572 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			572 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# ##### BEGIN GPL LICENSE BLOCK #####
 | 
						|
#
 | 
						|
#  This program is free software; you can redistribute it and/or
 | 
						|
#  modify it under the terms of the GNU General Public License
 | 
						|
#  as published by the Free Software Foundation; either version 2
 | 
						|
#  of the License, or (at your option) any later version.
 | 
						|
#
 | 
						|
#  This program is distributed in the hope that it will be useful,
 | 
						|
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
#  GNU General Public License for more details.
 | 
						|
#
 | 
						|
#  You should have received a copy of the GNU General Public License
 | 
						|
#  along with this program; if not, write to the Free Software Foundation,
 | 
						|
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
#
 | 
						|
# ##### END GPL LICENSE BLOCK #####
 | 
						|
 | 
						|
# <pep8-80 compliant>
 | 
						|
 | 
						|
__all__ = (
 | 
						|
    "mesh_linked_uv_islands",
 | 
						|
    "mesh_linked_tessfaces",
 | 
						|
    "edge_face_count_dict",
 | 
						|
    "edge_face_count",
 | 
						|
    "edge_loops_from_tessfaces",
 | 
						|
    "edge_loops_from_edges",
 | 
						|
    "ngon_tessellate",
 | 
						|
    "face_random_points",
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def mesh_linked_uv_islands(mesh):
 | 
						|
    """
 | 
						|
    Splits the mesh into connected polygons, use this for seperating cubes from
 | 
						|
    other mesh elements within 1 mesh datablock.
 | 
						|
 | 
						|
    :arg mesh: the mesh used to group with.
 | 
						|
    :type mesh: :class:`bpy.types.Mesh`
 | 
						|
    :return: lists of lists containing polygon indices
 | 
						|
    :rtype: list
 | 
						|
    """
 | 
						|
    uv_loops = [luv.uv[:] for luv in mesh.uv_layers.active.data]
 | 
						|
    poly_loops = [poly.loop_indices for poly in mesh.polygons]
 | 
						|
    luv_hash = {}
 | 
						|
    luv_hash_get = luv_hash.get
 | 
						|
    luv_hash_ls = [None] * len(uv_loops)
 | 
						|
    for pi, poly_indices in enumerate(poly_loops):
 | 
						|
        for li in poly_indices:
 | 
						|
            uv = uv_loops[li]
 | 
						|
            uv_hub = luv_hash_get(uv)
 | 
						|
            if uv_hub is None:
 | 
						|
                uv_hub = luv_hash[uv] = [pi]
 | 
						|
            else:
 | 
						|
                uv_hub.append(pi)
 | 
						|
            luv_hash_ls[li] = uv_hub
 | 
						|
 | 
						|
    poly_islands = []
 | 
						|
 | 
						|
    # 0 = none, 1 = added, 2 = searched
 | 
						|
    poly_tag = [0] * len(poly_loops)
 | 
						|
 | 
						|
    while True:
 | 
						|
        poly_index = -1
 | 
						|
        for i in range(len(poly_loops)):
 | 
						|
            if poly_tag[i] == 0:
 | 
						|
                poly_index = i
 | 
						|
                break
 | 
						|
 | 
						|
        if poly_index != -1:
 | 
						|
            island = [poly_index]
 | 
						|
            poly_tag[poly_index] = 1
 | 
						|
            poly_islands.append(island)
 | 
						|
        else:
 | 
						|
            break  # we're done
 | 
						|
 | 
						|
        added = True
 | 
						|
        while added:
 | 
						|
            added = False
 | 
						|
            for poly_index in island[:]:
 | 
						|
                if poly_tag[poly_index] == 1:
 | 
						|
                    for li in poly_loops[poly_index]:
 | 
						|
                        for poly_index_shared in luv_hash_ls[li]:
 | 
						|
                            if poly_tag[poly_index_shared] == 0:
 | 
						|
                                added = True
 | 
						|
                                poly_tag[poly_index_shared] = 1
 | 
						|
                                island.append(poly_index_shared)
 | 
						|
                    poly_tag[poly_index] = 2
 | 
						|
 | 
						|
    return poly_islands
 | 
						|
 | 
						|
 | 
						|
def mesh_linked_tessfaces(mesh):
 | 
						|
    """
 | 
						|
    Splits the mesh into connected faces, use this for seperating cubes from
 | 
						|
    other mesh elements within 1 mesh datablock.
