This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/gpu/intern/gpu_codegen.c
Jeroen Bakker 2bae11d5c0 EEVEE: Arbitrary Output Variables
This patch adds support for AOVs in EEVEE. AOV Outputs can be defined in the
render pass tab and used in shader materials. Both Object and World based
shaders are supported. The AOV can be previewed in the viewport using the
renderpass selector in the shading popover.

AOV names that conflict with other AOVs are automatically corrected. AOV
conflicts with render passes get a warning icon. The reason behind this is that
changing render engines/passes can change the conflict, but you might not notice
it. Changing this automatically would also make the materials incorrect, so best
to leave this to the user.

**Implementation**

The patch adds a copies the AOV structures of Cycles into Blender. The goal is
that the Cycles will use Blenders AOV defintions. In the Blender kernel
(`layer.c`) the logic of these structures are implemented.

The GLSL shader of any GPUMaterial can hold multiple outputs (the main output
and the AOV outputs) based on the renderPassUBO the right output is selected.
This selection uses an hash that encodes the AOV structure. The full AOV needed
to be encoded when actually drawing the material pass as the AOV type changes
the behavior of the AOV. This isn't known yet when the GLSL is compiled.

**Future Developments**

* The AOV definitions in the render layer panel isn't shared with Cycles.
  Cycles should be migrated to use the same viewlayer aovs. During a previous
  attempt this failed as the AOV validation in cycles and in Blender have
  implementation differences what made it crash when an aov name was invalid.
  This could be fixed by extending the external render engine API.
* Add support to Cycles to render AOVs in the 3d viewport.
* Use a drop down list for selecting AOVs in the AOV Output node.
* Give user feedback when multiple AOV output nodes with the same AOV name
  exists in the same shader.
* Fix viewing single channel images in the image editor [T83314]
* Reduce viewport render time by only render needed draw passes. [T83316]

Reviewed By: Brecht van Lommel, Clément Foucault

Differential Revision: https://developer.blender.org/D7010
2020-12-04 08:14:07 +01:00

1125 lines
35 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup gpu
*
* Convert material node-trees to GLSL.
*/
#include "MEM_guardedalloc.h"
#include "DNA_customdata_types.h"
#include "DNA_image_types.h"
#include "BLI_blenlib.h"
#include "BLI_dynstr.h"
#include "BLI_ghash.h"
#include "BLI_hash_mm2a.h"
#include "BLI_link_utils.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "PIL_time.h"
#include "BKE_material.h"
#include "GPU_capabilities.h"
#include "GPU_material.h"
#include "GPU_shader.h"
#include "GPU_uniform_buffer.h"
#include "GPU_vertex_format.h"
#include "BLI_sys_types.h" /* for intptr_t support */
#include "gpu_codegen.h"
#include "gpu_material_library.h"
#include "gpu_node_graph.h"
#include <stdarg.h>
#include <string.h>
extern char datatoc_gpu_shader_codegen_lib_glsl[];
extern char datatoc_gpu_shader_common_obinfos_lib_glsl[];
/* -------------------- GPUPass Cache ------------------ */
/**
* Internal shader cache: This prevent the shader recompilation / stall when
* using undo/redo AND also allows for GPUPass reuse if the Shader code is the
* same for 2 different Materials. Unused GPUPasses are free by Garbage collection.
*/
/* Only use one linklist that contains the GPUPasses grouped by hash. */
static GPUPass *pass_cache = NULL;
static SpinLock pass_cache_spin;
static uint32_t gpu_pass_hash(const char *frag_gen, const char *defs, ListBase *attributes)
{
BLI_HashMurmur2A hm2a;
BLI_hash_mm2a_init(&hm2a, 0);
BLI_hash_mm2a_add(&hm2a, (uchar *)frag_gen, strlen(frag_gen));
LISTBASE_FOREACH (GPUMaterialAttribute *, attr, attributes) {
BLI_hash_mm2a_add(&hm2a, (uchar *)attr->name, strlen(attr->name));
}
if (defs) {
BLI_hash_mm2a_add(&hm2a, (uchar *)defs, strlen(defs));
}
return BLI_hash_mm2a_end(&hm2a);
}
/* Search by hash only. Return first pass with the same hash.
