3174 lines
81 KiB
GLSL
3174 lines
81 KiB
GLSL
|
|
uniform mat4 ModelViewMatrix;
|
|
uniform mat4 ModelViewMatrixInverse;
|
|
uniform mat3 NormalMatrix;
|
|
uniform mat3 NormalMatrixInverse;
|
|
|
|
#ifndef USE_ATTR
|
|
uniform mat4 ModelMatrix;
|
|
uniform mat4 ModelMatrixInverse;
|
|
#endif
|
|
|
|
/* Converters */
|
|
|
|
float convert_rgba_to_float(vec4 color)
|
|
{
|
|
return dot(color.rgb, vec3(0.2126, 0.7152, 0.0722));
|
|
}
|
|
|
|
float exp_blender(float f)
|
|
{
|
|
return pow(2.71828182846, f);
|
|
}
|
|
|
|
float compatible_pow(float x, float y)
|
|
{
|
|
if (y == 0.0) /* x^0 -> 1, including 0^0 */
|
|
return 1.0;
|
|
|
|
/* glsl pow doesn't accept negative x */
|
|
if (x < 0.0) {
|
|
if (mod(-y, 2.0) == 0.0)
|
|
return pow(-x, y);
|
|
else
|
|
return -pow(-x, y);
|
|
}
|
|
else if (x == 0.0)
|
|
return 0.0;
|
|
|
|
return pow(x, y);
|
|
}
|
|
|
|
void rgb_to_hsv(vec4 rgb, out vec4 outcol)
|
|
{
|
|
float cmax, cmin, h, s, v, cdelta;
|
|
vec3 c;
|
|
|
|
cmax = max(rgb[0], max(rgb[1], rgb[2]));
|
|
cmin = min(rgb[0], min(rgb[1], rgb[2]));
|
|
cdelta = cmax - cmin;
|
|
|
|
v = cmax;
|
|
if (cmax != 0.0)
|
|
s = cdelta / cmax;
|
|
else {
|
|
s = 0.0;
|
|
h = 0.0;
|
|
}
|
|
|
|
if (s == 0.0) {
|
|
h = 0.0;
|
|
}
|
|
else {
|
|
c = (vec3(cmax) - rgb.xyz) / cdelta;
|
|
|
|
if (rgb.x == cmax) h = c[2] - c[1];
|
|
else if (rgb.y == cmax) h = 2.0 + c[0] - c[2];
|
|
else h = 4.0 + c[1] - c[0];
|
|
|
|
h /= 6.0;
|
|
|
|
if (h < 0.0)
|
|
h += 1.0;
|
|
}
|
|
|
|
outcol = vec4(h, s, v, rgb.w);
|
|
}
|
|
|
|
void hsv_to_rgb(vec4 hsv, out vec4 outcol)
|
|
{
|
|
float i, f, p, q, t, h, s, v;
|
|
vec3 rgb;
|
|
|
|
h = hsv[0];
|
|
s = hsv[1];
|
|
v = hsv[2];
|
|
|
|
if (s == 0.0) {
|
|
rgb = vec3(v, v, v);
|
|
}
|
|
else {
|
|
if (h == 1.0)
|
|
h = 0.0;
|
|
|
|
h *= 6.0;
|
|
i = floor(h);
|
|
f = h - i;
|
|
rgb = vec3(f, f, f);
|
|
p = v * (1.0 - s);
|
|
q = v * (1.0 - (s * f));
|
|
t = v * (1.0 - (s * (1.0 - f)));
|
|
|
|
if (i == 0.0) rgb = vec3(v, t, p);
|
|
else if (i == 1.0) rgb = vec3(q, v, p);
|
|
else if (i == 2.0) rgb = vec3(p, v, t);
|
|
else if (i == 3.0) rgb = vec3(p, q, v);
|
|
else if (i == 4.0) rgb = vec3(t, p, v);
|
|
else rgb = vec3(v, p, q);
|
|
}
|
|
|
|
outcol = vec4(rgb, hsv.w);
|
|
}
|
|
|
|
float srgb_to_linearrgb(float c)
|
|
{
|
|
if (c < 0.04045)
|
|
return (c < 0.0) ? 0.0 : c * (1.0 / 12.92);
|
|
else
|
|
return pow((c + 0.055) * (1.0 / 1.055), 2.4);
|
|
}
|
|
|
|
float linearrgb_to_srgb(float c)
|
|
{
|
|
if (c < 0.0031308)
|
|
return (c < 0.0) ? 0.0 : c * 12.92;
|
|
else
|
|
return 1.055 * pow(c, 1.0 / 2.4) - 0.055;
|
|
}
|
|
|
|
void srgb_to_linearrgb(vec4 col_from, out vec4 col_to)
|
|
{
|
|
col_to.r = srgb_to_linearrgb(col_from.r);
|
|
col_to.g = srgb_to_linearrgb(col_from.g);
|
|
col_to.b = srgb_to_linearrgb(col_from.b);
|
|
col_to.a = col_from.a;
|
|
}
|
|
|
|
void linearrgb_to_srgb(vec4 col_from, out vec4 col_to)
|
|
{
|
|
col_to.r = linearrgb_to_srgb(col_from.r);
|
|
col_to.g = linearrgb_to_srgb(col_from.g);
|
|
col_to.b = linearrgb_to_srgb(col_from.b);
|
|
col_to.a = col_from.a;
|
|
}
|
|
|
|
void color_to_normal_new_shading(vec3 color, out vec3 normal)
|
|
{
|
|
normal = vec3(2.0) * color - vec3(1.0);
|
|
}
|
|
|
|
void color_to_blender_normal_new_shading(vec3 color, out vec3 normal)
|
|
{
|
|
normal = vec3(2.0, -2.0, -2.0) * color - vec3(1.0);
|
|
}
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
#ifndef M_1_PI
|
|
#define M_1_PI 0.318309886183790671538
|
|
#endif
|
|
|
|
/*********** SHADER NODES ***************/
|
|
|
|
void particle_info(
|
|
vec4 sprops, vec4 loc, vec3 vel, vec3 avel,
|
|
out float index, out float random, out float age,
|
|
out float life_time, out vec3 location,
|
|
out float size, out vec3 velocity, out vec3 angular_velocity)
|
|
{
|
|
index = sprops.x;
|
|
random = loc.w;
|
|
age = sprops.y;
|
|
life_time = sprops.z;
|
|
size = sprops.w;
|
|
|
|
location = loc.xyz;
|
|
velocity = vel;
|
|
angular_velocity = avel;
|
|
}
|
|
|
|
void vect_normalize(vec3 vin, out vec3 vout)
|
|
{
|
|
vout = normalize(vin);
|
|
}
|
|
|
|
void direction_transform_m4v3(vec3 vin, mat4 mat, out vec3 vout)
|
|
{
|
|
vout = (mat * vec4(vin, 0.0)).xyz;
|
|
}
|
|
|
|
void mat3_mul(vec3 vin, mat3 mat, out vec3 vout)
|
|
{
|
|
vout = mat * vin;
|
|
}
|
|
|
|
void point_transform_m4v3(vec3 vin, mat4 mat, out vec3 vout)
|
|
{
|
|
vout = (mat * vec4(vin, 1.0)).xyz;
|
|
}
|
|
|
|
void point_texco_remap_square(vec3 vin, out vec3 vout)
|
|
{
|
|
vout = vin * 2.0 - 1.0;
|
|
}
|
|
|
|
void point_texco_clamp(vec3 vin, sampler2D ima, out vec3 vout)
|
|
{
|
|
vec2 half_texel_size = 0.5 / vec2(textureSize(ima, 0).xy);
|
|
vout = clamp(vin, half_texel_size.xyy, 1.0 - half_texel_size.xyy);
|
|
}
|
|
|
|
void point_map_to_sphere(vec3 vin, out vec3 vout)
|
|
{
|
|
float len = length(vin);
|
|
float v, u;
|
|
if (len > 0.0) {
|
|
if (vin.x == 0.0 && vin.y == 0.0)
|
|
u = 0.0;
|
|
else
|
|
u = (1.0 - atan(vin.x, vin.y) / M_PI) / 2.0;
|
|
|
|
v = 1.0 - acos(vin.z / len) / M_PI;
|
|
}
|
|
else
|
|
v = u = 0.0;
|
|
|
|
vout = vec3(u, v, 0.0);
|
|
}
|
|
|
|
void point_map_to_tube(vec3 vin, out vec3 vout)
|
|
{
|
|
float u, v;
|
|
v = (vin.z + 1.0) * 0.5;
|
|
float len = sqrt(vin.x * vin.x + vin.y * vin[1]);
|
|
if (len > 0.0)
|
|
u = (1.0 - (atan(vin.x / len, vin.y / len) / M_PI)) * 0.5;
|
|
else
|
|
v = u = 0.0;
|
|
|
|
vout = vec3(u, v, 0.0);
|
|
}
|
|
|
|
void mapping(vec3 vec, vec4 m0, vec4 m1, vec4 m2, vec4 m3, vec3 minvec, vec3 maxvec, out vec3 outvec)
|
|
{
|
|
mat4 mat = mat4(m0, m1, m2, m3);
|
|
outvec = (mat * vec4(vec, 1.0)).xyz;
|
|
outvec = clamp(outvec, minvec, maxvec);
|
|
}
|
|
|
|
void camera(vec3 co, out vec3 outview, out float outdepth, out float outdist)
|
|
{
|
|
outdepth = abs(co.z);
|
|
outdist = length(co);
|
|
outview = normalize(co);
|
|
}
|
|
|
|
void math_add(float val1, float val2, out float outval)
|
|
{
|
|
outval = val1 + val2;
|
|
}
|
|
|
|
void math_subtract(float val1, float val2, out float outval)
|
|
{
|
|
outval = val1 - val2;
|
|
}
|
|
|
|
void math_multiply(float val1, float val2, out float outval)
|
|
{
|
|
outval = val1 * val2;
|
|
}
|
|
|
|
void math_divide(float val1, float val2, out float outval)
|
|
{
|
|
if (val2 == 0.0)
|
|
outval = 0.0;
|
|
else
|
|
outval = val1 / val2;
|
|
}
|
|
|
|
void math_sine(float val, out float outval)
|
|
{
|
|
outval = sin(val);
|
|
}
|
|
|
|
void math_cosine(float val, out float outval)
|
|
{
|
|
outval = cos(val);
|
|
}
|
|
|
|
void math_tangent(float val, out float outval)
|
|
{
|
|
outval = tan(val);
|
|
}
|
|
|
|
void math_asin(float val, out float outval)
|
|
{
|
|
if (val <= 1.0 && val >= -1.0)
|
|
outval = asin(val);
|
|
else
|
|
outval = 0.0;
|
|
}
|
|
|
|
void math_acos(float val, out float outval)
|
|
{
|
|
if (val <= 1.0 && val >= -1.0)
|
|
outval = acos(val);
|
|
else
|
|
outval = 0.0;
|
|
}
|
|
|
|
void math_atan(float val, out float outval)
|
|
{
|
|
outval = atan(val);
|
|
}
|
|
|
|
void math_pow(float val1, float val2, out float outval)
|
|
{
|
|
if (val1 >= 0.0) {
|
|
outval = compatible_pow(val1, val2);
|
|
}
|
|
else {
|
|
float val2_mod_1 = mod(abs(val2), 1.0);
|
|
|
|
if (val2_mod_1 > 0.999 || val2_mod_1 < 0.001)
|
|
outval = compatible_pow(val1, floor(val2 + 0.5));
|
|
else
|
|
outval = 0.0;
|
|
}
|
|
}
|
|
|
|
void math_log(float val1, float val2, out float outval)
|
|
{
|
|
if (val1 > 0.0 && val2 > 0.0)
|
|
outval = log2(val1) / log2(val2);
|
|
else
|
|
outval = 0.0;
|
|
}
|
|
|
|
void math_max(float val1, float val2, out float outval)
|
|
{
|
|
outval = max(val1, val2);
|
|
}
|
|
|
|
void math_min(float val1, float val2, out float outval)
|
|
{
|
|
outval = min(val1, val2);
|
|
}
|
|
|
|
void math_round(float val, out float outval)
|
|
{
|
|
outval = floor(val + 0.5);
|
|
}
|
|
|
|
void math_less_than(float val1, float val2, out float outval)
|
|
{
|
|
if (val1 < val2)
|
|
outval = 1.0;
|
|
else
|
|
outval = 0.0;
|
|
}
|
|
|
|
void math_greater_than(float val1, float val2, out float outval)
|
|
{
|
|
if (val1 > val2)
|
|
outval = 1.0;
|
|
else
|
|
outval = 0.0;
|
|
}
|
|
|
|
void math_modulo(float val1, float val2, out float outval)
|
|
{
|
|
if (val2 == 0.0)
|
|
outval = 0.0;
|
|
else
|
|
outval = mod(val1, val2);
|
|
|
|
/* change sign to match C convention, mod in GLSL will take absolute for negative numbers,
|
|
* see https://www.opengl.org/sdk/docs/man/html/mod.xhtml */
|
|
outval = (val1 > 0.0) ? outval : outval - val2;
|
|
}
|
|
|
|
void math_abs(float val1, out float outval)
|
|
{
|
|
outval = abs(val1);
|
|
}
|
|
|
|
void math_atan2(float val1, float val2, out float outval)
|
|
{
|
|
outval = atan(val1, val2);
|
|
}
|
|
|
|
void math_floor(float val, out float outval)
|
|
{
|
|
outval = floor(val);
|
|
}
|
|
|
|
void math_ceil(float val, out float outval)
|
|
{
|
|
outval = ceil(val);
|
|
}
|
|
|
|
void math_fract(float val, out float outval)
|
|
{
|
|
outval = val - floor(val);
|
|
}
|
|
|
|
void math_sqrt(float val, out float outval)
|
|
{
|
|
if (val > 0.0)
|
|
outval = sqrt(val);
|
|
else
|
|
outval = 0.0;
|
|
}
|
|
|
|
void squeeze(float val, float width, float center, out float outval)
|
|
{
|
|
outval = 1.0 / (1.0 + pow(2.71828183, -((val - center) * width)));
|
|
}
|
|
|
|
void vec_math_add(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
|
|
{
|
|
outvec = v1 + v2;
|
|
outval = (abs(outvec[0]) + abs(outvec[1]) + abs(outvec[2])) * 0.333333;
|
|
}
|
|
|
|
void vec_math_sub(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
|
|
{
|
|
outvec = v1 - v2;
|
|
outval = (abs(outvec[0]) + abs(outvec[1]) + abs(outvec[2])) * 0.333333;
|
|
}
|
|
|
|
void vec_math_average(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
|
|
{
|
|
outvec = v1 + v2;
|
|
outval = length(outvec);
|
|
outvec = normalize(outvec);
|
|
}
|
|
void vec_math_mix(float strength, vec3 v1, vec3 v2, out vec3 outvec)
|
|
{
|
|
outvec = strength * v1 + (1 - strength) * v2;