 | 
						|
 | 
						|
    :arg mesh: the mesh used to group with.
 | 
						|
    :type mesh: :class:`bpy.types.Mesh`
 | 
						|
    :return: lists of lists containing faces.
 | 
						|
    :rtype: list
 | 
						|
    """
 | 
						|
 | 
						|
    # Build vert face connectivity
 | 
						|
    vert_faces = [[] for i in range(len(mesh.vertices))]
 | 
						|
    for f in mesh.tessfaces:
 | 
						|
        for v in f.vertices:
 | 
						|
            vert_faces[v].append(f)
 | 
						|
 | 
						|
    # sort faces into connectivity groups
 | 
						|
    face_groups = [[f] for f in mesh.tessfaces]
 | 
						|
    # map old, new face location
 | 
						|
    face_mapping = list(range(len(mesh.tessfaces)))
 | 
						|
 | 
						|
    # Now clump faces iteratively
 | 
						|
    ok = True
 | 
						|
    while ok:
 | 
						|
        ok = False
 | 
						|
 | 
						|
        for i, f in enumerate(mesh.tessfaces):
 | 
						|
            mapped_index = face_mapping[f.index]
 | 
						|
            mapped_group = face_groups[mapped_index]
 | 
						|
 | 
						|
            for v in f.vertices:
 | 
						|
                for nxt_f in vert_faces[v]:
 | 
						|
                    if nxt_f != f:
 | 
						|
                        nxt_mapped_index = face_mapping[nxt_f.index]
 | 
						|
 | 
						|
                        # We are not a part of the same group
 | 
						|
                        if mapped_index != nxt_mapped_index:
 | 
						|
                            ok = True
 | 
						|
 | 
						|
                            # Assign mapping to this group so they
 | 
						|
                            # all map to this group
 | 
						|
                            for grp_f in face_groups[nxt_mapped_index]:
 | 
						|
                                face_mapping[grp_f.index] = mapped_index
 | 
						|
 | 
						|
                            # Move faces into this group
 | 
						|
                            mapped_group.extend(face_groups[nxt_mapped_index])
 | 
						|
 | 
						|
                            # remove reference to the list
 | 
						|
                            face_groups[nxt_mapped_index] = None
 | 
						|
 | 
						|
    # return all face groups that are not null
 | 
						|
    # this is all the faces that are connected in their own lists.
 | 
						|
    return [fg for fg in face_groups if fg]
 | 
						|
 | 
						|
 | 
						|
def edge_face_count_dict(mesh):
 | 
						|
    """
 | 
						|
    :return: dict of edge keys with their value set to the number of
 | 
						|
       faces using each edge.
 | 
						|
    :rtype: dict
 | 
						|
    """
 | 
						|
    face_edge_keys = [face.edge_keys for face in mesh.tessfaces]
 | 
						|
    face_edge_count = {}
 | 
						|
    for face_keys in face_edge_keys:
 | 
						|
        for key in face_keys:
 | 
						|
            try:
 | 
						|
                face_edge_count[key] += 1
 | 
						|
            except:
 | 
						|
                face_edge_count[key] = 1
 | 
						|
 | 
						|
    return face_edge_count
 | 
						|
 | 
						|
 | 
						|
def edge_face_count(mesh):
 | 
						|
    """
 | 
						|
    :return: list face users for each item in mesh.edges.