* There is hash collision if (pass->next && pass->next->hash == hash) */
static GPUPass *gpu_pass_cache_lookup(uint32_t hash)
{
BLI_spin_lock(&pass_cache_spin);
/* Could be optimized with a Lookup table. */
for (GPUPass *pass = pass_cache; pass; pass = pass->next) {
if (pass->hash == hash) {
BLI_spin_unlock(&pass_cache_spin);
return pass;
}
}
BLI_spin_unlock(&pass_cache_spin);
return NULL;
}
/* Check all possible passes with the same hash. */
static GPUPass *gpu_pass_cache_resolve_collision(GPUPass *pass,
const char *vert,
const char *geom,
const char *frag,
const char *defs,
uint32_t hash)
{
BLI_spin_lock(&pass_cache_spin);
/* Collision, need to strcmp the whole shader. */
for (; pass && (pass->hash == hash); pass = pass->next) {
if ((defs != NULL) && (!STREQ(pass->defines, defs))) { /* Pass */
}
else if ((geom != NULL) && (!STREQ(pass->geometrycode, geom))) { /* Pass */
}
else if ((!STREQ(pass->fragmentcode, frag) == 0) && (STREQ(pass->vertexcode, vert))) {
BLI_spin_unlock(&pass_cache_spin);
return pass;
}
}
BLI_spin_unlock(&pass_cache_spin);
return NULL;
}
/* GLSL code generation */
static void codegen_convert_datatype(DynStr *ds, int from, int to, const char *tmp, int id)
{
char name[1024];
BLI_snprintf(name, sizeof(name), "%s%d", tmp, id);
if (from == to) {
BLI_dynstr_append(ds, name);
}
else if (to == GPU_FLOAT) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "dot(%s.rgb, vec3(0.2126, 0.7152, 0.0722))", name);
}
else if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "(%s.r + %s.g + %s.b) / 3.0", name, name, name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "%s.r", name);
}
}
else if (to == GPU_VEC2) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "vec2((%s.r + %s.g + %s.b) / 3.0, %s.a)", name, name, name, name);
}
else if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "vec2((%s.r + %s.g + %s.b) / 3.0, 1.0)", name, name, name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "vec2(%s, 1.0)", name);
}
}
else if (to == GPU_VEC3) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "%s.rgb", name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "vec3(%s.r, %s.r, %s.r)", name, name, name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "vec3(%s, %s, %s)", name, name, name);
}
}
else if (to == GPU_VEC4) {
if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "vec4(%s, 1.0)", name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "vec4(%s.r, %s.r, %s.r, %s.g)", name, name, name, name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "vec4(%s, %s, %s, 1.0)", name, name, name);
}
}
else if (to == GPU_CLOSURE) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "closure_emission(%s.rgb)", name);
}
else if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "closure_emission(%s.rgb)", name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "closure_emission(%s.rrr)", name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "closure_emission(vec3(%s, %s, %s))", name, name, name);
}
}
else {
BLI_dynstr_append(ds, name);
}
}
static void codegen_print_datatype(DynStr *ds, const eGPUType type, float *data)
{
int i;
BLI_dynstr_appendf(ds, "%s(", gpu_data_type_to_string(type));
for (i = 0; i < type; i++) {
BLI_dynstr_appendf(ds, "%.12f", data[i]);
if (i == type - 1) {
BLI_dynstr_append(ds, ")");
}
else {
BLI_dynstr_append(ds, ", ");
}
}
}
static const char *gpu_builtin_name(eGPUBuiltin builtin)
{
if (builtin == GPU_VIEW_MATRIX) {
return "unfviewmat";
}
if (builtin == GPU_OBJECT_MATRIX) {
return "unfobmat";
}
if (builtin == GPU_INVERSE_VIEW_MATRIX) {
return "unfinvviewmat";
}
if (builtin == GPU_INVERSE_OBJECT_MATRIX) {
return "unfinvobmat";
}
if (builtin == GPU_LOC_TO_VIEW_MATRIX) {
return "unflocaltoviewmat";
}
if (builtin == GPU_INVERSE_LOC_TO_VIEW_MATRIX) {
return "unfinvlocaltoviewmat";
}
if (builtin == GPU_VIEW_POSITION) {
return "varposition";
}
if (builtin == GPU_WORLD_NORMAL) {
return "varwnormal";
}
if (builtin == GPU_VIEW_NORMAL) {
return "varnormal";
}
if (builtin == GPU_OBJECT_COLOR) {
return "unfobjectcolor";
}
if (builtin == GPU_AUTO_BUMPSCALE) {
return "unfobautobumpscale";
}
if (builtin == GPU_CAMERA_TEXCO_FACTORS) {
return "unfcameratexfactors";
}
if (builtin == GPU_PARTICLE_SCALAR_PROPS) {
return "unfparticlescalarprops";
}
if (builtin == GPU_PARTICLE_LOCATION) {
return "unfparticleco";
}
if (builtin == GPU_PARTICLE_VELOCITY) {
return "unfparticlevel";
}
if (builtin == GPU_PARTICLE_ANG_VELOCITY) {
return "unfparticleangvel";
}
if (builtin == GPU_OBJECT_INFO) {
return "unfobjectinfo";
}
if (builtin == GPU_BARYCENTRIC_TEXCO) {
return "unfbarycentrictex";
}
if (builtin == GPU_BARYCENTRIC_DIST) {
return "unfbarycentricdist";
}
return "";
}
static void codegen_set_unique_ids(GPUNodeGraph *graph)
{
int id = 1;
LISTBASE_FOREACH (GPUNode *, node, &graph->nodes) {
LISTBASE_FOREACH (GPUInput *, input, &node->inputs) {
/* set id for unique names of uniform variables */
input->id = id++;
}
LISTBASE_FOREACH (GPUOutput *, output, &node->outputs) {
/* set id for unique names of tmp variables storing output */
output->id = id++;
}
}
}
/**
* It will create an UBO for GPUMaterial if there is any GPU_DYNAMIC_UBO.