|
|
}
|
|
|
|
void vec_math_dot(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
|
|
{
|
|
outvec = vec3(0);
|
|
outval = dot(v1, v2);
|
|
}
|
|
|
|
void vec_math_cross(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
|
|
{
|
|
outvec = cross(v1, v2);
|
|
outval = length(outvec);
|
|
outvec /= outval;
|
|
}
|
|
|
|
void vec_math_normalize(vec3 v, out vec3 outvec, out float outval)
|
|
{
|
|
outval = length(v);
|
|
outvec = normalize(v);
|
|
}
|
|
|
|
void vec_math_negate(vec3 v, out vec3 outv)
|
|
{
|
|
outv = -v;
|
|
}
|
|
|
|
void invert_z(vec3 v, out vec3 outv)
|
|
{
|
|
v.z = -v.z;
|
|
outv = v;
|
|
}
|
|
|
|
void normal_new_shading(vec3 nor, vec3 dir, out vec3 outnor, out float outdot)
|
|
{
|
|
outnor = dir;
|
|
outdot = dot(normalize(nor), dir);
|
|
}
|
|
|
|
void curves_vec(float fac, vec3 vec, sampler1DArray curvemap, float layer, out vec3 outvec)
|
|
{
|
|
vec4 co = vec4(vec * 0.5 + 0.5, layer);
|
|
outvec.x = texture(curvemap, co.xw).x;
|
|
outvec.y = texture(curvemap, co.yw).y;
|
|
outvec.z = texture(curvemap, co.zw).z;
|
|
outvec = mix(vec, outvec, fac);
|
|
}
|
|
|
|
/* ext is vec4(in_x, in_dy, out_x, out_dy). */
|
|
float curve_extrapolate(float x, float y, vec4 ext)
|
|
{
|
|
if (x < 0.0) {
|
|
return y + x * ext.y;
|
|
}
|
|
else if (x > 1.0) {
|
|
return y + (x - 1.0) * ext.w;
|
|
}
|
|
else {
|
|
return y;
|
|
}
|
|
}
|
|
|
|
#define RANGE_RESCALE(x, min, range) ((x - min) * range)
|
|
|
|
void curves_rgb(
|
|
float fac, vec4 col, sampler1DArray curvemap, float layer,
|
|
vec4 range, vec4 ext_r, vec4 ext_g, vec4 ext_b, vec4 ext_a,
|
|
out vec4 outcol)
|
|
{
|
|
vec4 co = vec4(RANGE_RESCALE(col.rgb, ext_a.x, range.a), layer);
|
|
vec3 samp;
|
|
samp.r = texture(curvemap, co.xw).a;
|
|
samp.g = texture(curvemap, co.yw).a;
|
|
samp.b = texture(curvemap, co.zw).a;
|
|
|
|
samp.r = curve_extrapolate(co.x, samp.r, ext_a);
|
|
samp.g = curve_extrapolate(co.y, samp.g, ext_a);
|
|
samp.b = curve_extrapolate(co.z, samp.b, ext_a);
|
|
|
|
vec3 rgb_min = vec3(ext_r.x, ext_g.x, ext_b.x);
|
|
co.xyz = RANGE_RESCALE(samp.rgb, rgb_min, range.rgb);
|
|
|
|
samp.r = texture(curvemap, co.xw).r;
|
|
samp.g = texture(curvemap, co.yw).g;
|
|
samp.b = texture(curvemap, co.zw).b;
|
|
|
|
outcol.r = curve_extrapolate(co.x, samp.r, ext_r);
|
|
outcol.g = curve_extrapolate(co.y, samp.g, ext_g);
|
|
outcol.b = curve_extrapolate(co.z, samp.b, ext_b);
|
|
outcol.a = col.a;
|
|
|
|
outcol = mix(col, outcol, fac);
|
|
}
|
|
|
|
void curves_rgb_opti(
|
|
float fac, vec4 col, sampler1DArray curvemap, float layer,
|
|
vec4 range, vec4 ext_a,
|
|
out vec4 outcol)
|
|
{
|
|
vec4 co = vec4(RANGE_RESCALE(col.rgb, ext_a.x, range.a), layer);
|
|
vec3 samp;
|
|
samp.r = texture(curvemap, co.xw).a;
|
|
samp.g = texture(curvemap, co.yw).a;
|
|
samp.b = texture(curvemap, co.zw).a;
|
|
|
|
outcol.r = curve_extrapolate(co.x, samp.r, ext_a);
|
|
outcol.g = curve_extrapolate(co.y, samp.g, ext_a);
|
|
outcol.b = curve_extrapolate(co.z, samp.b, ext_a);
|
|
outcol.a = col.a;
|
|
|
|
outcol = mix(col, outcol, fac);
|
|
}
|
|
|
|
void set_value(float val, out float outval)
|
|
{
|
|
outval = val;
|
|
}
|
|
|
|
void set_rgb(vec3 col, out vec3 outcol)
|
|
{
|
|
outcol = col;
|
|
}
|
|
|
|
void set_rgba(vec4 col, out vec4 outcol)
|
|
{
|
|
outcol = col;
|
|
}
|
|
|
|
void set_value_zero(out float outval)
|
|
{
|
|
outval = 0.0;
|
|
}
|
|
|
|
void set_value_one(out float outval)
|
|
{
|
|
outval = 1.0;
|
|
}
|
|
|
|
void set_rgb_zero(out vec3 outval)
|
|
{
|
|
outval = vec3(0.0);
|
|
}
|
|
|
|
void set_rgb_one(out vec3 outval)
|
|
{
|
|
outval = vec3(1.0);
|
|
}
|
|
|
|
void set_rgba_zero(out vec4 outval)
|
|
{
|
|
outval = vec4(0.0);
|
|
}
|
|
|
|
void set_rgba_one(out vec4 outval)
|
|
{
|
|
outval = vec4(1.0);
|
|
}
|
|
|
|
void brightness_contrast(vec4 col, float brightness, float contrast, out vec4 outcol)
|
|
{
|
|
float a = 1.0 + contrast;
|
|
float b = brightness - contrast * 0.5;
|
|
|
|
outcol.r = max(a * col.r + b, 0.0);
|
|
outcol.g = max(a * col.g + b, 0.0);
|
|
outcol.b = max(a * col.b + b, 0.0);
|
|
outcol.a = col.a;
|
|
}
|
|
|
|
void mix_blend(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
outcol = mix(col1, col2, fac);
|
|
outcol.a = col1.a;
|
|
}
|
|
|
|
void mix_add(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
outcol = mix(col1, col1 + col2, fac);
|
|
outcol.a = col1.a;
|
|
}
|
|
|
|
void mix_mult(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
outcol = mix(col1, col1 * col2, fac);
|
|
outcol.a = col1.a;
|
|
}
|
|
|
|
void mix_screen(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
float facm = 1.0 - fac;
|
|
|
|
outcol = vec4(1.0) - (vec4(facm) + fac * (vec4(1.0) - col2)) * (vec4(1.0) - col1);
|
|
outcol.a = col1.a;
|
|
}
|
|
|
|
void mix_overlay(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
float facm = 1.0 - fac;
|
|
|
|
outcol = col1;
|
|
|
|
if (outcol.r < 0.5)
|
|
outcol.r *= facm + 2.0 * fac * col2.r;
|
|
else
|
|
outcol.r = 1.0 - (facm + 2.0 * fac * (1.0 - col2.r)) * (1.0 - outcol.r);
|
|
|
|
if (outcol.g < 0.5)
|
|
outcol.g *= facm + 2.0 * fac * col2.g;
|
|
else
|
|
outcol.g = 1.0 - (facm + 2.0 * fac * (1.0 - col2.g)) * (1.0 - outcol.g);
|
|
|
|
if (outcol.b < 0.5)
|
|
outcol.b *= facm + 2.0 * fac * col2.b;
|
|
else
|
|
outcol.b = 1.0 - (facm + 2.0 * fac * (1.0 - col2.b)) * (1.0 - outcol.b);
|
|
}
|
|
|
|
void mix_sub(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
outcol = mix(col1, col1 - col2, fac);
|
|
outcol.a = col1.a;
|
|
}
|
|
|
|
void mix_div(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
float facm = 1.0 - fac;
|
|
|
|
outcol = col1;
|
|
|
|
if (col2.r != 0.0) outcol.r = facm * outcol.r + fac * outcol.r / col2.r;
|
|
if (col2.g != 0.0) outcol.g = facm * outcol.g + fac * outcol.g / col2.g;
|
|
if (col2.b != 0.0) outcol.b = facm * outcol.b + fac * outcol.b / col2.b;
|
|
}
|
|
|
|
void mix_diff(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
outcol = mix(col1, abs(col1 - col2), fac);
|
|
outcol.a = col1.a;
|
|
}
|
|
|
|
void mix_dark(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
outcol.rgb = min(col1.rgb, col2.rgb * fac);
|
|
outcol.a = col1.a;
|
|
}
|
|
|
|
void mix_light(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
outcol.rgb = max(col1.rgb, col2.rgb * fac);
|
|
outcol.a = col1.a;
|
|
}
|
|
|
|
void mix_dodge(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
outcol = col1;
|
|
|
|
if (outcol.r != 0.0) {
|
|
float tmp = 1.0 - fac * col2.r;
|
|
if (tmp <= 0.0)
|
|
outcol.r = 1.0;
|
|
else if ((tmp = outcol.r / tmp) > 1.0)
|
|
outcol.r = 1.0;
|
|
else
|
|
outcol.r = tmp;
|
|
}
|
|
if (outcol.g != 0.0) {
|
|
float tmp = 1.0 - fac * col2.g;
|
|
if (tmp <= 0.0)
|
|
outcol.g = 1.0;
|
|
else if ((tmp = outcol.g / tmp) > 1.0)
|
|
outcol.g = 1.0;
|
|
else
|
|
outcol.g = tmp;
|
|
}
|
|
if (outcol.b != 0.0) {
|
|
float tmp = 1.0 - fac * col2.b;
|
|
if (tmp <= 0.0)
|
|
outcol.b = 1.0;
|
|
else if ((tmp = outcol.b / tmp) > 1.0)
|
|
outcol.b = 1.0;
|
|
else
|
|
outcol.b = tmp;
|
|
}
|
|
}
|
|
|
|
void mix_burn(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
float tmp, facm = 1.0 - fac;
|
|
|
|
outcol = col1;
|
|
|
|
tmp = facm + fac * col2.r;
|
|
if (tmp <= 0.0)
|
|
outcol.r = 0.0;
|
|
else if ((tmp = (1.0 - (1.0 - outcol.r) / tmp)) < 0.0)
|
|
outcol.r = 0.0;
|
|
else if (tmp > 1.0)
|
|
outcol.r = 1.0;
|
|
else
|
|
outcol.r = tmp;
|
|
|
|
tmp = facm + fac * col2.g;
|
|
if (tmp <= 0.0)
|
|
outcol.g = 0.0;
|
|
else if ((tmp = (1.0 - (1.0 - outcol.g) / tmp)) < 0.0)
|
|
outcol.g = 0.0;
|
|
else if (tmp > 1.0)
|
|
outcol.g = 1.0;
|
|
else
|
|
outcol.g = tmp;
|
|
|
|
tmp = facm + fac * col2.b;
|
|
if (tmp <= 0.0)
|
|
outcol.b = 0.0;
|
|
else if ((tmp = (1.0 - (1.0 - outcol.b) / tmp)) < 0.0)
|
|
outcol.b = 0.0;
|
|
else if (tmp > 1.0)
|
|
outcol.b = 1.0;
|
|
else
|
|
outcol.b = tmp;
|
|
}
|
|
|
|
void mix_hue(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
float facm = 1.0 - fac;
|
|
|
|
outcol = col1;
|
|
|
|
vec4 hsv, hsv2, tmp;
|
|
rgb_to_hsv(col2, hsv2);
|
|
|
|
if (hsv2.y != 0.0) {
|
|
rgb_to_hsv(outcol, hsv);
|
|
hsv.x = hsv2.x;
|
|
hsv_to_rgb(hsv, tmp);
|
|
|
|
outcol = mix(outcol, tmp, fac);
|
|
outcol.a = col1.a;
|
|
}
|
|
}
|
|
|
|
void mix_sat(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
float facm = 1.0 - fac;
|
|
|
|
outcol = col1;
|
|
|
|
vec4 hsv, hsv2;
|
|
rgb_to_hsv(outcol, hsv);
|
|
|
|
if (hsv.y != 0.0) {
|
|
rgb_to_hsv(col2, hsv2);
|
|
|
|
hsv.y = facm * hsv.y + fac * hsv2.y;
|
|
hsv_to_rgb(hsv, outcol);
|
|
}
|
|
}
|
|
|
|
void mix_val(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
float facm = 1.0 - fac;
|
|
|
|
vec4 hsv, hsv2;
|
|
rgb_to_hsv(col1, hsv);
|
|
rgb_to_hsv(col2, hsv2);
|
|
|
|
hsv.z = facm * hsv.z + fac * hsv2.z;
|
|
hsv_to_rgb(hsv, outcol);
|
|
}
|
|
|
|
void mix_color(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
float facm = 1.0 - fac;
|
|
|
|
outcol = col1;
|
|
|
|
vec4 hsv, hsv2, tmp;
|
|
rgb_to_hsv(col2, hsv2);
|
|
|
|
if (hsv2.y != 0.0) {
|
|
rgb_to_hsv(outcol, hsv);
|
|
hsv.x = hsv2.x;
|
|
hsv.y = hsv2.y;
|
|
hsv_to_rgb(hsv, tmp);
|
|
|
|
outcol = mix(outcol, tmp, fac);
|
|
outcol.a = col1.a;
|
|
}
|
|
}
|
|
|
|
void mix_soft(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
float facm = 1.0 - fac;
|
|
|
|
vec4 one = vec4(1.0);
|
|
vec4 scr = one - (one - col2) * (one - col1);
|
|
outcol = facm * col1 + fac * ((one - col1) * col2 * col1 + col1 * scr);
|
|
}
|
|
|
|
void mix_linear(float fac, vec4 col1, vec4 col2, out vec4 outcol)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
|
|
outcol = col1 + fac * (2.0 * (col2 - vec4(0.5)));
|
|
}
|
|
|
|
void valtorgb_opti_constant(float fac, float edge, vec4 color1, vec4 color2, out vec4 outcol, out float outalpha)
|
|
{
|
|
outcol = (fac > edge) ? color2 : color1;
|
|
outalpha = outcol.a;
|
|
}
|
|
|
|
void valtorgb_opti_linear(float fac, vec2 mulbias, vec4 color1, vec4 color2, out vec4 outcol, out float outalpha)