 | 
						|
    :rtype: list
 | 
						|
    """
 | 
						|
    edge_face_count = edge_face_count_dict(mesh)
 | 
						|
    get = dict.get
 | 
						|
    return [get(edge_face_count, ed.key, 0) for ed in mesh.edges]
 | 
						|
 | 
						|
 | 
						|
def edge_loops_from_tessfaces(mesh, tessfaces=None, seams=()):
 | 
						|
    """
 | 
						|
    Edge loops defined by faces
 | 
						|
 | 
						|
    Takes me.tessfaces or a list of faces and returns the edge loops
 | 
						|
    These edge loops are the edges that sit between quads, so they dont touch
 | 
						|
    1 quad, note: not connected will make 2 edge loops,
 | 
						|
    both only containing 2 edges.
 | 
						|
 | 
						|
    return a list of edge key lists
 | 
						|
    [[(0, 1), (4, 8), (3, 8)], ...]
 | 
						|
 | 
						|
    :arg mesh: the mesh used to get edge loops from.
 | 
						|
    :type mesh: :class:`bpy.types.Mesh`
 | 
						|
    :arg tessfaces: optional face list to only use some of the meshes faces.
 | 
						|
    :type tessfaces: :class:`bpy.types.MeshTessFace`, sequence or or NoneType
 | 
						|
    :return: return a list of edge vertex index lists.
 | 
						|
    :rtype: list
 | 
						|
    """
 | 
						|
 | 
						|
    OTHER_INDEX = 2, 3, 0, 1  # opposite face index
 | 
						|
 | 
						|
    if tessfaces is None:
 | 
						|
        tessfaces = mesh.tessfaces
 | 
						|
 | 
						|
    edges = {}
 | 
						|
 | 
						|
    for f in tessfaces:
 | 
						|
        if len(f.vertices) == 4:
 | 
						|
            edge_keys = f.edge_keys
 | 
						|
            for i, edkey in enumerate(f.edge_keys):
 | 
						|
                edges.setdefault(edkey, []).append(edge_keys[OTHER_INDEX[i]])
 | 
						|
 | 
						|
    for edkey in seams:
 | 
						|
        edges[edkey] = []
 | 
						|
 | 
						|
    # Collect edge loops here
 | 
						|
    edge_loops = []
 | 
						|
 | 
						|
    for edkey, ed_adj in edges.items():
 | 
						|
        if 0 < len(ed_adj) < 3:  # 1 or 2
 | 
						|
            # Seek the first edge
 | 
						|
            context_loop = [edkey, ed_adj[0]]
 | 
						|
            edge_loops.append(context_loop)
 | 
						|
            if len(ed_adj) == 2:
 | 
						|
                other_dir = ed_adj[1]
 | 
						|
            else:
 | 
						|
                other_dir = None
 | 
						|
 | 
						|
            ed_adj[:] = []
 | 
						|
 | 
						|
            flipped = False
 | 
						|
 | 
						|
            while 1:
 | 
						|
                # from knowing the last 2, look for the next.
 | 
						|
                ed_adj = edges[context_loop[-1]]
 | 
						|
                if len(ed_adj) != 2:
 | 
						|
                    # the original edge had 2 other edges
 | 
						|
                    if other_dir and flipped == False:
 | 
						|
                        flipped = True  # only flip the list once
 | 
						|
                        context_loop.reverse()
 | 
						|
                        ed_adj[:] = []
 | 
						|
                        context_loop.append(other_dir)  # save 1 look-up
 | 
						|
 | 
						|
                        ed_adj = edges[context_loop[-1]]
 | 
						|
                        if len(ed_adj) != 2:
 | 
						|
                            ed_adj[:] = []
 | 
						|
                            break
 | 
						|
                    else:
 | 
						|
                        ed_adj[:] = []
 | 
						|
                        break
 | 
						|
 | 
						|
                i = ed_adj.index(context_loop[-2])
 | 
						|
                context_loop.append(ed_adj[not  i])
 | 
						|
 | 
						|
                # Dont look at this again
 | 
						|
                ed_adj[:] = []
 | 
						|
 | 
						|
    return edge_loops
 | 
						|
 | 
						|
 | 
						|
def edge_loops_from_edges(mesh, edges=None):
 | 
						|
    """
 | 
						|
    Edge loops defined by edges
 | 
						|
 | 
						|
    Takes me.edges or a list of edges and returns the edge loops
 | 
						|
 | 
						|
    return a list of vertex indices.