*/
static int codegen_process_uniforms_functions(GPUMaterial *material,
DynStr *ds,
GPUNodeGraph *graph)
{
const char *name;
int builtins = 0;
ListBase ubo_inputs = {NULL, NULL};
/* Textures */
LISTBASE_FOREACH (GPUMaterialTexture *, tex, &graph->textures) {
if (tex->colorband) {
BLI_dynstr_appendf(ds, "uniform sampler1DArray %s;\n", tex->sampler_name);
}
else if (tex->tiled_mapping_name[0]) {
BLI_dynstr_appendf(ds, "uniform sampler2DArray %s;\n", tex->sampler_name);
BLI_dynstr_appendf(ds, "uniform sampler1DArray %s;\n", tex->tiled_mapping_name);
}
else {
BLI_dynstr_appendf(ds, "uniform sampler2D %s;\n", tex->sampler_name);
}
}
/* Volume Grids */
LISTBASE_FOREACH (GPUMaterialVolumeGrid *, grid, &graph->volume_grids) {
BLI_dynstr_appendf(ds, "uniform sampler3D %s;\n", grid->sampler_name);
BLI_dynstr_appendf(ds, "uniform mat4 %s = mat4(0.0);\n", grid->transform_name);
}
/* Print other uniforms */
LISTBASE_FOREACH (GPUNode *, node, &graph->nodes) {
LISTBASE_FOREACH (GPUInput *, input, &node->inputs) {
if (input->source == GPU_SOURCE_BUILTIN) {
/* only define each builtin uniform/varying once */
if (!(builtins & input->builtin)) {
builtins |= input->builtin;
name = gpu_builtin_name(input->builtin);
if (BLI_str_startswith(name, "unf")) {
BLI_dynstr_appendf(ds, "uniform %s %s;\n", gpu_data_type_to_string(input->type), name);
}
else {
BLI_dynstr_appendf(ds, "in %s %s;\n", gpu_data_type_to_string(input->type), name);
}
}
}
else if (input->source == GPU_SOURCE_STRUCT) {
/* Add other struct here if needed. */
BLI_dynstr_appendf(ds, "Closure strct%d = CLOSURE_DEFAULT;\n", input->id);
}
else if (input->source == GPU_SOURCE_UNIFORM) {
if (!input->link) {
/* We handle the UBOuniforms separately. */
BLI_addtail(&ubo_inputs, BLI_genericNodeN(input));
}
}
else if (input->source == GPU_SOURCE_CONSTANT) {
BLI_dynstr_appendf(
ds, "const %s cons%d = ", gpu_data_type_to_string(input->type), input->id);
codegen_print_datatype(ds, input->type, input->vec);
BLI_dynstr_append(ds, ";\n");
}
}
}
/* Handle the UBO block separately. */
if ((material != NULL) && !BLI_listbase_is_empty(&ubo_inputs)) {
GPU_material_uniform_buffer_create(material, &ubo_inputs);
/* Inputs are sorted */
BLI_dynstr_appendf(ds, "\nlayout (std140) uniform %s {\n", GPU_UBO_BLOCK_NAME);
LISTBASE_FOREACH (LinkData *, link, &ubo_inputs) {
GPUInput *input = (GPUInput *)(link->data);
BLI_dynstr_appendf(ds, " %s unf%d;\n", gpu_data_type_to_string(input->type), input->id);
}
BLI_dynstr_append(ds, "};\n");
BLI_freelistN(&ubo_inputs);
}
/* Generate the uniform attribute UBO if necessary. */
if (!BLI_listbase_is_empty(&graph->uniform_attrs.list)) {
BLI_dynstr_append(ds, "\nstruct UniformAttributes {\n");
LISTBASE_FOREACH (GPUUniformAttr *, attr, &graph->uniform_attrs.list) {
BLI_dynstr_appendf(ds, " vec4 attr%d;\n", attr->id);
}
BLI_dynstr_append(ds, "};\n");
BLI_dynstr_appendf(ds, "layout (std140) uniform %s {\n", GPU_ATTRIBUTE_UBO_BLOCK_NAME);
BLI_dynstr_append(ds, " UniformAttributes uniform_attrs[DRW_RESOURCE_CHUNK_LEN];\n");
BLI_dynstr_append(ds, "};\n");
BLI_dynstr_append(ds, "#define GET_UNIFORM_ATTR(name) (uniform_attrs[resource_id].name)\n");
}
BLI_dynstr_append(ds, "\n");
return builtins;
}
static void codegen_declare_tmps(DynStr *ds, GPUNodeGraph *graph)
{
LISTBASE_FOREACH (GPUNode *, node, &graph->nodes) {
/* declare temporary variables for node output storage */
LISTBASE_FOREACH (GPUOutput *, output, &node->outputs) {
if (output->type == GPU_CLOSURE) {
BLI_dynstr_appendf(ds, " Closure tmp%d;\n", output->id);
}
else {
BLI_dynstr_appendf(ds, " %s tmp%d;\n", gpu_data_type_to_string(output->type), output->id);
}
}
}
BLI_dynstr_append(ds, "\n");
}
static void codegen_call_functions(DynStr *ds, GPUNodeGraph *graph)
{
LISTBASE_FOREACH (GPUNode *, node, &graph->nodes) {
BLI_dynstr_appendf(ds, " %s(", node->name);
LISTBASE_FOREACH (GPUInput *, input, &node->inputs) {