|
|
{
|
|
fac = clamp(fac * mulbias.x + mulbias.y, 0.0, 1.0);
|
|
outcol = mix(color1, color2, fac);
|
|
outalpha = outcol.a;
|
|
}
|
|
|
|
void valtorgb(float fac, sampler1DArray colormap, float layer, out vec4 outcol, out float outalpha)
|
|
{
|
|
outcol = texture(colormap, vec2(fac, layer));
|
|
outalpha = outcol.a;
|
|
}
|
|
|
|
void valtorgb_nearest(float fac, sampler1DArray colormap, float layer, out vec4 outcol, out float outalpha)
|
|
{
|
|
fac = clamp(fac, 0.0, 1.0);
|
|
outcol = texelFetch(colormap, ivec2(fac * (textureSize(colormap, 0).x - 1), layer), 0);
|
|
outalpha = outcol.a;
|
|
}
|
|
|
|
void rgbtobw(vec4 color, out float outval)
|
|
{
|
|
vec3 factors = vec3(0.2126, 0.7152, 0.0722);
|
|
outval = dot(color.rgb, factors);
|
|
}
|
|
|
|
void invert(float fac, vec4 col, out vec4 outcol)
|
|
{
|
|
outcol.xyz = mix(col.xyz, vec3(1.0) - col.xyz, fac);
|
|
outcol.w = col.w;
|
|
}
|
|
|
|
void clamp_vec3(vec3 vec, vec3 min, vec3 max, out vec3 out_vec)
|
|
{
|
|
out_vec = clamp(vec, min, max);
|
|
}
|
|
|
|
void clamp_val(float value, float min, float max, out float out_value)
|
|
{
|
|
out_value = clamp(value, min, max);
|
|
}
|
|
|
|
void hue_sat(float hue, float sat, float value, float fac, vec4 col, out vec4 outcol)
|
|
{
|
|
vec4 hsv;
|
|
|
|
rgb_to_hsv(col, hsv);
|
|
|
|
hsv[0] = fract(hsv[0] + hue + 0.5);
|
|
hsv[1] = clamp(hsv[1] * sat, 0.0, 1.0);
|
|
hsv[2] = hsv[2] * value;
|
|
|
|
hsv_to_rgb(hsv, outcol);
|
|
|
|
outcol = mix(col, outcol, fac);
|
|
}
|
|
|
|
void separate_rgb(vec4 col, out float r, out float g, out float b)
|
|
{
|
|
r = col.r;
|
|
g = col.g;
|
|
b = col.b;
|
|
}
|
|
|
|
void combine_rgb(float r, float g, float b, out vec4 col)
|
|
{
|
|
col = vec4(r, g, b, 1.0);
|
|
}
|
|
|
|
void separate_xyz(vec3 vec, out float x, out float y, out float z)
|
|
{
|
|
x = vec.r;
|
|
y = vec.g;
|
|
z = vec.b;
|
|
}
|
|
|
|
void combine_xyz(float x, float y, float z, out vec3 vec)
|
|
{
|
|
vec = vec3(x, y, z);
|
|
}
|
|
|
|
void separate_hsv(vec4 col, out float h, out float s, out float v)
|
|
{
|
|
vec4 hsv;
|
|
|
|
rgb_to_hsv(col, hsv);
|
|
h = hsv[0];
|
|
s = hsv[1];
|
|
v = hsv[2];
|
|
}
|
|
|
|
void combine_hsv(float h, float s, float v, out vec4 col)
|
|
{
|
|
hsv_to_rgb(vec4(h, s, v, 1.0), col);
|
|
}
|
|
|
|
void output_node(vec4 rgb, float alpha, out vec4 outrgb)
|
|
{
|
|
outrgb = vec4(rgb.rgb, alpha);
|
|
}
|
|
|
|
/*********** TEXTURES ***************/
|
|
|
|
void texco_norm(vec3 normal, out vec3 outnormal)
|
|
{
|
|
/* corresponds to shi->orn, which is negated so cancels
|
|
out blender normal negation */
|
|
outnormal = normalize(normal);
|
|
}
|
|
|
|
vec3 mtex_2d_mapping(vec3 vec)
|
|
{
|
|
return vec3(vec.xy * 0.5 + vec2(0.5), vec.z);
|
|
}
|
|
|
|
/** helper method to extract the upper left 3x3 matrix from a 4x4 matrix */
|
|
mat3 to_mat3(mat4 m4)
|
|
{
|
|
mat3 m3;
|
|
m3[0] = m4[0].xyz;
|
|
m3[1] = m4[1].xyz;
|
|
m3[2] = m4[2].xyz;
|
|
return m3;
|
|
}
|
|
|
|
/*********** NEW SHADER UTILITIES **************/
|
|
|
|
float fresnel_dielectric_0(float eta)
|
|
{
|
|
/* compute fresnel reflactance at normal incidence => cosi = 1.0 */
|
|
float A = (eta - 1.0) / (eta + 1.0);
|
|
|
|
return A * A;
|
|
}
|
|
|
|
float fresnel_dielectric_cos(float cosi, float eta)
|
|
{
|
|
/* compute fresnel reflectance without explicitly computing
|
|
* the refracted direction */
|
|
float c = abs(cosi);
|
|
float g = eta * eta - 1.0 + c * c;
|
|
float result;
|
|
|
|
if (g > 0.0) {
|
|
g = sqrt(g);
|
|
float A = (g - c) / (g + c);
|
|
float B = (c * (g + c) - 1.0) / (c * (g - c) + 1.0);
|
|
result = 0.5 * A * A * (1.0 + B * B);
|
|
}
|
|
else {
|
|
result = 1.0; /* TIR (no refracted component) */
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
float fresnel_dielectric(vec3 Incoming, vec3 Normal, float eta)
|
|
{
|
|
/* compute fresnel reflectance without explicitly computing
|
|
* the refracted direction */
|
|
return fresnel_dielectric_cos(dot(Incoming, Normal), eta);
|
|
}
|
|
|
|
float hypot(float x, float y)
|
|
{
|
|
return sqrt(x * x + y * y);
|
|
}
|
|
|
|
void generated_from_orco(vec3 orco, out vec3 generated)
|
|
{
|
|
#ifdef VOLUMETRICS
|
|
#ifdef MESH_SHADER
|
|
generated = volumeObjectLocalCoord;
|
|
#else
|
|
generated = worldPosition;
|
|
#endif
|
|
#else
|
|
generated = orco;
|
|
#endif
|
|
}
|
|
|
|
int floor_to_int(float x)
|
|
{
|
|
return int(floor(x));
|
|
}
|
|
|
|
int quick_floor(float x)
|
|
{
|
|
return int(x) - ((x < 0) ? 1 : 0);
|
|
}
|
|
|
|
float integer_noise(int n)
|
|
{
|
|
int nn;
|
|
n = (n + 1013) & 0x7fffffff;
|
|
n = (n >> 13) ^ n;
|
|
nn = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
|
return 0.5 * (float(nn) / 1073741824.0);
|
|
}
|
|
|
|
uint hash(uint kx, uint ky, uint kz)
|
|
{
|
|
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
|
|
#define final(a, b, c) \
|
|
{ \
|
|
c ^= b; c -= rot(b, 14); \
|
|
a ^= c; a -= rot(c, 11); \
|
|
b ^= a; b -= rot(a, 25); \
|
|
c ^= b; c -= rot(b, 16); \
|
|
a ^= c; a -= rot(c, 4); \
|
|
b ^= a; b -= rot(a, 14); \
|
|
c ^= b; c -= rot(b, 24); \
|
|
}
|
|
// now hash the data!
|
|
uint a, b, c, len = 3u;
|
|
a = b = c = 0xdeadbeefu + (len << 2u) + 13u;
|
|
|
|
c += kz;
|
|
b += ky;
|
|
a += kx;
|
|
final (a, b, c);
|
|
|
|
return c;
|
|
#undef rot
|
|
#undef final
|
|
}
|
|
|
|
uint hash(int kx, int ky, int kz)
|
|
{
|
|
return hash(uint(kx), uint(ky), uint(kz));
|
|
}
|
|
|
|
float bits_to_01(uint bits)
|
|
{
|
|
return (float(bits) / 4294967295.0);
|
|
}
|
|
|
|
float cellnoise(vec3 p)
|
|
{
|
|
int ix = quick_floor(p.x);
|
|
int iy = quick_floor(p.y);
|
|
int iz = quick_floor(p.z);
|
|
|
|
return bits_to_01(hash(uint(ix), uint(iy), uint(iz)));
|
|
}
|
|
|
|
vec3 cellnoise_color(vec3 p)
|
|
{
|
|
float r = cellnoise(p.xyz);
|
|
float g = cellnoise(p.yxz);
|
|
float b = cellnoise(p.yzx);
|
|
|
|
return vec3(r, g, b);
|
|
}
|
|
|
|
float floorfrac(float x, out int i)
|
|
{
|
|
i = floor_to_int(x);
|
|
return x - i;
|
|
}
|
|
|
|
/* bsdfs */
|
|
|
|
vec3 tint_from_color(vec3 color)
|
|
{
|
|
float lum = dot(color, vec3(0.3, 0.6, 0.1)); /* luminance approx. */
|
|
return (lum > 0) ? color / lum : vec3(1.0); /* normalize lum. to isolate hue+sat */
|
|
}
|
|
|
|
void convert_metallic_to_specular_tinted(
|
|
vec3 basecol, vec3 basecol_tint, float metallic, float specular_fac, float specular_tint,
|
|
out vec3 diffuse, out vec3 f0)
|
|
{
|
|
vec3 tmp_col = mix(vec3(1.0), basecol_tint, specular_tint);
|
|
f0 = mix((0.08 * specular_fac) * tmp_col, basecol, metallic);
|
|
diffuse = basecol * (1.0 - metallic);
|
|
}
|
|
|
|
vec3 principled_sheen(float NV, vec3 basecol_tint, float sheen_tint)
|
|
{
|
|
float f = 1.0 - NV;
|
|
/* Temporary fix for T59784. Normal map seems to contain NaNs for tangent space normal maps, therefore we need to clamp value. */
|
|
f = clamp(f, 0.0, 1.0);
|
|
/* Empirical approximation (manual curve fitting). Can be refined. */
|
|
float sheen = f*f*f*0.077 + f*0.01 + 0.00026;
|
|
return sheen * mix(vec3(1.0), basecol_tint, sheen_tint);
|
|
}
|
|
|
|
#ifndef VOLUMETRICS
|
|
void node_bsdf_diffuse(vec4 color, float roughness, vec3 N, out Closure result)
|
|
{
|
|
N = normalize(N);
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
eevee_closure_diffuse(N, color.rgb, 1.0, result.radiance);
|
|
result.radiance *= color.rgb;
|
|
}
|
|
|
|
void node_bsdf_glossy(vec4 color, float roughness, vec3 N, float ssr_id, out Closure result)
|
|
{
|
|
N = normalize(N);
|
|
vec3 out_spec, ssr_spec;
|
|
eevee_closure_glossy(N, vec3(1.0), int(ssr_id), roughness, 1.0, out_spec, ssr_spec);
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = out_spec * color.rgb;
|
|
result.ssr_data = vec4(ssr_spec * color.rgb, roughness);
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.ssr_id = int(ssr_id);
|
|
}
|
|
|
|
void node_bsdf_anisotropic(
|
|
vec4 color, float roughness, float anisotropy, float rotation, vec3 N, vec3 T,
|
|
out Closure result)
|
|
{
|
|
node_bsdf_glossy(color, roughness, N, -1, result);
|
|
}
|
|
|
|
void node_bsdf_glass(vec4 color, float roughness, float ior, vec3 N, float ssr_id, out Closure result)
|
|
{
|
|
N = normalize(N);
|
|
vec3 out_spec, out_refr, ssr_spec;
|
|
vec3 refr_color = (refractionDepth > 0.0) ? color.rgb * color.rgb : color.rgb; /* Simulate 2 transmission event */
|
|
eevee_closure_glass(N, vec3(1.0), int(ssr_id), roughness, 1.0, ior, out_spec, out_refr, ssr_spec);
|
|
out_refr *= refr_color;
|
|
out_spec *= color.rgb;
|
|
float fresnel = F_eta(ior, dot(N, cameraVec));
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = mix(out_refr, out_spec, fresnel);
|
|
result.ssr_data = vec4(ssr_spec * color.rgb * fresnel, roughness);
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.ssr_id = int(ssr_id);
|
|
}
|
|
|
|
void node_bsdf_toon(vec4 color, float size, float tsmooth, vec3 N, out Closure result)
|
|
{
|
|
node_bsdf_diffuse(color, 0.0, N, result);
|
|
}
|
|
|
|
void node_bsdf_principled(
|
|
vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
|
|
float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
|
|
float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
|
|
float sss_id, vec3 sss_scale, out Closure result)
|
|
{
|
|
N = normalize(N);
|
|
ior = max(ior, 1e-5);
|
|
metallic = saturate(metallic);
|
|
transmission = saturate(transmission);
|
|
float dielectric = 1.0 - metallic;
|
|
transmission *= dielectric;
|
|
sheen *= dielectric;
|
|
subsurface_color *= dielectric;
|
|
|
|
vec3 diffuse, f0, out_diff, out_spec, out_trans, out_refr, ssr_spec;
|
|
vec3 ctint = tint_from_color(base_color.rgb);
|
|
convert_metallic_to_specular_tinted(base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
|
|
|
|
float NV = dot(N, cameraVec);
|
|
vec3 out_sheen = sheen * principled_sheen(NV, ctint, sheen_tint);
|
|
|
|
/* Far from being accurate, but 2 glossy evaluation is too expensive.
