 2; i > 0; i--) {
|
|
copy_v4_v4(kd->kernel[i], kd->kernel[i - 1]);
|
|
}
|
|
copy_v4_v4(kd->kernel[0], tmpv);
|
|
|
|
kd->samples = sample_len;
|
|
}
|
|
|
|
#define INTEGRAL_RESOLUTION 512
|
|
static void compute_sss_translucence_kernel(
|
|
const GPUSssKernelData *kd, int resolution, short falloff_type, float sharpness, float **output)
|
|
{
|
|
float (*texels)[4];
|
|
texels = MEM_callocN(sizeof(float) * 4 * resolution, "compute_sss_translucence_kernel");
|
|
*output = (float *)texels;
|
|
|
|
/* Last texel should be black, hence the - 1. */
|
|
for (int i = 0; i < resolution - 1; ++i) {
|
|
/* Distance from surface. */
|
|
float d = kd->max_radius * ((float)i + 0.00001f) / ((float)resolution);
|
|
|
|
/* For each distance d we compute the radiance incoming from an hypothetic parallel plane. */
|
|
/* Compute radius of the footprint on the hypothetic plane */
|
|
float r_fp = sqrtf(kd->max_radius * kd->max_radius - d * d);
|
|
float r_step = r_fp / INTEGRAL_RESOLUTION;
|
|
float area_accum = 0.0f;
|
|
for (float r = 0.0f; r < r_fp; r += r_step) {
|
|
/* Compute distance to the "shading" point through the medium. */
|
|
/* r_step * 0.5f to put sample between the area borders */
|
|
float dist = hypotf(r + r_step * 0.5f, d);
|
|
|
|
float profile[3];
|
|
profile[0] = eval_profile(dist, falloff_type, sharpness, kd->param[0]);
|
|
profile[1] = eval_profile(dist, falloff_type, sharpness, kd->param[1]);
|
|
profile[2] = eval_profile(dist, falloff_type, sharpness, kd->param[2]);
|
|
|
|
/* Since the profile and configuration are radially symmetrical we
|
|
* can just evaluate it once and weight it accordingly */
|
|
float r_next = r + r_step;
|
|
float disk_area = (M_PI * r_next * r_next) - (M_PI * r * r);
|
|
|
|
mul_v3_fl(profile, disk_area);
|
|
add_v3_v3(texels[i], profile);
|
|
area_accum += disk_area;
|
|
}
|
|
/* Normalize over the disk. */
|
|
mul_v3_fl(texels[i], 1.0f / (area_accum));
|
|
}
|
|
|
|
/* Normalize */
|
|
for (int j = resolution - 2; j > 0; j--) {
|
|
texels[j][0] /= (texels[0][0] > 0.0f) ? texels[0][0] : 1.0f;
|
|
texels[j][1] /= (texels[0][1] > 0.0f) ? texels[0][1] : 1.0f;
|
|
texels[j][2] /= (texels[0][2] > 0.0f) ? texels[0][2] : 1.0f;
|
|
}
|
|
|
|
/* First texel should be white */
|
|
texels[0][0] = (texels[0][0] > 0.0f) ? 1.0f : 0.0f;
|
|
texels[0][1] = (texels[0][1] > 0.0f) ? 1.0f : 0.0f;
|
|
texels[0][2] = (texels[0][2] > 0.0f) ? 1.0f : 0.0f;
|
|
|
|
/* dim the last few texels for smoother transition */
|
|
mul_v3_fl(texels[resolution - 2], 0.25f);
|
|
mul_v3_fl(texels[resolution - 3], 0.5f);
|
|
mul_v3_fl(texels[resolution - 4], 0.75f);
|
|
}
|
|
#undef INTEGRAL_RESOLUTION
|
|
|
|
void GPU_material_sss_profile_create(GPUMaterial *material, float radii[3], short *falloff_type, float *sharpness)
|
|
{
|
|
copy_v3_v3(material->sss_radii, radii);
|
|
material->sss_falloff = (falloff_type) ? *falloff_type : 0.0;
|
|
material->sss_sharpness = (sharpness) ? *sharpness : 0.0;
|
|
material->sss_dirty = true;
|
|
material->sss_enabled = true;
|
|
|
|
/* Update / Create UBO */
|
|
if (material->sss_profile == NULL) {
|
|
material->sss_profile = GPU_uniformbuffer_create(sizeof(GPUSssKernelData), NULL, NULL);
|
|
}
|
|
}
|
|
|
|
struct GPUUniformBuffer *GPU_material_sss_profile_get(GPUMaterial *material, int sample_len, GPUTexture **tex_profile)