if (input->source == GPU_SOURCE_TEX) {
BLI_dynstr_append(ds, input->texture->sampler_name);
}
else if (input->source == GPU_SOURCE_TEX_TILED_MAPPING) {
BLI_dynstr_append(ds, input->texture->tiled_mapping_name);
}
else if (input->source == GPU_SOURCE_VOLUME_GRID) {
BLI_dynstr_append(ds, input->volume_grid->sampler_name);
}
else if (input->source == GPU_SOURCE_VOLUME_GRID_TRANSFORM) {
BLI_dynstr_append(ds, input->volume_grid->transform_name);
}
else if (input->source == GPU_SOURCE_OUTPUT) {
codegen_convert_datatype(
ds, input->link->output->type, input->type, "tmp", input->link->output->id);
}
else if (input->source == GPU_SOURCE_BUILTIN) {
/* TODO(fclem): get rid of that. */
if (input->builtin == GPU_INVERSE_VIEW_MATRIX) {
BLI_dynstr_append(ds, "viewinv");
}
else if (input->builtin == GPU_VIEW_MATRIX) {
BLI_dynstr_append(ds, "viewmat");
}
else if (input->builtin == GPU_CAMERA_TEXCO_FACTORS) {
BLI_dynstr_append(ds, "camtexfac");
}
else if (input->builtin == GPU_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds, "localtoviewmat");
}
else if (input->builtin == GPU_INVERSE_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds, "invlocaltoviewmat");
}
else if (input->builtin == GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "barycentricDist");
}
else if (input->builtin == GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "barytexco");
}
else if (input->builtin == GPU_OBJECT_MATRIX) {
BLI_dynstr_append(ds, "objmat");
}
else if (input->builtin == GPU_OBJECT_INFO) {
BLI_dynstr_append(ds, "ObjectInfo");
}
else if (input->builtin == GPU_OBJECT_COLOR) {
BLI_dynstr_append(ds, "ObjectColor");
}
else if (input->builtin == GPU_INVERSE_OBJECT_MATRIX) {
BLI_dynstr_append(ds, "objinv");
}
else if (input->builtin == GPU_VIEW_POSITION) {
BLI_dynstr_append(ds, "viewposition");
}
else if (input->builtin == GPU_VIEW_NORMAL) {
BLI_dynstr_append(ds, "facingnormal");
}
else if (input->builtin == GPU_WORLD_NORMAL) {
BLI_dynstr_append(ds, "facingwnormal");
}
else {
BLI_dynstr_append(ds, gpu_builtin_name(input->builtin));
}
}
else if (input->source == GPU_SOURCE_STRUCT) {
BLI_dynstr_appendf(ds, "strct%d", input->id);
}
else if (input->source == GPU_SOURCE_UNIFORM) {
BLI_dynstr_appendf(ds, "unf%d", input->id);
}
else if (input->source == GPU_SOURCE_CONSTANT) {
BLI_dynstr_appendf(ds, "cons%d", input->id);
}
else if (input->source == GPU_SOURCE_ATTR) {
codegen_convert_datatype(ds, input->attr->gputype, input->type, "var", input->attr->id);
}
else if (input->source == GPU_SOURCE_UNIFORM_ATTR) {
BLI_dynstr_appendf(ds, "GET_UNIFORM_ATTR(attr%d)", input->uniform_attr->id);
}
BLI_dynstr_append(ds, ", ");
}
LISTBASE_FOREACH (GPUOutput *, output, &node->outputs) {
BLI_dynstr_appendf(ds, "tmp%d", output->id);
if (output->next) {
BLI_dynstr_append(ds, ", ");
}
}
BLI_dynstr_append(ds, ");\n");
}
}
static void codegen_final_output(DynStr *ds, GPUOutput *finaloutput)
{
BLI_dynstr_appendf(ds, "return tmp%d;\n", finaloutput->id);
}
static char *code_generate_fragment(GPUMaterial *material,
GPUNodeGraph *graph,
const char *interface_str)
{
DynStr *ds = BLI_dynstr_new();
char *code;
int builtins;
codegen_set_unique_ids(graph);
/* Attributes, Shader stage interface. */
if (interface_str) {
BLI_dynstr_appendf(ds, "in codegenInterface {%s};\n\n", interface_str);
}
builtins = codegen_process_uniforms_functions(material, ds, graph);
if (builtins & (GPU_OBJECT_INFO | GPU_OBJECT_COLOR)) {
BLI_dynstr_append(ds, datatoc_gpu_shader_common_obinfos_lib_glsl);
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, datatoc_gpu_shader_codegen_lib_glsl);
}
BLI_dynstr_append(ds, "Closure nodetree_exec(void)\n{\n");
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, " vec2 barytexco = barycentric_resolve(barycentricTexCo);\n");
}
/* TODO(fclem): get rid of that. */
if (builtins & GPU_VIEW_MATRIX) {
BLI_dynstr_append(ds, " #define viewmat ViewMatrix\n");
}
if (builtins & GPU_CAMERA_TEXCO_FACTORS) {