|
|
* Most noticeable difference is at grazing angles since the bsdf lut
|
|
* f0 color interpolation is done on top of this interpolation. */
|
|
vec3 f0_glass = mix(vec3(1.0), base_color.rgb, specular_tint);
|
|
float fresnel = F_eta(ior, NV);
|
|
vec3 spec_col = F_color_blend(ior, fresnel, f0_glass) * fresnel;
|
|
f0 = mix(f0, spec_col, transmission);
|
|
|
|
vec3 mixed_ss_base_color = mix(diffuse, subsurface_color.rgb, subsurface);
|
|
|
|
float sss_scalef = dot(sss_scale, vec3(1.0 / 3.0)) * subsurface;
|
|
eevee_closure_principled(N, mixed_ss_base_color, f0, int(ssr_id), roughness,
|
|
CN, clearcoat * 0.25, clearcoat_roughness, 1.0, sss_scalef, ior,
|
|
out_diff, out_trans, out_spec, out_refr, ssr_spec);
|
|
|
|
vec3 refr_color = base_color.rgb;
|
|
refr_color *= (refractionDepth > 0.0) ? refr_color : vec3(1.0); /* Simulate 2 transmission event */
|
|
out_refr *= refr_color * (1.0 - fresnel) * transmission;
|
|
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = out_spec + out_refr;
|
|
result.radiance += out_diff * out_sheen; /* Coarse approx. */
|
|
#ifndef USE_SSS
|
|
result.radiance += (out_diff + out_trans) * mixed_ss_base_color * (1.0 - transmission);
|
|
#endif
|
|
result.ssr_data = vec4(ssr_spec, roughness);
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.ssr_id = int(ssr_id);
|
|
#ifdef USE_SSS
|
|
result.sss_data.a = sss_scalef;
|
|
result.sss_data.rgb = out_diff + out_trans;
|
|
# ifdef USE_SSS_ALBEDO
|
|
result.sss_albedo.rgb = mixed_ss_base_color;
|
|
# else
|
|
result.sss_data.rgb *= mixed_ss_base_color;
|
|
# endif
|
|
result.sss_data.rgb *= (1.0 - transmission);
|
|
#endif
|
|
}
|
|
|
|
void node_bsdf_principled_dielectric(
|
|
vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
|
|
float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
|
|
float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
|
|
float sss_id, vec3 sss_scale, out Closure result)
|
|
{
|
|
N = normalize(N);
|
|
metallic = saturate(metallic);
|
|
float dielectric = 1.0 - metallic;
|
|
|
|
vec3 diffuse, f0, out_diff, out_spec, ssr_spec;
|
|
vec3 ctint = tint_from_color(base_color.rgb);
|
|
convert_metallic_to_specular_tinted(base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
|
|
|
|
float NV = dot(N, cameraVec);
|
|
vec3 out_sheen = sheen * principled_sheen(NV, ctint, sheen_tint);
|
|
|
|
eevee_closure_default(N, diffuse, f0, int(ssr_id), roughness, 1.0, out_diff, out_spec, ssr_spec);
|
|
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = out_spec + out_diff * (diffuse + out_sheen);
|
|
result.ssr_data = vec4(ssr_spec, roughness);
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.ssr_id = int(ssr_id);
|
|
}
|
|
|
|
void node_bsdf_principled_metallic(
|
|
vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
|
|
float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
|
|
float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
|
|
float sss_id, vec3 sss_scale, out Closure result)
|
|
{
|
|
N = normalize(N);
|
|
vec3 out_spec, ssr_spec;
|
|
|
|
eevee_closure_glossy(N, base_color.rgb, int(ssr_id), roughness, 1.0, out_spec, ssr_spec);
|
|
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = out_spec;
|
|
result.ssr_data = vec4(ssr_spec, roughness);
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.ssr_id = int(ssr_id);
|
|
}
|
|
|
|
void node_bsdf_principled_clearcoat(
|
|
vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
|
|
float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
|
|
float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
|
|
float sss_id, vec3 sss_scale, out Closure result)
|
|
{
|
|
vec3 out_spec, ssr_spec;
|
|
N = normalize(N);
|
|
|
|
eevee_closure_clearcoat(N, base_color.rgb, int(ssr_id), roughness, CN, clearcoat * 0.25, clearcoat_roughness,
|
|
1.0, out_spec, ssr_spec);
|
|
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = out_spec;
|
|
result.ssr_data = vec4(ssr_spec, roughness);
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.ssr_id = int(ssr_id);
|
|
}
|
|
|
|
void node_bsdf_principled_subsurface(
|
|
vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
|
|
float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
|
|
float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
|
|
float sss_id, vec3 sss_scale, out Closure result)
|
|
{
|
|
metallic = saturate(metallic);
|
|
N = normalize(N);
|
|
|
|
vec3 diffuse, f0, out_diff, out_spec, out_trans, ssr_spec;
|
|
vec3 ctint = tint_from_color(base_color.rgb);
|
|
convert_metallic_to_specular_tinted(base_color.rgb, ctint, metallic, specular, specular_tint, diffuse, f0);
|
|
|
|
subsurface_color = subsurface_color * (1.0 - metallic);
|
|
vec3 mixed_ss_base_color = mix(diffuse, subsurface_color.rgb, subsurface);
|
|
float sss_scalef = dot(sss_scale, vec3(1.0 / 3.0)) * subsurface;
|
|
|
|
float NV = dot(N, cameraVec);
|
|
vec3 out_sheen = sheen * principled_sheen(NV, ctint, sheen_tint);
|
|
|
|
eevee_closure_skin(N, mixed_ss_base_color, f0, int(ssr_id), roughness, 1.0, sss_scalef,
|
|
out_diff, out_trans, out_spec, ssr_spec);
|
|
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = out_spec;
|
|
result.ssr_data = vec4(ssr_spec, roughness);
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.ssr_id = int(ssr_id);
|
|
#ifdef USE_SSS
|
|
result.sss_data.a = sss_scalef;
|
|
result.sss_data.rgb = out_diff + out_trans;
|
|
# ifdef USE_SSS_ALBEDO
|
|
result.sss_albedo.rgb = mixed_ss_base_color;
|
|
# else
|
|
result.sss_data.rgb *= mixed_ss_base_color;
|
|
# endif
|
|
#else
|
|
result.radiance += (out_diff + out_trans) * mixed_ss_base_color;
|
|
#endif
|
|
result.radiance += out_diff * out_sheen;
|
|
}
|
|
|
|
void node_bsdf_principled_glass(
|
|
vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
|
|
float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
|
|
float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
|
|
float sss_id, vec3 sss_scale, out Closure result)
|
|
{
|
|
ior = max(ior, 1e-5);
|
|
N = normalize(N);
|
|
|
|
vec3 f0, out_spec, out_refr, ssr_spec;
|
|
f0 = mix(vec3(1.0), base_color.rgb, specular_tint);
|
|
|
|
eevee_closure_glass(N, vec3(1.0), int(ssr_id), roughness, 1.0, ior, out_spec, out_refr, ssr_spec);
|
|
|
|
vec3 refr_color = base_color.rgb;
|
|
refr_color *= (refractionDepth > 0.0) ? refr_color : vec3(1.0); /* Simulate 2 transmission events */
|
|
out_refr *= refr_color;
|
|
|
|
float fresnel = F_eta(ior, dot(N, cameraVec));
|
|
vec3 spec_col = F_color_blend(ior, fresnel, f0);
|
|
out_spec *= spec_col;
|
|
ssr_spec *= spec_col * fresnel;
|
|
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = mix(out_refr, out_spec, fresnel);
|
|
result.ssr_data = vec4(ssr_spec, roughness);
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.ssr_id = int(ssr_id);
|
|
}
|
|
|
|
void node_bsdf_translucent(vec4 color, vec3 N, out Closure result)
|
|
{
|
|
node_bsdf_diffuse(color, 0.0, -N, result);
|
|
}
|
|
|
|
void node_bsdf_transparent(vec4 color, out Closure result)
|
|
{
|
|
/* this isn't right */
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = vec3(0.0);
|
|
result.opacity = clamp(1.0 - dot(color.rgb, vec3(0.3333334)), 0.0, 1.0);
|
|
result.ssr_id = TRANSPARENT_CLOSURE_FLAG;
|
|
}
|
|
|
|
void node_bsdf_velvet(vec4 color, float sigma, vec3 N, out Closure result)
|
|
{
|
|
node_bsdf_diffuse(color, 0.0, N, result);
|
|
}
|
|
|
|
void node_subsurface_scattering(
|
|
vec4 color, float scale, vec3 radius, float sharpen, float texture_blur, vec3 N, float sss_id,
|
|
out Closure result)
|
|
{
|
|
#if defined(USE_SSS)
|
|
N = normalize(N);
|
|
vec3 out_diff, out_trans;
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.ssr_data = vec4(0.0);
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.ssr_id = -1;
|
|
result.sss_data.a = scale;
|
|
eevee_closure_subsurface(N, color.rgb, 1.0, scale, out_diff, out_trans);
|
|
result.sss_data.rgb = out_diff + out_trans;
|
|
# ifdef USE_SSS_ALBEDO
|
|
/* Not perfect for texture_blur not exactly equal to 0.0 or 1.0. */
|
|
result.sss_albedo.rgb = mix(color.rgb, vec3(1.0), texture_blur);
|
|
result.sss_data.rgb *= mix(vec3(1.0), color.rgb, texture_blur);
|
|
# else
|
|
result.sss_data.rgb *= color.rgb;
|
|
# endif
|
|
#else
|
|
node_bsdf_diffuse(color, 0.0, N, result);
|
|
#endif
|
|
}
|
|
|
|
void node_bsdf_refraction(vec4 color, float roughness, float ior, vec3 N, out Closure result)
|
|
{
|
|
N = normalize(N);
|
|
vec3 out_refr;
|
|
color.rgb *= (refractionDepth > 0.0) ? color.rgb : vec3(1.0); /* Simulate 2 absorption event. */
|
|
eevee_closure_refraction(N, roughness, ior, out_refr);
|
|
vec3 vN = mat3(ViewMatrix) * N;
|
|
result = CLOSURE_DEFAULT;
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.radiance = out_refr * color.rgb;
|
|
result.ssr_id = REFRACT_CLOSURE_FLAG;
|
|
}
|
|
|
|
void node_ambient_occlusion(vec4 color, float distance, vec3 normal, out vec4 result_color, out float result_ao)
|
|
{
|
|
vec3 bent_normal;
|
|
vec4 rand = texelFetch(utilTex, ivec3(ivec2(gl_FragCoord.xy) % LUT_SIZE, 2.0), 0);
|
|
result_ao = occlusion_compute(normalize(normal), viewPosition, 1.0, rand, bent_normal);
|
|
result_color = result_ao * color;
|
|
}
|
|
|
|
#endif /* VOLUMETRICS */
|
|
|
|
/* emission */
|
|
|
|
void node_emission(vec4 color, float strength, vec3 vN, out Closure result)
|
|
{
|
|
#ifndef VOLUMETRICS
|
|
color *= strength;
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = color.rgb;
|
|
result.opacity = color.a;
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
#else
|
|
result = Closure(vec3(0.0), vec3(0.0), color.rgb * strength, 0.0);
|
|
#endif
|
|
}
|
|
|
|
void node_wireframe(float size, vec2 barycentric, vec3 barycentric_dist, out float fac)
|
|
{
|
|
vec3 barys = barycentric.xyy;
|
|
barys.z = 1.0 - barycentric.x - barycentric.y;
|
|
|
|
size *= 0.5;
|
|
vec3 s = step(-size, -barys * barycentric_dist);
|
|
|
|
fac = max(s.x, max(s.y, s.z));
|
|
}
|
|
|
|
void node_wireframe_screenspace(float size, vec2 barycentric, out float fac)
|
|
{
|
|
vec3 barys = barycentric.xyy;
|
|
barys.z = 1.0 - barycentric.x - barycentric.y;
|
|
|
|
size *= (1.0 / 3.0);
|
|
vec3 dx = dFdx(barys);
|
|
vec3 dy = dFdy(barys);
|
|
vec3 deltas = sqrt(dx * dx + dy * dy);
|
|
|
|
vec3 s = step(-deltas * size, -barys);
|
|
|
|
fac = max(s.x, max(s.y, s.z));
|
|
}
|
|
|
|
/* background */
|
|
|
|
void node_tex_environment_texco(vec3 viewvec, out vec3 worldvec)
|
|
{
|
|
#ifdef MESH_SHADER
|
|
worldvec = worldPosition;
|
|
#else
|
|
vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(viewvec, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
|
|
vec4 co_homogenous = (ProjectionMatrixInverse * v);
|
|
|
|
vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
|
|
# if defined(WORLD_BACKGROUND) || defined(PROBE_CAPTURE)
|
|
worldvec = (ViewMatrixInverse * co).xyz;
|
|
# else
|
|
worldvec = (ModelViewMatrixInverse * co).xyz;
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
void node_background(vec4 color, float strength, out Closure result)
|
|
{
|
|
#ifndef VOLUMETRICS
|
|
color *= strength;
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = color.rgb;
|
|
result.opacity = color.a;
|
|
#else
|
|
result = CLOSURE_DEFAULT;
|
|
#endif
|
|
}
|
|
|
|
/* volumes */
|
|
|
|
void node_volume_scatter(vec4 color, float density, float anisotropy, out Closure result)
|
|
{
|
|
#ifdef VOLUMETRICS
|
|
result = Closure(vec3(0.0), color.rgb * density, vec3(0.0), anisotropy);
|
|
#else
|
|
result = CLOSURE_DEFAULT;
|
|
#endif
|
|
}
|
|
|
|
void node_volume_absorption(vec4 color, float density, out Closure result)
|
|
{
|
|
#ifdef VOLUMETRICS
|
|
result = Closure((1.0 - color.rgb) * density, vec3(0.0), vec3(0.0), 0.0);
|
|
#else
|
|
result = CLOSURE_DEFAULT;
|
|
#endif
|
|
}
|
|
|
|
void node_blackbody(float temperature, sampler1DArray spectrummap, float layer, out vec4 color)
|
|
{
|
|
if (temperature >= 12000.0) {
|
|
color = vec4(0.826270103, 0.994478524, 1.56626022, 1.0);
|
|
}
|
|
else if (temperature < 965.0) {
|
|