 | 
						|
    [ [1, 6, 7, 2], ...]
 | 
						|
 | 
						|
    closed loops have matching start and end values.
 | 
						|
    """
 | 
						|
    line_polys = []
 | 
						|
 | 
						|
    # Get edges not used by a face
 | 
						|
    if edges is None:
 | 
						|
        edges = mesh.edges
 | 
						|
 | 
						|
    if not hasattr(edges, "pop"):
 | 
						|
        edges = edges[:]
 | 
						|
 | 
						|
    while edges:
 | 
						|
        current_edge = edges.pop()
 | 
						|
        vert_end, vert_start = current_edge.vertices[:]
 | 
						|
        line_poly = [vert_start, vert_end]
 | 
						|
 | 
						|
        ok = True
 | 
						|
        while ok:
 | 
						|
            ok = False
 | 
						|
            #for i, ed in enumerate(edges):
 | 
						|
            i = len(edges)
 | 
						|
            while i:
 | 
						|
                i -= 1
 | 
						|
                ed = edges[i]
 | 
						|
                v1, v2 = ed.vertices
 | 
						|
                if v1 == vert_end:
 | 
						|
                    line_poly.append(v2)
 | 
						|
                    vert_end = line_poly[-1]
 | 
						|
                    ok = 1
 | 
						|
                    del edges[i]
 | 
						|
                    # break
 | 
						|
                elif v2 == vert_end:
 | 
						|
                    line_poly.append(v1)
 | 
						|
                    vert_end = line_poly[-1]
 | 
						|
                    ok = 1
 | 
						|
                    del edges[i]
 | 
						|
                    #break
 | 
						|
                elif v1 == vert_start:
 | 
						|
                    line_poly.insert(0, v2)
 | 
						|
                    vert_start = line_poly[0]
 | 
						|
                    ok = 1
 | 
						|
                    del edges[i]
 | 
						|
                    # break
 | 
						|
                elif v2 == vert_start:
 | 
						|
                    line_poly.insert(0, v1)
 | 
						|
                    vert_start = line_poly[0]
 | 
						|
                    ok = 1
 | 
						|
                    del edges[i]
 | 
						|
                    #break
 | 
						|
        line_polys.append(line_poly)
 | 
						|
 | 
						|
    return line_polys
 | 
						|
 | 
						|
 | 
						|
def ngon_tessellate(from_data, indices, fix_loops=True):
 | 
						|
    """
 | 
						|
    Takes a polyline of indices (fgon) and returns a list of face
 | 
						|
    indicie lists. Designed to be used for importers that need indices for an
 | 
						|
    fgon to create from existing verts.
 | 
						|
 | 
						|
    from_data: either a mesh, or a list/tuple of vectors.
 | 
						|
    indices: a list of indices to use this list is the ordered closed polyline
 | 
						|
       to fill, and can be a subset of the data given.
 | 
						|
    fix_loops: If this is enabled polylines that use loops to make multiple
 | 
						|
       polylines are delt with correctly.