BLI_dynstr_append(ds, " #define camtexfac CameraTexCoFactors\n");
}
if (builtins & GPU_OBJECT_MATRIX) {
BLI_dynstr_append(ds, " #define objmat ModelMatrix\n");
}
if (builtins & GPU_INVERSE_OBJECT_MATRIX) {
BLI_dynstr_append(ds, " #define objinv ModelMatrixInverse\n");
}
if (builtins & GPU_INVERSE_VIEW_MATRIX) {
BLI_dynstr_append(ds, " #define viewinv ViewMatrixInverse\n");
}
if (builtins & GPU_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds, " #define localtoviewmat (ViewMatrix * ModelMatrix)\n");
}
if (builtins & GPU_INVERSE_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds,
" #define invlocaltoviewmat (ModelMatrixInverse * ViewMatrixInverse)\n");
}
if (builtins & GPU_VIEW_NORMAL) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, " vec3 n;\n");
BLI_dynstr_append(ds, " world_normals_get(n);\n");
BLI_dynstr_append(ds, " vec3 facingnormal = transform_direction(ViewMatrix, n);\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, " vec3 facingnormal = gl_FrontFacing ? viewNormal: -viewNormal;\n");
BLI_dynstr_append(ds, "#endif\n");
}
if (builtins & GPU_WORLD_NORMAL) {
BLI_dynstr_append(ds, " vec3 facingwnormal;\n");
if (builtins & GPU_VIEW_NORMAL) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, " facingwnormal = n;\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, " world_normals_get(facingwnormal);\n");
BLI_dynstr_append(ds, "#endif\n");
}
else {
BLI_dynstr_append(ds, " world_normals_get(facingwnormal);\n");
}
}
if (builtins & GPU_VIEW_POSITION) {
BLI_dynstr_append(ds, " #define viewposition viewPosition\n");
}
codegen_declare_tmps(ds, graph);
codegen_call_functions(ds, graph);
BLI_dynstr_append(ds, " #ifndef VOLUMETRICS\n");
BLI_dynstr_append(ds, " if (renderPassAOV) {\n");
BLI_dynstr_append(ds, " switch (render_pass_aov_hash()) {\n");
GSet *aovhashes_added = BLI_gset_int_new(__func__);
LISTBASE_FOREACH (GPUNodeGraphOutputLink *, aovlink, &graph->outlink_aovs) {
void *aov_key = POINTER_FROM_INT(aovlink->hash);
if (BLI_gset_haskey(aovhashes_added, aov_key)) {
continue;
}
BLI_dynstr_appendf(ds, " case %d: {\n ", aovlink->hash);
codegen_final_output(ds, aovlink->outlink->output);
BLI_dynstr_append(ds, " }\n");
BLI_gset_add(aovhashes_added, aov_key);
}
BLI_gset_free(aovhashes_added, NULL);
BLI_dynstr_append(ds, " default: {\n");
BLI_dynstr_append(ds, " Closure no_aov = CLOSURE_DEFAULT;\n");
BLI_dynstr_append(ds, " no_aov.holdout = 1.0;\n");
BLI_dynstr_append(ds, " return no_aov;\n");
BLI_dynstr_append(ds, " }\n");
BLI_dynstr_append(ds, " }\n");
BLI_dynstr_append(ds, " } else {\n");
BLI_dynstr_append(ds, " #else /* VOLUMETRICS */\n");
BLI_dynstr_append(ds, " {\n");
BLI_dynstr_append(ds, " #endif /* VOLUMETRICS */\n ");
codegen_final_output(ds, graph->outlink->output);
BLI_dynstr_append(ds, " }\n");
BLI_dynstr_append(ds, "}\n");
/* create shader */
code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
#if 0
if (G.debug & G_DEBUG) {
printf("%s\n", code);
}
#endif
return code;
}
static const char *attr_prefix_get(CustomDataType type)
{
switch (type) {
case CD_ORCO:
return "orco";
case CD_MTFACE:
return "u";
case CD_TANGENT:
return "t";
case CD_MCOL:
return "c";
case CD_PROP_COLOR:
return "c";
case CD_AUTO_FROM_NAME:
return "a";
default:
BLI_assert(false && "GPUVertAttr Prefix type not found : This should not happen!");
return "";
}
}
/* We talk about shader stage interface, not to be mistaken with GPUShaderInterface. */
static char *code_generate_interface(GPUNodeGraph *graph, int builtins)
{
if (BLI_listbase_is_empty(&graph->attributes) &&
(builtins & (GPU_BARYCENTRIC_DIST | GPU_BARYCENTRIC_TEXCO)) == 0) {
return NULL;
}
DynStr *ds = BLI_dynstr_new();
BLI_dynstr_append(ds, "\n");
LISTBASE_FOREACH (GPUMaterialAttribute *, attr, &graph->attributes) {
BLI_dynstr_appendf(ds, "%s var%d;\n", gpu_data_type_to_string(attr->gputype), attr->id);