color = vec4(4.70366907, 0.0, 0.0, 1.0);
|
|
}
|
|
else {
|
|
float t = (temperature - 965.0) / (12000.0 - 965.0);
|
|
color = vec4(texture(spectrummap, vec2(t, layer)).rgb, 1.0);
|
|
}
|
|
}
|
|
|
|
void node_volume_principled(
|
|
vec4 color,
|
|
float density,
|
|
float anisotropy,
|
|
vec4 absorption_color,
|
|
float emission_strength,
|
|
vec4 emission_color,
|
|
float blackbody_intensity,
|
|
vec4 blackbody_tint,
|
|
float temperature,
|
|
float density_attribute,
|
|
vec4 color_attribute,
|
|
float temperature_attribute,
|
|
sampler1DArray spectrummap,
|
|
float layer,
|
|
out Closure result)
|
|
{
|
|
#ifdef VOLUMETRICS
|
|
vec3 absorption_coeff = vec3(0.0);
|
|
vec3 scatter_coeff = vec3(0.0);
|
|
vec3 emission_coeff = vec3(0.0);
|
|
|
|
/* Compute density. */
|
|
density = max(density, 0.0);
|
|
|
|
if (density > 1e-5) {
|
|
density = max(density * density_attribute, 0.0);
|
|
}
|
|
|
|
if (density > 1e-5) {
|
|
/* Compute scattering and absorption coefficients. */
|
|
vec3 scatter_color = color.rgb * color_attribute.rgb;
|
|
|
|
scatter_coeff = scatter_color * density;
|
|
absorption_color.rgb = sqrt(max(absorption_color.rgb, 0.0));
|
|
absorption_coeff = max(1.0 - scatter_color, 0.0) * max(1.0 - absorption_color.rgb, 0.0) * density;
|
|
}
|
|
|
|
/* Compute emission. */
|
|
emission_strength = max(emission_strength, 0.0);
|
|
|
|
if (emission_strength > 1e-5) {
|
|
emission_coeff += emission_strength * emission_color.rgb;
|
|
}
|
|
|
|
if (blackbody_intensity > 1e-3) {
|
|
/* Add temperature from attribute. */
|
|
float T = max(temperature * max(temperature_attribute, 0.0), 0.0);
|
|
|
|
/* Stefan-Boltzman law. */
|
|
float T2 = T * T;
|
|
float T4 = T2 * T2;
|
|
float sigma = 5.670373e-8 * 1e-6 / M_PI;
|
|
float intensity = sigma * mix(1.0, T4, blackbody_intensity);
|
|
|
|
if (intensity > 1e-5) {
|
|
vec4 bb;
|
|
node_blackbody(T, spectrummap, layer, bb);
|
|
emission_coeff += bb.rgb * blackbody_tint.rgb * intensity;
|
|
}
|
|
}
|
|
|
|
result = Closure(absorption_coeff, scatter_coeff, emission_coeff, anisotropy);
|
|
#else
|
|
result = CLOSURE_DEFAULT;
|
|
#endif
|
|
}
|
|
|
|
/* closures */
|
|
|
|
void node_mix_shader(float fac, Closure shader1, Closure shader2, out Closure shader)
|
|
{
|
|
shader = closure_mix(shader1, shader2, fac);
|
|
}
|
|
|
|
void node_add_shader(Closure shader1, Closure shader2, out Closure shader)
|
|
{
|
|
shader = closure_add(shader1, shader2);
|
|
}
|
|
|
|
/* fresnel */
|
|
|
|
void node_fresnel(float ior, vec3 N, vec3 I, out float result)
|
|
{
|
|
N = normalize(N);
|
|
/* handle perspective/orthographic */
|
|
vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
|
|
|
|
float eta = max(ior, 0.00001);
|
|
result = fresnel_dielectric(I_view, N, (gl_FrontFacing) ? eta : 1.0 / eta);
|
|
}
|
|
|
|
/* layer_weight */
|
|
|
|
void node_layer_weight(float blend, vec3 N, vec3 I, out float fresnel, out float facing)
|
|
{
|
|
N = normalize(N);
|
|
|
|
/* fresnel */
|
|
float eta = max(1.0 - blend, 0.00001);
|
|
vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
|
|
|
|
fresnel = fresnel_dielectric(I_view, N, (gl_FrontFacing) ? 1.0 / eta : eta);
|
|
|
|
/* facing */
|
|
facing = abs(dot(I_view, N));
|
|
if (blend != 0.5) {
|
|
blend = clamp(blend, 0.0, 0.99999);
|
|
blend = (blend < 0.5) ? 2.0 * blend : 0.5 / (1.0 - blend);
|
|
facing = pow(facing, blend);
|
|
}
|
|
facing = 1.0 - facing;
|
|
}
|
|
|
|
/* gamma */
|
|
|
|
void node_gamma(vec4 col, float gamma, out vec4 outcol)
|
|
{
|
|
outcol = col;
|
|
|
|
if (col.r > 0.0)
|
|
outcol.r = compatible_pow(col.r, gamma);
|
|
if (col.g > 0.0)
|
|
outcol.g = compatible_pow(col.g, gamma);
|
|
if (col.b > 0.0)
|
|
outcol.b = compatible_pow(col.b, gamma);
|
|
}
|
|
|
|
/* geometry */
|
|
|
|
void node_attribute_volume_density(sampler3D tex, out vec4 outcol, out vec3 outvec, out float outf)
|
|
{
|
|
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
|
|
vec3 cos = volumeObjectLocalCoord;
|
|
#else
|
|
vec3 cos = vec3(0.0);
|
|
#endif
|
|
outvec = texture(tex, cos).aaa;
|
|
outcol = vec4(outvec, 1.0);
|
|
outf = dot(vec3(1.0 / 3.0), outvec);
|
|
}
|
|
|
|
uniform vec3 volumeColor = vec3(1.0);
|
|
|
|
void node_attribute_volume_color(sampler3D tex, out vec4 outcol, out vec3 outvec, out float outf)
|
|
{
|
|
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
|
|
vec3 cos = volumeObjectLocalCoord;
|
|
#else
|
|
vec3 cos = vec3(0.0);
|
|
#endif
|
|
|
|
vec4 value = texture(tex, cos).rgba;
|
|
/* Density is premultiplied for interpolation, divide it out here. */
|
|
if (value.a > 1e-8)
|
|
value.rgb /= value.a;
|
|
|
|
outvec = value.rgb * volumeColor;
|
|
outcol = vec4(outvec, 1.0);
|
|
outf = dot(vec3(1.0 / 3.0), outvec);
|
|
}
|
|
|
|
void node_attribute_volume_flame(sampler3D tex, out vec4 outcol, out vec3 outvec, out float outf)
|
|
{
|
|
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
|
|
vec3 cos = volumeObjectLocalCoord;
|
|
#else
|
|
vec3 cos = vec3(0.0);
|
|
#endif
|
|
outf = texture(tex, cos).r;
|
|
outvec = vec3(outf, outf, outf);
|
|
outcol = vec4(outf, outf, outf, 1.0);
|
|
}
|
|
|
|
void node_attribute_volume_temperature(sampler3D tex, vec2 temperature, out vec4 outcol, out vec3 outvec, out float outf)
|
|
{
|
|
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
|
|
vec3 cos = volumeObjectLocalCoord;
|
|
#else
|
|
vec3 cos = vec3(0.0);
|
|
#endif
|
|
float flame = texture(tex, cos).r;
|
|
|
|
outf = (flame > 0.01) ? temperature.x + flame * (temperature.y - temperature.x): 0.0;
|
|
outvec = vec3(outf, outf, outf);
|
|
outcol = vec4(outf, outf, outf, 1.0);
|
|
}
|
|
|
|
void node_attribute(vec3 attr, out vec4 outcol, out vec3 outvec, out float outf)
|
|
{
|
|
outcol = vec4(attr, 1.0);
|
|
outvec = attr;
|
|
outf = dot(vec3(1.0 / 3.0), attr);
|
|
}
|
|
|
|
void node_uvmap(vec3 attr_uv, out vec3 outvec)
|
|
{
|
|
outvec = attr_uv;
|
|
}
|
|
|
|
void tangent_orco_x(vec3 orco_in, out vec3 orco_out)
|
|
{
|
|
orco_out = orco_in.xzy * vec3(0.0, -0.5, 0.5) + vec3(0.0, 0.25, -0.25);
|
|
}
|
|
|
|
void tangent_orco_y(vec3 orco_in, out vec3 orco_out)
|
|
{
|
|
orco_out = orco_in.zyx * vec3(-0.5, 0.0, 0.5) + vec3(0.25, 0.0, -0.25);
|
|
}
|
|
|
|
void tangent_orco_z(vec3 orco_in, out vec3 orco_out)
|
|
{
|
|
orco_out = orco_in.yxz * vec3(-0.5, 0.5, 0.0) + vec3(0.25, -0.25, 0.0);
|
|
}
|
|
|
|
void node_tangentmap(vec4 attr_tangent, mat4 toworld, out vec3 tangent)
|
|
{
|
|
tangent = normalize((toworld * vec4(attr_tangent.xyz, 0.0)).xyz);
|
|
}
|
|
|
|
void node_tangent(vec3 N, vec3 orco, mat4 objmat, mat4 toworld, out vec3 T)
|
|
{
|
|
#ifndef VOLUMETRICS
|
|
N = normalize(gl_FrontFacing ? worldNormal : -worldNormal);
|
|
#else
|
|
N = (toworld * vec4(N, 0.0)).xyz;
|
|
#endif
|
|
T = (objmat * vec4(orco, 0.0)).xyz;
|
|
T = cross(N, normalize(cross(T, N)));
|
|
}
|
|
|
|
void node_geometry(
|
|
vec3 I, vec3 N, vec3 orco, mat4 objmat, mat4 toworld, vec2 barycentric,
|
|
out vec3 position, out vec3 normal, out vec3 tangent,
|
|
out vec3 true_normal, out vec3 incoming, out vec3 parametric,
|
|
out float backfacing, out float pointiness)
|
|
{
|
|
/* handle perspective/orthographic */
|
|
vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
|
|
incoming = -(toworld * vec4(I_view, 0.0)).xyz;
|
|
|
|
#if defined(WORLD_BACKGROUND) || defined(PROBE_CAPTURE)
|
|
position = -incoming;
|
|
true_normal = normal = incoming;
|
|
tangent = parametric = vec3(0.0);
|
|
vec3(0.0);
|
|
backfacing = 0.0;
|
|
pointiness = 0.0;
|
|
#else
|
|
|
|
position = worldPosition;
|
|
# ifndef VOLUMETRICS
|
|
normal = normalize(gl_FrontFacing ? worldNormal : -worldNormal);
|
|
vec3 B = dFdx(worldPosition);
|
|
vec3 T = dFdy(worldPosition);
|
|
true_normal = normalize(cross(B, T));
|
|
# else
|
|
normal = (toworld * vec4(N, 0.0)).xyz;
|
|
true_normal = normal;
|
|
# endif
|
|
tangent_orco_z(orco, orco);
|
|
node_tangent(N, orco, objmat, toworld, tangent);
|
|
|
|
parametric = vec3(barycentric, 0.0);
|
|
backfacing = (gl_FrontFacing) ? 0.0 : 1.0;
|
|
pointiness = 0.5;
|
|
#endif
|
|
}
|
|
|
|
void generated_texco(vec3 I, vec3 attr_orco, out vec3 generated)
|
|
{
|
|
vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(I, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
|
|
vec4 co_homogenous = (ProjectionMatrixInverse * v);
|
|
vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
|
|
co.xyz = normalize(co.xyz);
|
|
#if defined(WORLD_BACKGROUND) || defined(PROBE_CAPTURE)
|
|
generated = (ViewMatrixInverse * co).xyz;
|
|
#else
|
|
generated_from_orco(attr_orco, generated);
|
|
#endif
|
|
}
|
|
|
|
void node_tex_coord(
|
|
vec3 I, vec3 N, mat4 viewinvmat, mat4 obinvmat, vec4 camerafac,
|
|
vec3 attr_orco, vec3 attr_uv,
|
|
out vec3 generated, out vec3 normal, out vec3 uv, out vec3 object,
|
|
out vec3 camera, out vec3 window, out vec3 reflection)
|
|
{
|
|
generated = attr_orco;
|
|
normal = normalize(NormalMatrixInverse * N);
|
|
uv = attr_uv;
|
|
object = (obinvmat * (viewinvmat * vec4(I, 1.0))).xyz;
|
|
camera = vec3(I.xy, -I.z);
|
|
vec4 projvec = ProjectionMatrix * vec4(I, 1.0);
|
|
window = vec3(mtex_2d_mapping(projvec.xyz / projvec.w).xy * camerafac.xy + camerafac.zw, 0.0);
|
|
|
|
vec3 shade_I = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
|
|
vec3 view_reflection = reflect(shade_I, normalize(N));
|
|
reflection = (viewinvmat * vec4(view_reflection, 0.0)).xyz;
|
|
}
|
|
|
|
void node_tex_coord_background(
|
|
vec3 I, vec3 N, mat4 viewinvmat, mat4 obinvmat, vec4 camerafac,
|
|
vec3 attr_orco, vec3 attr_uv,
|
|
out vec3 generated, out vec3 normal, out vec3 uv, out vec3 object,
|
|
out vec3 camera, out vec3 window, out vec3 reflection)
|
|
{
|
|
vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(I, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
|
|
vec4 co_homogenous = (ProjectionMatrixInverse * v);
|
|
|
|
vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
|
|
|
|
co = normalize(co);
|
|
|
|
#if defined(WORLD_BACKGROUND) || defined(PROBE_CAPTURE)
|
|
vec3 coords = (ViewMatrixInverse * co).xyz;
|
|
#else
|
|
vec3 coords = (ModelViewMatrixInverse * co).xyz;
|
|
#endif
|
|
|
|
generated = coords;
|
|
normal = -coords;
|
|
uv = vec3(attr_uv.xy, 0.0);
|
|
object = coords;
|
|
|
|
camera = vec3(co.xy, -co.z);
|
|
window = vec3(mtex_2d_mapping(I).xy * camerafac.xy + camerafac.zw, 0.0);
|
|
|
|
reflection = -coords;
|
|
}
|
|
|
|
#if defined(WORLD_BACKGROUND) || (defined(PROBE_CAPTURE) && !defined(MESH_SHADER))
|
|
#define node_tex_coord node_tex_coord_background
|
|
#endif
|
|
|
|
/* textures */
|
|
|
|
float calc_gradient(vec3 p, int gradient_type)
|
|
{
|
|
float x, y, z;
|
|
x = p.x;
|
|
y = p.y;
|
|
z = p.z;
|
|
if (gradient_type == 0) { /* linear */
|
|
return x;
|
|
}
|
|
else if (gradient_type == 1) { /* quadratic */
|
|
float r = max(x, 0.0);
|
|
return r * r;
|
|
}
|
|
else if (gradient_type == 2) { /* easing */
|
|
float r = min(max(x, 0.0), 1.0);
|
|
float t = r * r;
|
|
return (3.0 * t - 2.0 * t * r);
|
|
}
|
|
else if (gradient_type == 3) { /* diagonal */
|
|
return (x + y) * 0.5;
|
|
}
|
|
else if (gradient_type == 4) { /* radial */
|
|
return atan(y, x) / (M_PI * 2) + 0.5;
|
|
}
|
|
else {
|
|
/* Bias a little bit for the case where p is a unit length vector,
|
|
* to get exactly zero instead of a small random value depending
|
|
* on float precision. */
|
|
float r = max(0.999999 - sqrt(x * x + y * y + z * z), 0.0);
|
|
if (gradient_type == 5) { /* quadratic sphere */
|
|
return r * r;
|
|
}
|
|
else if (gradient_type == 6) { /* sphere */
|
|
return r;
|
|
}
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
void node_tex_gradient(vec3 co, float gradient_type, out vec4 color, out float fac)
|
|
{
|
|
float f = calc_gradient(co, int(gradient_type));
|
|
f = clamp(f, 0.0, 1.0);
|
|
|
|
color = vec4(f, f, f, 1.0);
|
|
fac = f;
|
|
}
|
|
|
|
void node_tex_checker(vec3 co, vec4 color1, vec4 color2, float scale, out vec4 color, out float fac)
|
|
{
|
|
vec3 p = co * scale;
|
|
|
|
/* Prevent precision issues on unit coordinates. */