|
|
{
|
|
if (!material->sss_enabled)
|
|
return NULL;
|
|
|
|
if (material->sss_dirty || (material->sss_samples != sample_len)) {
|
|
GPUSssKernelData kd;
|
|
|
|
float sharpness = material->sss_sharpness;
|
|
|
|
/* XXX Black magic but it seems to fit. Maybe because we integrate -1..1 */
|
|
sharpness *= 0.5f;
|
|
|
|
compute_sss_kernel(&kd, material->sss_radii, sample_len, material->sss_falloff, sharpness);
|
|
|
|
/* Update / Create UBO */
|
|
GPU_uniformbuffer_update(material->sss_profile, &kd);
|
|
|
|
/* Update / Create Tex */
|
|
float *translucence_profile;
|
|
compute_sss_translucence_kernel(&kd, 64, material->sss_falloff, sharpness, &translucence_profile);
|
|
|
|
if (material->sss_tex_profile != NULL) {
|
|
GPU_texture_free(material->sss_tex_profile);
|
|
}
|
|
|
|
material->sss_tex_profile = GPU_texture_create_1d(64, GPU_RGBA16F, translucence_profile, NULL);
|
|
|
|
MEM_freeN(translucence_profile);
|
|
|
|
material->sss_samples = sample_len;
|
|
material->sss_dirty = false;
|
|
}
|
|
|
|
if (tex_profile != NULL) {
|
|
*tex_profile = material->sss_tex_profile;
|
|
}
|
|
return material->sss_profile;
|
|
}
|
|
|
|
struct GPUUniformBuffer *GPU_material_create_sss_profile_ubo(void)
|
|
{
|
|
return GPU_uniformbuffer_create(sizeof(GPUSssKernelData), NULL, NULL);
|
|
}
|
|
|
|
#undef SSS_EXPONENT
|
|
#undef SSS_SAMPLES
|
|
|
|
void GPU_material_vertex_attrs(GPUMaterial *material, GPUVertAttrLayers *r_attrs)
|
|
{
|
|
*r_attrs = material->attrs;
|
|
}
|
|
|
|
void GPU_material_output_link(GPUMaterial *material, GPUNodeLink *link)
|
|
{
|
|
if (!material->outlink)
|
|
material->outlink = link;
|
|
}
|
|
|
|
void gpu_material_add_node(GPUMaterial *material, GPUNode *node)
|
|
{
|
|
BLI_addtail(&material->nodes, node);
|
|
}
|
|
|
|
/* Return true if the material compilation has not yet begin or begin. */
|
|
eGPUMaterialStatus GPU_material_status(GPUMaterial *mat)
|
|
{
|
|
return mat->status;
|
|
}
|
|
|
|
/* Code generation */
|
|
|
|
bool GPU_material_do_color_management(GPUMaterial *mat)
|
|
{
|
|
if (!BKE_scene_check_color_management_enabled(mat->scene))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GPU_material_use_domain_surface(GPUMaterial *mat)
|
|
{
|
|
return (mat->domain & GPU_DOMAIN_SURFACE);
|
|
}
|
|
|
|
bool GPU_material_use_domain_volume(GPUMaterial *mat)
|
|
{
|
|
return (mat->domain & GPU_DOMAIN_VOLUME);
|
|
}
|
|
|
|
void GPU_material_flag_set(GPUMaterial *mat, eGPUMatFlag flag)
|
|
{
|
|
mat->flag |= flag;
|
|
}
|
|
|
|
bool GPU_material_flag_get(GPUMaterial *mat, eGPUMatFlag flag)
|
|
{
|
|
return (mat->flag & flag);
|
|
}
|
|
|
|
GPUMaterial *GPU_material_from_nodetree_find(
|
|
ListBase *gpumaterials, const void *engine_type, int options)
|
|
{
|
|
for (LinkData *link = gpumaterials->first; link; link = link->next) {
|
|
GPUMaterial *current_material = (GPUMaterial *)link->data;
|
|
if (current_material->engine_type == engine_type &&
|
|
current_material->options == options)
|
|
{
|
|
return current_material;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* \note Caller must use #GPU_material_from_nodetree_find to re-use existing materials,
|
|
* This is enforced since constructing other arguments to this function may be expensive
|
|
* so only do this when they are needed.