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "vec2 barycentricTexCo;\n");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "vec3 barycentricDist;\n");
}
char *code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
return code;
}
static char *code_generate_vertex(GPUNodeGraph *graph,
const char *interface_str,
const char *vert_code,
int builtins)
{
DynStr *ds = BLI_dynstr_new();
BLI_dynstr_append(ds, datatoc_gpu_shader_codegen_lib_glsl);
/* Inputs */
LISTBASE_FOREACH (GPUMaterialAttribute *, attr, &graph->attributes) {
const char *type_str = gpu_data_type_to_string(attr->gputype);
const char *prefix = attr_prefix_get(attr->type);
/* XXX FIXME : see notes in mesh_render_data_create() */
/* NOTE : Replicate changes to mesh_render_data_create() in draw_cache_impl_mesh.c */
if (attr->type == CD_ORCO) {
/* OPTI : orco is computed from local positions, but only if no modifier is present. */
BLI_dynstr_append(ds, datatoc_gpu_shader_common_obinfos_lib_glsl);
BLI_dynstr_append(ds, "DEFINE_ATTR(vec4, orco);\n");
}
else if (attr->name[0] == '\0') {
BLI_dynstr_appendf(ds, "DEFINE_ATTR(%s, %s);\n", type_str, prefix);
BLI_dynstr_appendf(ds, "#define att%d %s\n", attr->id, prefix);
}
else {
char attr_safe_name[GPU_MAX_SAFE_ATTR_NAME];
GPU_vertformat_safe_attr_name(attr->name, attr_safe_name, GPU_MAX_SAFE_ATTR_NAME);
BLI_dynstr_appendf(ds, "DEFINE_ATTR(%s, %s%s);\n", type_str, prefix, attr_safe_name);
BLI_dynstr_appendf(ds, "#define att%d %s%s\n", attr->id, prefix, attr_safe_name);
}
}
/* Outputs interface */
if (interface_str) {
BLI_dynstr_appendf(ds, "out codegenInterface {%s};\n\n", interface_str);
}
/* Prototype. Needed for hair functions. */
BLI_dynstr_append(ds, "void pass_attr(vec3 position, mat3 normalmat, mat4 modelmatinv);\n");
BLI_dynstr_append(ds, "#define USE_ATTR\n\n");
BLI_dynstr_append(ds, vert_code);
BLI_dynstr_append(ds, "\n\n");
BLI_dynstr_append(ds, "void pass_attr(vec3 position, mat3 normalmat, mat4 modelmatinv) {\n");
/* GPU_BARYCENTRIC_TEXCO cannot be computed based on gl_VertexID
* for MESH_SHADER because of indexed drawing. In this case a
* geometry shader is needed. */
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_appendf(ds, " barycentricTexCo = barycentric_get();\n");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_appendf(ds, " barycentricDist = vec3(0);\n");
}
LISTBASE_FOREACH (GPUMaterialAttribute *, attr, &graph->attributes) {
if (attr->type == CD_TANGENT) { /* silly exception */
BLI_dynstr_appendf(ds, " var%d = tangent_get(att%d, normalmat);\n", attr->id, attr->id);
}
else if (attr->type == CD_ORCO) {
BLI_dynstr_appendf(
ds, " var%d = orco_get(position, modelmatinv, OrcoTexCoFactors, orco);\n", attr->id);
}
else {
const char *type_str = gpu_data_type_to_string(attr->gputype);
BLI_dynstr_appendf(ds, " var%d = GET_ATTR(%s, att%d);\n", attr->id, type_str, attr->id);
}
}
BLI_dynstr_append(ds, "}\n");
char *code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
#if 0
if (G.debug & G_DEBUG) {
printf("%s\n", code);
}
#endif
return code;
}
static char *code_generate_geometry(GPUNodeGraph *graph,
const char *interface_str,
const char *geom_code,
int builtins)
{
if (!geom_code) {
return NULL;
}
DynStr *ds = BLI_dynstr_new();
/* Attributes, Shader interface; */
if (interface_str) {
BLI_dynstr_appendf(ds, "in codegenInterface {%s} dataAttrIn[];\n\n", interface_str);
BLI_dynstr_appendf(ds, "out codegenInterface {%s} dataAttrOut;\n\n", interface_str);
}
BLI_dynstr_append(ds, datatoc_gpu_shader_codegen_lib_glsl);
if (builtins & GPU_BARYCENTRIC_DIST) {
/* geom_code should do something with this, but may not. */
BLI_dynstr_append(ds, "#define DO_BARYCENTRIC_DISTANCES\n");
}
/* Generate varying assignments. */
BLI_dynstr_append(ds, "#define USE_ATTR\n");
/* This needs to be a define. Some drivers don't like variable vert index inside dataAttrIn. */
BLI_dynstr_append(ds, "#define pass_attr(vert) {\\\n");