|
|
p = (p + 0.000001) * 0.999999;
|
|
|
|
int xi = int(abs(floor(p.x)));
|
|
int yi = int(abs(floor(p.y)));
|
|
int zi = int(abs(floor(p.z)));
|
|
|
|
bool check = ((mod(xi, 2) == mod(yi, 2)) == bool(mod(zi, 2)));
|
|
|
|
color = check ? color1 : color2;
|
|
fac = check ? 1.0 : 0.0;
|
|
}
|
|
|
|
vec2 calc_brick_texture(vec3 p, float mortar_size, float mortar_smooth, float bias,
|
|
float brick_width, float row_height,
|
|
float offset_amount, int offset_frequency,
|
|
float squash_amount, int squash_frequency)
|
|
{
|
|
int bricknum, rownum;
|
|
float offset = 0.0;
|
|
float x, y;
|
|
|
|
rownum = floor_to_int(p.y / row_height);
|
|
|
|
if (offset_frequency != 0 && squash_frequency != 0) {
|
|
brick_width *= (rownum % squash_frequency != 0) ? 1.0 : squash_amount; /* squash */
|
|
offset = (rownum % offset_frequency != 0) ? 0.0 : (brick_width * offset_amount); /* offset */
|
|
}
|
|
|
|
bricknum = floor_to_int((p.x + offset) / brick_width);
|
|
|
|
x = (p.x + offset) - brick_width * bricknum;
|
|
y = p.y - row_height * rownum;
|
|
|
|
float tint = clamp((integer_noise((rownum << 16) + (bricknum & 0xFFFF)) + bias), 0.0, 1.0);
|
|
|
|
float min_dist = min(min(x, y), min(brick_width - x, row_height - y));
|
|
if (min_dist >= mortar_size) {
|
|
return vec2(tint, 0.0);
|
|
}
|
|
else if (mortar_smooth == 0.0) {
|
|
return vec2(tint, 1.0);
|
|
}
|
|
else {
|
|
min_dist = 1.0 - min_dist/mortar_size;
|
|
return vec2(tint, smoothstep(0.0, mortar_smooth, min_dist));
|
|
}
|
|
}
|
|
|
|
void node_tex_brick(vec3 co,
|
|
vec4 color1, vec4 color2,
|
|
vec4 mortar, float scale,
|
|
float mortar_size, float mortar_smooth, float bias,
|
|
float brick_width, float row_height,
|
|
float offset_amount, float offset_frequency,
|
|
float squash_amount, float squash_frequency,
|
|
out vec4 color, out float fac)
|
|
{
|
|
vec2 f2 = calc_brick_texture(co * scale,
|
|
mortar_size, mortar_smooth, bias,
|
|
brick_width, row_height,
|
|
offset_amount, int(offset_frequency),
|
|
squash_amount, int(squash_frequency));
|
|
float tint = f2.x;
|
|
float f = f2.y;
|
|
if (f != 1.0) {
|
|
float facm = 1.0 - tint;
|
|
color1 = facm * color1 + tint * color2;
|
|
}
|
|
color = mix(color1, mortar, f);
|
|
fac = f;
|
|
}
|
|
|
|
void node_tex_clouds(vec3 co, float size, out vec4 color, out float fac)
|
|
{
|
|
color = vec4(1.0);
|
|
fac = 1.0;
|
|
}
|
|
|
|
void node_tex_environment_equirectangular(vec3 co, float clamp_size, sampler2D ima, out vec3 uv)
|
|
{
|
|
vec3 nco = normalize(co);
|
|
uv.x = -atan(nco.y, nco.x) / (2.0 * M_PI) + 0.5;
|
|
uv.y = atan(nco.z, hypot(nco.x, nco.y)) / M_PI + 0.5;
|
|
|
|
/* Fix pole bleeding */
|
|
float half_height = clamp_size / float(textureSize(ima, 0).y);
|
|
uv.y = clamp(uv.y, half_height, 1.0 - half_height);
|
|
uv.z = 0.0;
|
|
}
|
|
|
|
void node_tex_environment_mirror_ball(vec3 co, out vec3 uv)
|
|
{
|
|
vec3 nco = normalize(co);
|
|
nco.y -= 1.0;
|
|
|
|
float div = 2.0 * sqrt(max(-0.5 * nco.y, 0.0));
|
|
nco /= max(1e-8, div);
|
|
|
|
uv = 0.5 * nco.xzz + 0.5;
|
|
}
|
|
|
|
void node_tex_environment_empty(vec3 co, out vec4 color)
|
|
{
|
|
color = vec4(1.0, 0.0, 1.0, 1.0);
|
|
}
|
|
|
|
/* 16bits floats limits. Higher/Lower values produce +/-inf. */
|
|
#define safe_color(a) (clamp(a, -65520.0, 65520.0))
|
|
|
|
void node_tex_image_linear(vec3 co, sampler2D ima, out vec4 color, out float alpha)
|
|
{
|
|
color = safe_color(texture(ima, co.xy));
|
|
alpha = color.a;
|
|
}
|
|
|
|
void node_tex_image_linear_no_mip(vec3 co, sampler2D ima, out vec4 color, out float alpha)
|
|
{
|
|
color = safe_color(textureLod(ima, co.xy, 0.0));
|
|
alpha = color.a;
|
|
}
|
|
|
|
void node_tex_image_nearest(vec3 co, sampler2D ima, out vec4 color, out float alpha)
|
|
{
|
|
ivec2 pix = ivec2(fract(co.xy) * textureSize(ima, 0).xy);
|
|
color = safe_color(texelFetch(ima, pix, 0));
|
|
alpha = color.a;
|
|
}
|
|
|
|
/* @arg f: signed distance to texel center. */
|
|
void cubic_bspline_coefs(vec2 f, out vec2 w0, out vec2 w1, out vec2 w2, out vec2 w3)
|
|
{
|
|
vec2 f2 = f * f;
|
|
vec2 f3 = f2 * f;
|
|
/* Bspline coefs (optimized) */
|
|
w3 = f3 / 6.0;
|
|
w0 = -w3 + f2 * 0.5 - f * 0.5 + 1.0 / 6.0;
|
|
w1 = f3 * 0.5 - f2 * 1.0 + 2.0 / 3.0;
|
|
w2 = 1.0 - w0 - w1 - w3;
|
|
}
|
|
|
|
void node_tex_image_cubic_ex(vec3 co, sampler2D ima, float do_extend, out vec4 color, out float alpha)
|
|
{
|
|
vec2 tex_size = vec2(textureSize(ima, 0).xy);
|
|
|
|
co.xy *= tex_size;
|
|
/* texel center */
|
|
vec2 tc = floor(co.xy - 0.5) + 0.5;
|
|
vec2 w0, w1, w2, w3;
|
|
cubic_bspline_coefs(co.xy - tc, w0, w1, w2, w3);
|
|
|
|
#if 1 /* Optimized version using 4 filtered tap. */
|
|
vec2 s0 = w0 + w1;
|
|
vec2 s1 = w2 + w3;
|
|
|
|
vec2 f0 = w1 / (w0 + w1);
|
|
vec2 f1 = w3 / (w2 + w3);
|
|
|
|
vec4 final_co;
|
|
final_co.xy = tc - 1.0 + f0;
|
|
final_co.zw = tc + 1.0 + f1;
|
|
|
|
if (do_extend == 1.0) {
|
|
final_co = clamp(final_co, vec4(0.5), tex_size.xyxy - 0.5);
|
|
}
|
|
final_co /= tex_size.xyxy;
|
|
|
|
color = safe_color(textureLod(ima, final_co.xy, 0.0)) * s0.x * s0.y;
|
|
color += safe_color(textureLod(ima, final_co.zy, 0.0)) * s1.x * s0.y;
|
|
color += safe_color(textureLod(ima, final_co.xw, 0.0)) * s0.x * s1.y;
|
|
color += safe_color(textureLod(ima, final_co.zw, 0.0)) * s1.x * s1.y;
|
|
|
|
#else /* Reference bruteforce 16 tap. */
|
|
color = texelFetch(ima, ivec2(tc + vec2(-1.0, -1.0)), 0) * w0.x * w0.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 0.0, -1.0)), 0) * w1.x * w0.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 1.0, -1.0)), 0) * w2.x * w0.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 2.0, -1.0)), 0) * w3.x * w0.y;
|
|
|
|
color += texelFetch(ima, ivec2(tc + vec2(-1.0, 0.0)), 0) * w0.x * w1.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 0.0, 0.0)), 0) * w1.x * w1.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 1.0, 0.0)), 0) * w2.x * w1.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 2.0, 0.0)), 0) * w3.x * w1.y;
|
|
|
|
color += texelFetch(ima, ivec2(tc + vec2(-1.0, 1.0)), 0) * w0.x * w2.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 0.0, 1.0)), 0) * w1.x * w2.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 1.0, 1.0)), 0) * w2.x * w2.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 2.0, 1.0)), 0) * w3.x * w2.y;
|
|
|
|
color += texelFetch(ima, ivec2(tc + vec2(-1.0, 2.0)), 0) * w0.x * w3.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 0.0, 2.0)), 0) * w1.x * w3.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 1.0, 2.0)), 0) * w2.x * w3.y;
|
|
color += texelFetch(ima, ivec2(tc + vec2( 2.0, 2.0)), 0) * w3.x * w3.y;
|
|
#endif
|
|
|
|
alpha = color.a;
|
|
}
|
|
|
|
void node_tex_image_cubic(vec3 co, sampler2D ima, out vec4 color, out float alpha)
|
|
{
|
|
node_tex_image_cubic_ex(co, ima, 0.0, color, alpha);
|
|
}
|
|
|
|
void node_tex_image_cubic_extend(vec3 co, sampler2D ima, out vec4 color, out float alpha)
|
|
{
|
|
node_tex_image_cubic_ex(co, ima, 1.0, color, alpha);
|
|
}
|
|
|
|
void node_tex_image_smart(vec3 co, sampler2D ima, out vec4 color, out float alpha)
|
|
{
|
|
/* use cubic for now */
|
|
node_tex_image_cubic_ex(co, ima, 0.0, color, alpha);
|
|
}
|
|
|
|
void tex_box_sample_linear(vec3 texco,
|
|
vec3 N,
|
|
sampler2D ima,
|
|
out vec4 color1,
|
|
out vec4 color2,
|
|
out vec4 color3)
|
|
{
|
|
/* X projection */
|
|
vec2 uv = texco.yz;
|
|
if (N.x < 0.0) {
|
|
uv.x = 1.0 - uv.x;
|
|
}
|
|
color1 = texture(ima, uv);
|
|
/* Y projection */
|
|
uv = texco.xz;
|
|
if (N.y > 0.0) {
|
|
uv.x = 1.0 - uv.x;
|
|
}
|
|
color2 = texture(ima, uv);
|
|
/* Z projection */
|
|
uv = texco.yx;
|
|
if (N.z > 0.0) {
|
|
uv.x = 1.0 - uv.x;
|
|
}
|
|
color3 = texture(ima, uv);
|
|
}
|
|
|
|
void tex_box_sample_nearest(vec3 texco,
|
|
vec3 N,
|
|
sampler2D ima,
|
|
out vec4 color1,
|
|
out vec4 color2,
|
|
out vec4 color3)
|
|
{
|
|
/* X projection */
|
|
vec2 uv = texco.yz;
|
|
if (N.x < 0.0) {
|
|
uv.x = 1.0 - uv.x;
|
|
}
|
|
ivec2 pix = ivec2(uv.xy * textureSize(ima, 0).xy);
|
|
color1 = texelFetch(ima, pix, 0);
|
|
/* Y projection */
|
|
uv = texco.xz;
|
|
if (N.y > 0.0) {
|
|
uv.x = 1.0 - uv.x;
|
|
}
|
|
pix = ivec2(uv.xy * textureSize(ima, 0).xy);
|
|
color2 = texelFetch(ima, pix, 0);
|
|
/* Z projection */
|
|
uv = texco.yx;
|
|
if (N.z > 0.0) {
|
|
uv.x = 1.0 - uv.x;
|
|
}
|
|
pix = ivec2(uv.xy * textureSize(ima, 0).xy);
|
|
color3 = texelFetch(ima, pix, 0);
|
|
}
|
|
|
|
void tex_box_sample_cubic(vec3 texco,
|
|
vec3 N,
|
|
sampler2D ima,
|
|
out vec4 color1,
|
|
out vec4 color2,
|
|
out vec4 color3)
|
|
{
|
|
float alpha;
|
|
/* X projection */
|
|
vec2 uv = texco.yz;
|
|
if (N.x < 0.0) {
|
|
uv.x = 1.0 - uv.x;
|
|
}
|
|
node_tex_image_cubic_ex(uv.xyy, ima, 0.0, color1, alpha);
|
|
/* Y projection */
|
|
uv = texco.xz;
|
|
if (N.y > 0.0) {
|
|
uv.x = 1.0 - uv.x;
|
|
}
|
|
node_tex_image_cubic_ex(uv.xyy, ima, 0.0, color2, alpha);
|
|
/* Z projection */
|
|
uv = texco.yx;
|
|
if (N.z > 0.0) {
|
|
uv.x = 1.0 - uv.x;
|
|
}
|
|
node_tex_image_cubic_ex(uv.xyy, ima, 0.0, color3, alpha);
|
|
}
|
|
|
|
void tex_box_sample_smart(vec3 texco,
|
|
vec3 N,
|
|
sampler2D ima,
|
|
out vec4 color1,
|
|
out vec4 color2,
|
|
out vec4 color3)
|
|
{
|
|
tex_box_sample_cubic(texco, N, ima, color1, color2, color3);
|
|
}
|
|
|
|
void node_tex_image_box(vec3 texco,
|
|
vec3 N,
|
|
vec4 color1,
|
|
vec4 color2,
|
|
vec4 color3,
|
|
sampler2D ima,
|
|
float blend,
|
|
out vec4 color,
|
|
out float alpha)
|
|
{
|
|
/* project from direction vector to barycentric coordinates in triangles */
|
|
N = abs(N);
|
|
N /= dot(N, vec3(1.0));
|
|
|
|
/* basic idea is to think of this as a triangle, each corner representing
|
|
* one of the 3 faces of the cube. in the corners we have single textures,
|
|
* in between we blend between two textures, and in the middle we a blend
|
|
* between three textures.
|
|
*
|
|
* the Nxyz values are the barycentric coordinates in an equilateral
|
|
* triangle, which in case of blending, in the middle has a smaller
|
|
* equilateral triangle where 3 textures blend. this divides things into
|
|
* 7 zones, with an if () test for each zone
|
|
* EDIT: Now there is only 4 if's. */
|
|
|
|
float limit = 0.5 + 0.5 * blend;
|
|
|
|
vec3 weight;
|
|
weight = N.xyz / (N.xyx + N.yzz);
|
|
weight = clamp((weight - 0.5 * (1.0 - blend)) / max(1e-8, blend), 0.0, 1.0);
|
|
|
|
/* test for mixes between two textures */
|
|
if (N.z < (1.0 - limit) * (N.y + N.x)) {
|
|
weight.z = 0.0;
|
|
weight.y = 1.0 - weight.x;
|
|
}
|
|
else if (N.x < (1.0 - limit) * (N.y + N.z)) {
|
|
weight.x = 0.0;
|
|
weight.z = 1.0 - weight.y;
|
|
}
|
|
else if (N.y < (1.0 - limit) * (N.x + N.z)) {
|
|
weight.y = 0.0;
|
|
weight.x = 1.0 - weight.z;
|
|
}
|
|
else {
|
|
/* last case, we have a mix between three */
|
|
weight = ((2.0 - limit) * N + (limit - 1.0)) / max(1e-8, blend);
|
|
}
|
|
|
|
color = weight.x * color1 + weight.y * color2 + weight.z * color3;
|
|
alpha = color.a;
|
|
}
|
|
|
|
void tex_clip_linear(vec3 co, sampler2D ima, vec4 icolor, out vec4 color, out float alpha)
|
|
{
|
|
vec2 tex_size = vec2(textureSize(ima, 0).xy);
|
|
vec2 minco = min(co.xy, 1.0 - co.xy);
|
|
minco = clamp(minco * tex_size + 0.5, 0.0, 1.0);
|
|
float fac = minco.x * minco.y;
|
|
|
|
color = mix(vec4(0.0), icolor, fac);
|
|
alpha = color.a;
|
|
}
|
|
|
|
void tex_clip_nearest(vec3 co, sampler2D ima, vec4 icolor, out vec4 color, out float alpha)
|
|
{
|
|
vec4 minco = vec4(co.xy, 1.0 - co.xy);
|
|
color = (any(lessThan(minco, vec4(0.0)))) ? vec4(0.0) : icolor;
|
|
alpha = color.a;
|
|
}
|
|
|
|
void tex_clip_cubic(vec3 co, sampler2D ima, vec4 icolor, out vec4 color, out float alpha)
|
|
{
|
|
vec2 tex_size = vec2(textureSize(ima, 0).xy);
|
|
|
|
co.xy *= tex_size;
|
|
/* texel center */
|
|
vec2 tc = floor(co.xy - 0.5) + 0.5;
|
|
vec2 w0, w1, w2, w3;
|
|
cubic_bspline_coefs(co.xy - tc, w0, w1, w2, w3);
|
|
|
|
/* TODO Optimize this part. I'm sure there is a smarter way to do that.