|
|
*/
|
|
GPUMaterial *GPU_material_from_nodetree(
|
|
Scene *scene, struct bNodeTree *ntree, ListBase *gpumaterials, const void *engine_type, int options,
|
|
const char *vert_code, const char *geom_code, const char *frag_lib, const char *defines, const char *name)
|
|
{
|
|
LinkData *link;
|
|
bool has_volume_output, has_surface_output;
|
|
|
|
/* Caller must re-use materials. */
|
|
BLI_assert(GPU_material_from_nodetree_find(gpumaterials, engine_type, options) == NULL);
|
|
|
|
/* allocate material */
|
|
GPUMaterial *mat = MEM_callocN(sizeof(GPUMaterial), "GPUMaterial");
|
|
mat->scene = scene;
|
|
mat->engine_type = engine_type;
|
|
mat->options = options;
|
|
#ifndef NDEBUG
|
|
BLI_snprintf(mat->name, sizeof(mat->name), "%s", name);
|
|
#else
|
|
UNUSED_VARS(name);
|
|
#endif
|
|
|
|
/* localize tree to create links for reroute and mute */
|
|
bNodeTree *localtree = ntreeLocalize(ntree);
|
|
ntreeGPUMaterialNodes(localtree, mat, &has_surface_output, &has_volume_output);
|
|
|
|
gpu_material_ramp_texture_build(mat);
|
|
|
|
if (has_surface_output) {
|
|
mat->domain |= GPU_DOMAIN_SURFACE;
|
|
}
|
|
if (has_volume_output) {
|
|
mat->domain |= GPU_DOMAIN_VOLUME;
|
|
}
|
|
|
|
if (mat->outlink) {
|
|
/* Prune the unused nodes and extract attributes before compiling so the
|
|
* generated VBOs are ready to accept the future shader. */
|
|
GPU_nodes_prune(&mat->nodes, mat->outlink);
|
|
GPU_nodes_get_vertex_attrs(&mat->nodes, &mat->attrs);
|
|
/* Create source code and search pass cache for an already compiled version. */
|
|
mat->pass = GPU_generate_pass(
|
|
mat,
|
|
mat->outlink,
|
|
&mat->attrs,
|
|
&mat->nodes,
|
|
&mat->builtins,
|
|
vert_code,
|
|
geom_code,
|
|
frag_lib,
|
|
defines);
|
|
|
|
if (mat->pass == NULL) {
|
|
/* We had a cache hit and the shader has already failed to compile. */
|
|
mat->status = GPU_MAT_FAILED;
|
|
}
|
|
else {
|
|
GPUShader *sh = GPU_pass_shader_get(mat->pass);
|
|
if (sh != NULL) {
|
|
/* We had a cache hit and the shader is already compiled. */
|
|
mat->status = GPU_MAT_SUCCESS;
|
|
GPU_nodes_extract_dynamic_inputs(sh, &mat->inputs, &mat->nodes);
|
|
}
|
|
else {
|
|
mat->status = GPU_MAT_QUEUED;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
mat->status = GPU_MAT_FAILED;
|
|
}
|
|
|
|
/* Only free after GPU_pass_shader_get where GPUUniformBuffer
|
|
* read data from the local tree. */
|
|
ntreeFreeLocalTree(localtree);
|
|
MEM_freeN(localtree);
|
|
|
|
/* note that even if building the shader fails in some way, we still keep
|
|
* it to avoid trying to compile again and again, and simply do not use
|
|
* the actual shader on drawing */
|
|
|
|
link = MEM_callocN(sizeof(LinkData), "GPUMaterialLink");
|
|
link->data = mat;
|
|
BLI_addtail(gpumaterials, link);
|
|
|
|
return mat;
|
|
}
|
|
|
|
void GPU_material_compile(GPUMaterial *mat)
|
|
{
|
|
/* Only run once! */
|
|
BLI_assert(mat->status == GPU_MAT_QUEUED);
|
|
BLI_assert(mat->pass);
|
|
|
|
/* NOTE: The shader may have already been compiled here since we are
|
|
* sharing GPUShader across GPUMaterials. In this case it's a no-op. */
|
|
#ifndef NDEBUG
|
|
GPU_pass_compile(mat->pass, mat->name);
|
|
#else
|
|
GPU_pass_compile(mat->pass, __func__);
|
|
#endif
|
|
|
|
GPUShader *sh = GPU_pass_shader_get(mat->pass);
|
|
|
|
if (sh != NULL) {
|
|
mat->status = GPU_MAT_SUCCESS;
|
|
GPU_nodes_extract_dynamic_inputs(sh, &mat->inputs, &mat->nodes);
|
|
}
|
|
else {
|
|
mat->status = GPU_MAT_FAILED;
|
|
GPU_pass_free_nodes(&mat->nodes);
|
|
GPU_pass_release(mat->pass);
|
|
mat->pass = NULL;
|
|
}
|
|
}
|
|
|
|
void GPU_materials_free(Main *bmain)
|
|
{
|
|
Material *ma;
|
|
World *wo;
|
|
extern Material defmaterial;
|
|
|
|
for (ma = bmain->materials.first; ma; ma = ma->id.next)
|
|
GPU_material_free(&ma->gpumaterial);
|
|
|
|
for (wo = bmain->worlds.first; wo; wo = wo->id.next)
|
|
GPU_material_free(&wo->gpumaterial);
|
|
|
|
GPU_material_free(&defmaterial.gpumaterial);
|
|
}
|