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "dataAttrOut.barycentricTexCo = calc_barycentric_co(vert);\\\n");
}
LISTBASE_FOREACH (GPUMaterialAttribute *, attr, &graph->attributes) {
/* TODO let shader choose what to do depending on what the attribute is. */
BLI_dynstr_appendf(ds, "dataAttrOut.var%d = dataAttrIn[vert].var%d;\\\n", attr->id, attr->id);
}
BLI_dynstr_append(ds, "}\n\n");
BLI_dynstr_append(ds, geom_code);
char *code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
return code;
}
GPUShader *GPU_pass_shader_get(GPUPass *pass)
{
return pass->shader;
}
/* Pass create/free */
static bool gpu_pass_is_valid(GPUPass *pass)
{
/* Shader is not null if compilation is successful. */
return (pass->compiled == false || pass->shader != NULL);
}
GPUPass *GPU_generate_pass(GPUMaterial *material,
GPUNodeGraph *graph,
const char *vert_code,
const char *geom_code,
const char *frag_lib,
const char *defines)
{
/* Prune the unused nodes and extract attributes before compiling so the
* generated VBOs are ready to accept the future shader. */
gpu_node_graph_prune_unused(graph);
gpu_node_graph_finalize_uniform_attrs(graph);
int builtins = 0;
LISTBASE_FOREACH (GPUNode *, node, &graph->nodes) {
LISTBASE_FOREACH (GPUInput *, input, &node->inputs) {
if (input->source == GPU_SOURCE_BUILTIN) {
builtins |= input->builtin;
}
}
}
/* generate code */
char *interface_str = code_generate_interface(graph, builtins);
char *fragmentgen = code_generate_fragment(material, graph, interface_str);
/* Cache lookup: Reuse shaders already compiled */
uint32_t hash = gpu_pass_hash(fragmentgen, defines, &graph->attributes);
GPUPass *pass_hash = gpu_pass_cache_lookup(hash);
if (pass_hash && (pass_hash->next == NULL || pass_hash->next->hash != hash)) {
/* No collision, just return the pass. */
MEM_SAFE_FREE(interface_str);
MEM_freeN(fragmentgen);
if (!gpu_pass_is_valid(pass_hash)) {
/* Shader has already been created but failed to compile. */
return NULL;
}
pass_hash->refcount += 1;
return pass_hash;
}
/* Either the shader is not compiled or there is a hash collision...
* continue generating the shader strings. */
GSet *used_libraries = gpu_material_used_libraries(material);
char *tmp = gpu_material_library_generate_code(used_libraries, frag_lib);
char *geometrycode = code_generate_geometry(graph, interface_str, geom_code, builtins);
char *vertexcode = code_generate_vertex(graph, interface_str, vert_code, builtins);
char *fragmentcode = BLI_strdupcat(tmp, fragmentgen);
MEM_SAFE_FREE(interface_str);
MEM_freeN(fragmentgen);
MEM_freeN(tmp);
GPUPass *pass = NULL;
if (pass_hash) {
/* Cache lookup: Reuse shaders already compiled */
pass = gpu_pass_cache_resolve_collision(
pass_hash, vertexcode, geometrycode, fragmentcode, defines, hash);
}
if (pass) {
MEM_SAFE_FREE(vertexcode);
MEM_SAFE_FREE(fragmentcode);
MEM_SAFE_FREE(geometrycode);
/* Cache hit. Reuse the same GPUPass and GPUShader. */
if (!gpu_pass_is_valid(pass)) {
/* Shader has already been created but failed to compile. */
return NULL;
}
pass->refcount += 1;
}
else {
/* We still create a pass even if shader compilation
* fails to avoid trying to compile again and again. */
pass = MEM_callocN(sizeof(GPUPass), "GPUPass");
pass->shader = NULL;
pass->refcount = 1;
pass->hash = hash;
pass->vertexcode = vertexcode;
pass->fragmentcode = fragmentcode;
pass->geometrycode = geometrycode;
pass->defines = (defines) ? BLI_strdup(defines) : NULL;
pass->compiled = false;
BLI_spin_lock(&pass_cache_spin);
if (pass_hash != NULL) {
/* Add after the first pass having the same hash. */
pass->next = pass_hash->next;
pass_hash->next = pass;
}
else {
/* No other pass have same hash, just prepend to the list. */
BLI_LINKS_PREPEND(pass_cache, pass);
}
BLI_spin_unlock(&pass_cache_spin);
}
return pass;
}
static int count_active_texture_sampler(GPUShader *shader, char *source)
{
char *code = source;
/* Remember this is per stage. */