|
|
* Could do that when sampling? */
|
|
#define CLIP_CUBIC_SAMPLE(samp, size) (float(all(greaterThan(samp, vec2(-0.5)))) * float(all(lessThan(ivec2(samp), itex_size))))
|
|
ivec2 itex_size = textureSize(ima, 0).xy;
|
|
float fac;
|
|
fac = CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, -1.0), itex_size) * w0.x * w0.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 0.0, -1.0), itex_size) * w1.x * w0.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 1.0, -1.0), itex_size) * w2.x * w0.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 2.0, -1.0), itex_size) * w3.x * w0.y;
|
|
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, 0.0), itex_size) * w0.x * w1.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 0.0, 0.0), itex_size) * w1.x * w1.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 1.0, 0.0), itex_size) * w2.x * w1.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 2.0, 0.0), itex_size) * w3.x * w1.y;
|
|
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, 1.0), itex_size) * w0.x * w2.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 0.0, 1.0), itex_size) * w1.x * w2.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 1.0, 1.0), itex_size) * w2.x * w2.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 2.0, 1.0), itex_size) * w3.x * w2.y;
|
|
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2(-1.0, 2.0), itex_size) * w0.x * w3.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 0.0, 2.0), itex_size) * w1.x * w3.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 1.0, 2.0), itex_size) * w2.x * w3.y;
|
|
fac += CLIP_CUBIC_SAMPLE(tc + vec2( 2.0, 2.0), itex_size) * w3.x * w3.y;
|
|
#undef CLIP_CUBIC_SAMPLE
|
|
|
|
color = mix(vec4(0.0), icolor, fac);
|
|
alpha = color.a;
|
|
}
|
|
|
|
void tex_clip_smart(vec3 co, sampler2D ima, vec4 icolor, out vec4 color, out float alpha)
|
|
{
|
|
tex_clip_cubic(co, ima, icolor, color, alpha);
|
|
}
|
|
|
|
void node_tex_image_empty(vec3 co, out vec4 color, out float alpha)
|
|
{
|
|
color = vec4(0.0);
|
|
alpha = 0.0;
|
|
}
|
|
|
|
void node_tex_magic(vec3 co, float scale, float distortion, float depth, out vec4 color, out float fac)
|
|
{
|
|
vec3 p = co * scale;
|
|
float x = sin((p.x + p.y + p.z) * 5.0);
|
|
float y = cos((-p.x + p.y - p.z) * 5.0);
|
|
float z = -cos((-p.x - p.y + p.z) * 5.0);
|
|
|
|
if (depth > 0) {
|
|
x *= distortion;
|
|
y *= distortion;
|
|
z *= distortion;
|
|
y = -cos(x - y + z);
|
|
y *= distortion;
|
|
if (depth > 1) {
|
|
x = cos(x - y - z);
|
|
x *= distortion;
|
|
if (depth > 2) {
|
|
z = sin(-x - y - z);
|
|
z *= distortion;
|
|
if (depth > 3) {
|
|
x = -cos(-x + y - z);
|
|
x *= distortion;
|
|
if (depth > 4) {
|
|
y = -sin(-x + y + z);
|
|
y *= distortion;
|
|
if (depth > 5) {
|
|
y = -cos(-x + y + z);
|
|
y *= distortion;
|
|
if (depth > 6) {
|
|
x = cos(x + y + z);
|
|
x *= distortion;
|
|
if (depth > 7) {
|
|
z = sin(x + y - z);
|
|
z *= distortion;
|
|
if (depth > 8) {
|
|
x = -cos(-x - y + z);
|
|
x *= distortion;
|
|
if (depth > 9) {
|
|
y = -sin(x - y + z);
|
|
y *= distortion;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (distortion != 0.0) {
|
|
distortion *= 2.0;
|
|
x /= distortion;
|
|
y /= distortion;
|
|
z /= distortion;
|
|
}
|
|
|
|
color = vec4(0.5 - x, 0.5 - y, 0.5 - z, 1.0);
|
|
fac = (color.x + color.y + color.z) / 3.0;
|
|
}
|
|
|
|
float noise_fade(float t)
|
|
{
|
|
return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);
|
|
}
|
|
|
|
float noise_scale3(float result)
|
|
{
|
|
return 0.9820 * result;
|
|
}
|
|
|
|
float noise_nerp(float t, float a, float b)
|
|
{
|
|
return (1.0 - t) * a + t * b;
|
|
}
|
|
|
|
float noise_grad(uint hash, float x, float y, float z)
|
|
{
|
|
uint h = hash & 15u;
|
|
float u = h < 8u ? x : y;
|
|
float vt = ((h == 12u) || (h == 14u)) ? x : z;
|
|
float v = h < 4u ? y : vt;
|
|
return (((h & 1u) != 0u) ? -u : u) + (((h & 2u) != 0u) ? -v : v);
|
|
}
|
|
|
|
float noise_perlin(float x, float y, float z)
|
|
{
|
|
int X; float fx = floorfrac(x, X);
|
|
int Y; float fy = floorfrac(y, Y);
|
|
int Z; float fz = floorfrac(z, Z);
|
|
|
|
float u = noise_fade(fx);
|
|
float v = noise_fade(fy);
|
|
float w = noise_fade(fz);
|
|
|
|
float noise_u[2], noise_v[2];
|
|
|
|
noise_u[0] = noise_nerp(u,
|
|
noise_grad(hash(X, Y, Z), fx, fy, fz),
|
|
noise_grad(hash(X + 1, Y, Z), fx - 1.0, fy, fz));
|
|
|
|
noise_u[1] = noise_nerp(u,
|
|
noise_grad(hash(X, Y + 1, Z), fx, fy - 1.0, fz),
|
|
noise_grad(hash(X + 1, Y + 1, Z), fx - 1.0, fy - 1.0, fz));
|
|
|
|
noise_v[0] = noise_nerp(v, noise_u[0], noise_u[1]);
|
|
|
|
noise_u[0] = noise_nerp(u,
|
|
noise_grad(hash(X, Y, Z + 1), fx, fy, fz - 1.0),
|
|
noise_grad(hash(X + 1, Y, Z + 1), fx - 1.0, fy, fz - 1.0));
|
|
|
|
noise_u[1] = noise_nerp(u,
|
|
noise_grad(hash(X, Y + 1, Z + 1), fx, fy - 1.0, fz - 1.0),
|
|
noise_grad(hash(X + 1, Y + 1, Z + 1), fx - 1.0, fy - 1.0, fz - 1.0));
|
|
|
|
noise_v[1] = noise_nerp(v, noise_u[0], noise_u[1]);
|
|
|
|
return noise_scale3(noise_nerp(w, noise_v[0], noise_v[1]));
|
|
}
|
|
|
|
float noise(vec3 p)
|
|
{
|
|
return 0.5 * noise_perlin(p.x, p.y, p.z) + 0.5;
|
|
}
|
|
|
|
float snoise(vec3 p)
|
|
{
|
|
return noise_perlin(p.x, p.y, p.z);
|
|
}
|
|
|
|
float noise_turbulence(vec3 p, float octaves, int hard)
|
|
{
|
|
float fscale = 1.0;
|
|
float amp = 1.0;
|
|
float sum = 0.0;
|
|
octaves = clamp(octaves, 0.0, 16.0);
|
|
int n = int(octaves);
|
|
for (int i = 0; i <= n; i++) {
|
|
float t = noise(fscale * p);
|
|
if (hard != 0) {
|
|
t = abs(2.0 * t - 1.0);
|
|
}
|
|
sum += t * amp;
|
|
amp *= 0.5;
|
|
fscale *= 2.0;
|
|
}
|
|
float rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
float t = noise(fscale * p);
|
|
if (hard != 0) {
|
|
t = abs(2.0 * t - 1.0);
|
|
}
|
|
float sum2 = sum + t * amp;
|
|
sum *= (float(1 << n) / float((1 << (n + 1)) - 1));
|
|
sum2 *= (float(1 << (n + 1)) / float((1 << (n + 2)) - 1));
|
|
return (1.0 - rmd) * sum + rmd * sum2;
|
|
}
|
|
else {
|
|
sum *= (float(1 << n) / float((1 << (n + 1)) - 1));
|
|
return sum;
|
|
}
|
|
}
|
|
|
|
void node_tex_noise(vec3 co, float scale, float detail, float distortion, out vec4 color, out float fac)
|
|
{
|
|
vec3 p = co * scale;
|
|
int hard = 0;
|
|
if (distortion != 0.0) {
|
|
vec3 r, offset = vec3(13.5, 13.5, 13.5);
|
|
r.x = noise(p + offset) * distortion;
|
|
r.y = noise(p) * distortion;
|
|
r.z = noise(p - offset) * distortion;
|
|
p += r;
|
|
}
|
|
|
|
fac = noise_turbulence(p, detail, hard);
|
|
color = vec4(fac,
|
|
noise_turbulence(vec3(p.y, p.x, p.z), detail, hard),
|
|
noise_turbulence(vec3(p.y, p.z, p.x), detail, hard),
|
|
1);
|
|
}
|
|
|
|
/* Musgrave fBm
|
|
*
|
|
* H: fractal increment parameter
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
*
|
|
* from "Texturing and Modelling: A procedural approach"
|
|
*/
|
|
|
|
float noise_musgrave_fBm(vec3 p, float H, float lacunarity, float octaves)
|
|
{
|
|
float rmd;
|
|
float value = 0.0;
|
|
float pwr = 1.0;
|
|
float pwHL = pow(lacunarity, -H);
|
|
|
|
for (int i = 0; i < int(octaves); i++) {
|
|
value += snoise(p) * pwr;
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0)
|
|
value += rmd * snoise(p) * pwr;
|
|
|
|
return value;
|
|
}
|
|
|
|
/* Musgrave Multifractal
|
|
*
|
|
* H: highest fractal dimension
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
*/
|
|
|
|
float noise_musgrave_multi_fractal(vec3 p, float H, float lacunarity, float octaves)
|
|
{
|
|
float rmd;
|
|
float value = 1.0;
|
|
float pwr = 1.0;
|
|
float pwHL = pow(lacunarity, -H);
|
|
|
|
for (int i = 0; i < int(octaves); i++) {
|
|
value *= (pwr * snoise(p) + 1.0);
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0)
|
|
value *= (rmd * pwr * snoise(p) + 1.0); /* correct? */
|
|
|
|
return value;
|
|
}
|
|
|
|
/* Musgrave Heterogeneous Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_hetero_terrain(vec3 p, float H, float lacunarity, float octaves, float offset)
|
|
{
|
|
float value, increment, rmd;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
/* first unscaled octave of function; later octaves are scaled */
|
|
value = offset + snoise(p);
|
|
p *= lacunarity;
|
|
|
|
for (int i = 1; i < int(octaves); i++) {
|
|
increment = (snoise(p) + offset) * pwr * value;
|
|
value += increment;
|
|
pwr *= pwHL;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0) {
|
|
increment = (snoise(p) + offset) * pwr * value;
|
|
value += rmd * increment;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* Hybrid Additive/Multiplicative Multifractal Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_hybrid_multi_fractal(vec3 p, float H, float lacunarity, float octaves, float offset, float gain)
|
|
{
|
|
float result, signal, weight, rmd;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
result = snoise(p) + offset;
|
|
weight = gain * result;
|
|
p *= lacunarity;
|
|
|
|
for (int i = 1; (weight > 0.001f) && (i < int(octaves)); i++) {
|
|
if (weight > 1.0)
|
|
weight = 1.0;
|
|
|
|
signal = (snoise(p) + offset) * pwr;
|
|
pwr *= pwHL;
|
|
result += weight * signal;
|
|
weight *= gain * signal;
|
|
p *= lacunarity;
|
|
}
|
|
|
|
rmd = octaves - floor(octaves);
|
|
if (rmd != 0.0)
|
|
result += rmd * ((snoise(p) + offset) * pwr);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Ridged Multifractal Terrain
|
|
*
|
|
* H: fractal dimension of the roughest area
|
|
* lacunarity: gap between successive frequencies
|
|
* octaves: number of frequencies in the fBm
|
|
* offset: raises the terrain from `sea level'
|
|
*/
|
|
|
|
float noise_musgrave_ridged_multi_fractal(vec3 p, float H, float lacunarity, float octaves, float offset, float gain)
|
|
{
|
|
float result, signal, weight;
|
|
float pwHL = pow(lacunarity, -H);
|
|
float pwr = pwHL;
|
|
|
|
signal = offset - abs(snoise(p));
|
|
signal *= signal;
|
|
result = signal;
|
|
weight = 1.0;
|
|
|
|
for (int i = 1; i < int(octaves); i++) {
|
|
p *= lacunarity;
|
|
weight = clamp(signal * gain, 0.0, 1.0);
|
|
signal = offset - abs(snoise(p));
|
|
signal *= signal;
|
|
signal *= weight;
|
|
result += signal * pwr;
|
|
pwr *= pwHL;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
float svm_musgrave(int type,
|
|
float dimension,
|
|
float lacunarity,
|
|
float octaves,
|
|
float offset,
|
|
float intensity,
|
|
float gain,
|
|
vec3 p)
|
|
{
|
|
if (type == 0 /* NODE_MUSGRAVE_MULTIFRACTAL */)
|
|
return intensity * noise_musgrave_multi_fractal(p, dimension, lacunarity, octaves);
|
|
else if (type == 1 /* NODE_MUSGRAVE_FBM */)
|
|
return intensity * noise_musgrave_fBm(p, dimension, lacunarity, octaves);
|
|
else if (type == 2 /* NODE_MUSGRAVE_HYBRID_MULTIFRACTAL */)
|
|
return intensity * noise_musgrave_hybrid_multi_fractal(p, dimension, lacunarity, octaves, offset, gain);
|
|
else if (type == 3 /* NODE_MUSGRAVE_RIDGED_MULTIFRACTAL */)
|
|
return intensity * noise_musgrave_ridged_multi_fractal(p, dimension, lacunarity, octaves, offset, gain);
|
|
else if (type == 4 /* NODE_MUSGRAVE_HETERO_TERRAIN */)
|
|
return intensity * noise_musgrave_hetero_terrain(p, dimension, lacunarity, octaves, offset);
|
|
return 0.0;
|
|
}
|
|
|
|
void node_tex_musgrave(vec3 co,
|
|
float scale,
|
|
float detail,
|
|
float dimension,
|
|
float lacunarity,
|
|
float offset,
|
|
float gain,
|
|
float type,
|
|
out vec4 color,
|
|
out float fac)
|
|
{
|
|
fac = svm_musgrave(int(type),
|
|
dimension,
|
|
lacunarity,
|
|
detail,
|
|
offset,
|
|
1.0,
|
|
gain,
|
|
co * scale);
|
|
|
|
color = vec4(fac, fac, fac, 1.0);