GSet *sampler_ids = BLI_gset_int_new(__func__);
int num_samplers = 0;
while ((code = strstr(code, "uniform "))) {
/* Move past "uniform". */
code += 7;
/* Skip following spaces. */
while (*code == ' ') {
code++;
}
/* Skip "i" from potential isamplers. */
if (*code == 'i') {
code++;
}
/* Skip following spaces. */
if (BLI_str_startswith(code, "sampler")) {
/* Move past "uniform". */
code += 7;
/* Skip sampler type suffix. */
while (!ELEM(*code, ' ', '\0')) {
code++;
}
/* Skip following spaces. */
while (*code == ' ') {
code++;
}
if (*code != '\0') {
char sampler_name[64];
code = gpu_str_skip_token(code, sampler_name, sizeof(sampler_name));
int id = GPU_shader_get_uniform(shader, sampler_name);
if (id == -1) {
continue;
}
/* Catch duplicates. */
if (BLI_gset_add(sampler_ids, POINTER_FROM_INT(id))) {
num_samplers++;
}
}
}
}
BLI_gset_free(sampler_ids, NULL);
return num_samplers;
}
static bool gpu_pass_shader_validate(GPUPass *pass, GPUShader *shader)
{
if (shader == NULL) {
return false;
}
/* NOTE: The only drawback of this method is that it will count a sampler
* used in the fragment shader and only declared (but not used) in the vertex
* shader as used by both. But this corner case is not happening for now. */
int vert_samplers_len = count_active_texture_sampler(shader, pass->vertexcode);
int frag_samplers_len = count_active_texture_sampler(shader, pass->fragmentcode);
int total_samplers_len = vert_samplers_len + frag_samplers_len;
/* Validate against opengl limit. */
if ((frag_samplers_len > GPU_max_textures_frag()) ||
(vert_samplers_len > GPU_max_textures_vert())) {
return false;
}
if (pass->geometrycode) {
int geom_samplers_len = count_active_texture_sampler(shader, pass->geometrycode);
total_samplers_len += geom_samplers_len;
if (geom_samplers_len > GPU_max_textures_geom()) {
return false;
}
}
return (total_samplers_len <= GPU_max_textures());
}
bool GPU_pass_compile(GPUPass *pass, const char *shname)
{
bool success = true;
if (!pass->compiled) {
GPUShader *shader = GPU_shader_create(
pass->vertexcode, pass->fragmentcode, pass->geometrycode, NULL, pass->defines, shname);
/* NOTE: Some drivers / gpu allows more active samplers than the opengl limit.
* We need to make sure to count active samplers to avoid undefined behavior. */
if (!gpu_pass_shader_validate(pass, shader)) {
success = false;
if (shader != NULL) {
fprintf(stderr, "GPUShader: error: too many samplers in shader.\n");
GPU_shader_free(shader);
shader = NULL;
}
}
pass->shader = shader;
pass->compiled = true;
}
return success;
}
void GPU_pass_release(GPUPass *pass)
{
BLI_assert(pass->refcount > 0);
pass->refcount--;
}
static void gpu_pass_free(GPUPass *pass)
{
BLI_assert(pass->refcount == 0);
if (pass->shader) {
GPU_shader_free(pass->shader);
}
MEM_SAFE_FREE(pass->fragmentcode);
MEM_SAFE_FREE(pass->geometrycode);
MEM_SAFE_FREE(pass->vertexcode);
MEM_SAFE_FREE(pass->defines);
MEM_freeN(pass);
}
void GPU_pass_cache_garbage_collect(void)
{
static int lasttime = 0;
const int shadercollectrate = 60; /* hardcoded for now. */
int ctime = (int)PIL_check_seconds_timer();
if (ctime < shadercollectrate + lasttime) {
return;
}
lasttime = ctime;
BLI_spin_lock(&pass_cache_spin);
GPUPass *next, **prev_pass = &pass_cache;
for (GPUPass *pass = pass_cache; pass; pass = next) {
next = pass->next;
if (pass->refcount == 0) {
/* Remove from list */
*prev_pass = next;
gpu_pass_free(pass);
}
else {
prev_pass = &pass->next;
}
}
BLI_spin_unlock(&pass_cache_spin);
}
void GPU_pass_cache_init(void)
{
BLI_spin_init(&pass_cache_spin);
}
void GPU_pass_cache_free(void)
{
BLI_spin_lock(&pass_cache_spin);
while (pass_cache) {
GPUPass *next = pass_cache->next;
gpu_pass_free(pass_cache);
pass_cache = next;
}
BLI_spin_unlock(&pass_cache_spin);
BLI_spin_end(&pass_cache_spin);
}
/* Module */
void gpu_codegen_init(void)
{
}
void gpu_codegen_exit(void)
{
BKE_material_defaults_free_gpu();
GPU_shader_free_builtin_shaders();
}