|
|
}
|
|
|
|
void node_tex_sky(vec3 co, out vec4 color)
|
|
{
|
|
color = vec4(1.0);
|
|
}
|
|
|
|
void node_tex_voronoi(vec3 co, float scale, float exponent, float coloring, float metric, float feature, out vec4 color, out float fac)
|
|
{
|
|
vec3 p = co * scale;
|
|
int xx, yy, zz, xi, yi, zi;
|
|
vec4 da = vec4(1e10);
|
|
vec3 pa[4] = vec3[4](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
|
|
|
|
xi = floor_to_int(p[0]);
|
|
yi = floor_to_int(p[1]);
|
|
zi = floor_to_int(p[2]);
|
|
|
|
for (xx = xi - 1; xx <= xi + 1; xx++) {
|
|
for (yy = yi - 1; yy <= yi + 1; yy++) {
|
|
for (zz = zi - 1; zz <= zi + 1; zz++) {
|
|
vec3 ip = vec3(xx, yy, zz);
|
|
vec3 vp = cellnoise_color(ip);
|
|
vec3 pd = p - (vp + ip);
|
|
|
|
float d = 0.0;
|
|
if (metric == 0.0) { /* SHD_VORONOI_DISTANCE 0 */
|
|
d = dot(pd, pd);
|
|
}
|
|
else if (metric == 1.0) { /* SHD_VORONOI_MANHATTAN 1 */
|
|
d = abs(pd[0]) + abs(pd[1]) + abs(pd[2]);
|
|
}
|
|
else if (metric == 2.0) { /* SHD_VORONOI_CHEBYCHEV 2 */
|
|
d = max(abs(pd[0]), max(abs(pd[1]), abs(pd[2])));
|
|
}
|
|
else if (metric == 3.0) { /* SHD_VORONOI_MINKOWSKI 3 */
|
|
d = pow(pow(abs(pd[0]), exponent) + pow(abs(pd[1]), exponent) + pow(abs(pd[2]), exponent), 1.0/exponent);
|
|
}
|
|
|
|
vp += vec3(xx, yy, zz);
|
|
if (d < da[0]) {
|
|
da.yzw = da.xyz;
|
|
da[0] = d;
|
|
|
|
pa[3] = pa[2];
|
|
pa[2] = pa[1];
|
|
pa[1] = pa[0];
|
|
pa[0] = vp;
|
|
}
|
|
else if (d < da[1]) {
|
|
da.zw = da.yz;
|
|
da[1] = d;
|
|
|
|
pa[3] = pa[2];
|
|
pa[2] = pa[1];
|
|
pa[1] = vp;
|
|
}
|
|
else if (d < da[2]) {
|
|
da[3] = da[2];
|
|
da[2] = d;
|
|
|
|
pa[3] = pa[2];
|
|
pa[2] = vp;
|
|
}
|
|
else if (d < da[3]) {
|
|
da[3] = d;
|
|
pa[3] = vp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (coloring == 0.0) {
|
|
/* Intensity output */
|
|
if (feature == 0.0) { /* F1 */
|
|
fac = abs(da[0]);
|
|
}
|
|
else if (feature == 1.0) { /* F2 */
|
|
fac = abs(da[1]);
|
|
}
|
|
else if (feature == 2.0) { /* F3 */
|
|
fac = abs(da[2]);
|
|
}
|
|
else if (feature == 3.0) { /* F4 */
|
|
fac = abs(da[3]);
|
|
}
|
|
else if (feature == 4.0) { /* F2F1 */
|
|
fac = abs(da[1] - da[0]);
|
|
}
|
|
color = vec4(fac, fac, fac, 1.0);
|
|
}
|
|
else {
|
|
/* Color output */
|
|
vec3 col = vec3(fac, fac, fac);
|
|
if (feature == 0.0) { /* F1 */
|
|
col = pa[0];
|
|
}
|
|
else if (feature == 1.0) { /* F2 */
|
|
col = pa[1];
|
|
}
|
|
else if (feature == 2.0) { /* F3 */
|
|
col = pa[2];
|
|
}
|
|
else if (feature == 3.0) { /* F4 */
|
|
col = pa[3];
|
|
}
|
|
else if (feature == 4.0) { /* F2F1 */
|
|
col = abs(pa[1] - pa[0]);
|
|
}
|
|
|
|
color = vec4(cellnoise_color(col), 1.0);
|
|
fac = (color.x + color.y + color.z) * (1.0 / 3.0);
|
|
}
|
|
}
|
|
|
|
float calc_wave(vec3 p, float distortion, float detail, float detail_scale, int wave_type, int wave_profile)
|
|
{
|
|
float n;
|
|
|
|
if (wave_type == 0) /* type bands */
|
|
n = (p.x + p.y + p.z) * 10.0;
|
|
else /* type rings */
|
|
n = length(p) * 20.0;
|
|
|
|
if (distortion != 0.0)
|
|
n += distortion * noise_turbulence(p * detail_scale, detail, 0);
|
|
|
|
if (wave_profile == 0) { /* profile sin */
|
|
return 0.5 + 0.5 * sin(n);
|
|
}
|
|
else { /* profile saw */
|
|
n /= 2.0 * M_PI;
|
|
n -= int(n);
|
|
return (n < 0.0) ? n + 1.0 : n;
|
|
}
|
|
}
|
|
|
|
void node_tex_wave(
|
|
vec3 co, float scale, float distortion, float detail, float detail_scale, float wave_type, float wave_profile,
|
|
out vec4 color, out float fac)
|
|
{
|
|
float f;
|
|
f = calc_wave(co * scale, distortion, detail, detail_scale, int(wave_type), int(wave_profile));
|
|
|
|
color = vec4(f, f, f, 1.0);
|
|
fac = f;
|
|
}
|
|
|
|
/* light path */
|
|
|
|
void node_light_path(
|
|
out float is_camera_ray,
|
|
out float is_shadow_ray,
|
|
out float is_diffuse_ray,
|
|
out float is_glossy_ray,
|
|
out float is_singular_ray,
|
|
out float is_reflection_ray,
|
|
out float is_transmission_ray,
|
|
out float ray_length,
|
|
out float ray_depth,
|
|
out float diffuse_depth,
|
|
out float glossy_depth,
|
|
out float transparent_depth,
|
|
out float transmission_depth)
|
|
{
|
|
/* Supported. */
|
|
is_camera_ray = (rayType == EEVEE_RAY_CAMERA) ? 1.0 : 0.0;
|
|
is_shadow_ray = (rayType == EEVEE_RAY_SHADOW) ? 1.0 : 0.0;
|
|
is_diffuse_ray = (rayType == EEVEE_RAY_DIFFUSE) ? 1.0 : 0.0;
|
|
is_glossy_ray = (rayType == EEVEE_RAY_GLOSSY) ? 1.0 : 0.0;
|
|
/* Kind of supported. */
|
|
is_singular_ray = is_glossy_ray;
|
|
is_reflection_ray = is_glossy_ray;
|
|
is_transmission_ray = is_glossy_ray;
|
|
ray_depth = rayDepth;
|
|
diffuse_depth = (is_diffuse_ray == 1.0) ? rayDepth : 0.0;
|
|
glossy_depth = (is_glossy_ray == 1.0) ? rayDepth : 0.0;
|
|
transmission_depth = (is_transmission_ray == 1.0) ? glossy_depth : 0.0;
|
|
/* Not supported. */
|
|
ray_length = 1.0;
|
|
transparent_depth = 0.0;
|
|
}
|
|
|
|
void node_light_falloff(float strength, float tsmooth, out float quadratic, out float linear, out float constant)
|
|
{
|
|
quadratic = strength;
|
|
linear = strength;
|
|
constant = strength;
|
|
}
|
|
|
|
void node_object_info(mat4 obmat, vec4 info, out vec3 location, out float object_index, out float material_index, out float random)
|
|
{
|
|
location = obmat[3].xyz;
|
|
object_index = info.x;
|
|
material_index = info.y;
|
|
random = info.z;
|
|
}
|
|
|
|
void node_normal_map(vec4 info, vec4 tangent, vec3 normal, vec3 texnormal, out vec3 outnormal)
|
|
{
|
|
if (all(equal(tangent, vec4(0.0, 0.0, 0.0, 1.0)))) {
|
|
outnormal = normal;
|
|
return;
|
|
}
|
|
tangent *= (gl_FrontFacing ? 1.0 : -1.0);
|
|
vec3 B = tangent.w * cross(normal, tangent.xyz) * info.w;
|
|
|
|
outnormal = texnormal.x * tangent.xyz + texnormal.y * B + texnormal.z * normal;
|
|
outnormal = normalize(outnormal);
|
|
}
|
|
|
|
void node_bump(float strength, float dist, float height, vec3 N, vec3 surf_pos, float invert, out vec3 result)
|
|
{
|
|
N = mat3(ViewMatrix) * normalize(N);
|
|
dist *= invert;
|
|
|
|
vec3 dPdx = dFdx(surf_pos);
|
|
vec3 dPdy = dFdy(surf_pos);
|
|
|
|
/* Get surface tangents from normal. */
|
|
vec3 Rx = cross(dPdy, N);
|
|
vec3 Ry = cross(N, dPdx);
|
|
|
|
/* Compute surface gradient and determinant. */
|
|
float det = dot(dPdx, Rx);
|
|
|
|
float dHdx = dFdx(height);
|
|
float dHdy = dFdy(height);
|
|
vec3 surfgrad = dHdx * Rx + dHdy * Ry;
|
|
|
|
strength = max(strength, 0.0);
|
|
|
|
result = normalize(abs(det) * N - dist * sign(det) * surfgrad);
|
|
result = normalize(mix(N, result, strength));
|
|
|
|
result = mat3(ViewMatrixInverse) * result;
|
|
}
|
|
|
|
void node_bevel(float radius, vec3 N, out vec3 result)
|
|
{
|
|
result = N;
|
|
}
|
|
|
|
void node_hair_info(out float is_strand, out float intercept, out float thickness, out vec3 tangent, out float random)
|
|
{
|
|
#ifdef HAIR_SHADER
|
|
is_strand = 1.0;
|
|
intercept = hairTime;
|
|
thickness = hairThickness;
|
|
tangent = normalize(hairTangent);
|
|
random = wang_hash_noise(uint(hairStrandID)); /* TODO: could be precomputed per strand instead. */
|
|
#else
|
|
is_strand = 0.0;
|
|
intercept = 0.0;
|
|
thickness = 0.0;
|
|
tangent = vec3(1.0);
|
|
random = 0.0;
|
|
#endif
|
|
}
|
|
|
|
void node_displacement_object(float height, float midlevel, float scale, vec3 N, mat4 obmat, out vec3 result)
|
|
{
|
|
N = (vec4(N, 0.0) * obmat).xyz;
|
|
result = (height - midlevel) * scale * normalize(N);
|
|
result = (obmat * vec4(result, 0.0)).xyz;
|
|
}
|
|
|
|
void node_displacement_world(float height, float midlevel, float scale, vec3 N, out vec3 result)
|
|
{
|
|
result = (height - midlevel) * scale * normalize(N);
|
|
}
|
|
|
|
void node_vector_displacement_tangent(vec4 vector, float midlevel, float scale, vec4 tangent, vec3 normal, mat4 obmat, mat4 viewmat, out vec3 result)
|
|
{
|
|
vec3 N_object = normalize(((vec4(normal, 0.0) * viewmat) * obmat).xyz);
|
|
vec3 T_object = normalize(((vec4(tangent.xyz, 0.0) * viewmat) * obmat).xyz);
|
|
vec3 B_object = tangent.w * normalize(cross(N_object, T_object));
|
|
|
|
vec3 offset = (vector.xyz - vec3(midlevel)) * scale;
|
|
result = offset.x * T_object + offset.y * N_object + offset.z * B_object;
|
|
result = (obmat * vec4(result, 0.0)).xyz;
|
|
}
|
|
|
|
void node_vector_displacement_object(vec4 vector, float midlevel, float scale, mat4 obmat, out vec3 result)
|
|
{
|
|
result = (vector.xyz - vec3(midlevel)) * scale;
|
|
result = (obmat * vec4(result, 0.0)).xyz;
|
|
}
|
|
|
|
void node_vector_displacement_world(vec4 vector, float midlevel, float scale, out vec3 result)
|
|
{
|
|
result = (vector.xyz - vec3(midlevel)) * scale;
|
|
}
|
|
|
|
/* output */
|
|
|
|
void node_output_material(Closure surface, Closure volume, vec3 displacement, out Closure result)
|
|
{
|
|
#ifdef VOLUMETRICS
|
|
result = volume;
|
|
#else
|
|
result = surface;
|
|
#endif
|
|
}
|
|
|
|
uniform float backgroundAlpha;
|
|
|
|
void node_output_world(Closure surface, Closure volume, out Closure result)
|
|
{
|
|
#ifndef VOLUMETRICS
|
|
result.radiance = surface.radiance * backgroundAlpha;
|
|
result.opacity = backgroundAlpha;
|
|
#else
|
|
result = volume;
|
|
#endif /* VOLUMETRICS */
|
|
}
|
|
|
|
#ifndef VOLUMETRICS
|
|
/* TODO : clean this ifdef mess */
|
|
/* EEVEE output */
|
|
void world_normals_get(out vec3 N)
|
|
{
|
|
#ifdef HAIR_SHADER
|
|
vec3 B = normalize(cross(worldNormal, hairTangent));
|
|
float cos_theta;
|
|
if (hairThicknessRes == 1) {
|
|
vec4 rand = texelFetch(utilTex, ivec3(ivec2(gl_FragCoord.xy) % LUT_SIZE, 2.0), 0);
|
|
/* Random cosine normal distribution on the hair surface. */
|
|
cos_theta = rand.x * 2.0 - 1.0;
|
|
}
|
|
else {
|
|
/* Shade as a cylinder. */
|
|
cos_theta = hairThickTime / hairThickness;
|
|
}
|
|
float sin_theta = sqrt(max(0.0, 1.0f - cos_theta*cos_theta));
|
|
N = normalize(worldNormal * sin_theta + B * cos_theta);
|
|
#else
|
|
N = gl_FrontFacing ? worldNormal : -worldNormal;
|
|
#endif
|
|
}
|
|
|
|
void node_eevee_specular(
|
|
vec4 diffuse, vec4 specular, float roughness, vec4 emissive, float transp, vec3 normal,
|
|
float clearcoat, float clearcoat_roughness, vec3 clearcoat_normal,
|
|
float occlusion, float ssr_id, out Closure result)
|
|
{
|
|
vec3 out_diff, out_spec, ssr_spec;
|
|
eevee_closure_default(normal, diffuse.rgb, specular.rgb, int(ssr_id), roughness, occlusion,
|
|
out_diff, out_spec, ssr_spec);
|
|
|
|
vec3 vN = normalize(mat3(ViewMatrix) * normal);
|
|
result = CLOSURE_DEFAULT;
|
|
result.radiance = out_diff * diffuse.rgb + out_spec + emissive.rgb;
|
|
result.opacity = 1.0 - transp;
|
|
result.ssr_data = vec4(ssr_spec, roughness);
|
|
result.ssr_normal = normal_encode(vN, viewCameraVec);
|
|
result.ssr_id = int(ssr_id);
|
|
}
|
|
|
|
void node_shader_to_rgba(Closure cl, out vec4 outcol, out float outalpha)
|
|
{
|
|
vec4 spec_accum = vec4(0.0);
|
|
if (ssrToggle && cl.ssr_id == outputSsrId) {
|
|
vec3 V = cameraVec;
|
|
vec3 vN = normal_decode(cl.ssr_normal, viewCameraVec);
|
|
vec3 N = transform_direction(ViewMatrixInverse, vN);
|
|
float roughness = cl.ssr_data.a;
|
|
float roughnessSquared = max(1e-3, roughness * roughness);
|
|
fallback_cubemap(N, V, worldPosition, viewPosition, roughness, roughnessSquared, spec_accum);
|
|
}
|
|
|
|
outalpha = cl.opacity;
|
|
outcol = vec4((spec_accum.rgb * cl.ssr_data.rgb) + cl.radiance, 1.0);
|
|
|
|
# ifdef USE_SSS
|
|
# ifdef USE_SSS_ALBEDO
|
|
outcol.rgb += cl.sss_data.rgb * cl.sss_albedo;
|
|
# else
|
|
outcol.rgb += cl.sss_data.rgb;
|
|
# endif
|
|
# endif
|
|
}
|
|
|
|
#endif /* VOLUMETRICS */
|