 | 
						|
    """
 | 
						|
 | 
						|
    from mathutils.geometry import tessellate_polygon
 | 
						|
    from mathutils import Vector
 | 
						|
    vector_to_tuple = Vector.to_tuple
 | 
						|
 | 
						|
    if not indices:
 | 
						|
        return []
 | 
						|
 | 
						|
    def mlen(co):
 | 
						|
        # manhatten length of a vector, faster then length
 | 
						|
        return abs(co[0]) + abs(co[1]) + abs(co[2])
 | 
						|
 | 
						|
    def vert_treplet(v, i):
 | 
						|
        return v, vector_to_tuple(v, 6), i, mlen(v)
 | 
						|
 | 
						|
    def ed_key_mlen(v1, v2):
 | 
						|
        if v1[3] > v2[3]:
 | 
						|
            return v2[1], v1[1]
 | 
						|
        else:
 | 
						|
            return v1[1], v2[1]
 | 
						|
 | 
						|
    if not fix_loops:
 | 
						|
        """
 | 
						|
        Normal single concave loop filling
 | 
						|
        """
 | 
						|
        if type(from_data) in {tuple, list}:
 | 
						|
            verts = [Vector(from_data[i]) for ii, i in enumerate(indices)]
 | 
						|
        else:
 | 
						|
            verts = [from_data.vertices[i].co for ii, i in enumerate(indices)]
 | 
						|
 | 
						|
        # same as reversed(range(1, len(verts))):
 | 
						|
        for i in range(len(verts) - 1, 0, -1):
 | 
						|
            if verts[i][1] == verts[i - 1][0]:
 | 
						|
                verts.pop(i - 1)
 | 
						|
 | 
						|
        fill = tessellate_polygon([verts])
 | 
						|
 | 
						|
    else:
 | 
						|
        """
 | 
						|
        Seperate this loop into multiple loops be finding edges that are
 | 
						|
        used twice. This is used by lightwave LWO files a lot
 | 
						|
        """
 | 
						|
 | 
						|
        if type(from_data) in {tuple, list}:
 | 
						|
            verts = [vert_treplet(Vector(from_data[i]), ii)
 | 
						|
                     for ii, i in enumerate(indices)]
 | 
						|
        else:
 | 
						|
            verts = [vert_treplet(from_data.vertices[i].co, ii)
 | 
						|
                     for ii, i in enumerate(indices)]
 | 
						|
 | 
						|
        edges = [(i, i - 1) for i in range(len(verts))]
 | 
						|
        if edges:
 | 
						|
            edges[0] = (0, len(verts) - 1)
 | 
						|
 | 
						|
        if not verts:
 | 
						|
            return []
 | 
						|
 | 
						|
        edges_used = set()
 | 
						|
        edges_doubles = set()
 | 
						|
        # We need to check if any edges are used twice location based.
 | 
						|
        for ed in edges:
 | 
						|
            edkey = ed_key_mlen(verts[ed[0]], verts[ed[1]])
 | 
						|
            if edkey in edges_used:
 | 
						|
                edges_doubles.add(edkey)
 | 
						|
            else:
 | 
						|
                edges_used.add(edkey)
 | 
						|
 | 
						|
        # Store a list of unconnected loop segments split by double edges.
 | 
						|
        # will join later
 | 
						|
        loop_segments = []
 | 
						|
 | 
						|
        v_prev = verts[0]
 | 
						|
        context_loop = [v_prev]
 | 
						|
        loop_segments = [context_loop]
 | 
						|
 | 
						|
        for v in verts:
 | 
						|
            if v != v_prev:
 | 
						|
                # Are we crossing an edge we removed?
 | 
						|
                if ed_key_mlen(v, v_prev) in edges_doubles:
 | 
						|
                    context_loop = [v]
 | 
						|
                    loop_segments.append(context_loop)
 | 
						|
                else:
 | 
						|
                    if context_loop and context_loop[-1][1] == v[1]:
 | 
						|
                        #raise "as"
 | 
						|
                        pass
 | 
						|
                    else:
 | 
						|
                        context_loop.append(v)
 | 
						|
 | 
						|
                v_prev = v
 | 
						|
        # Now join loop segments
 | 
						|
 | 
						|
        def join_seg(s1, s2):
 | 
						|
            if s2[-1][1] == s1[0][1]:
 | 
						|
                s1, s2 = s2, s1
 | 
						|
            elif s1[-1][1] == s2[0][1]:
 | 
						|
                pass
 | 
						|
            else:
 | 
						|
                return False
 | 
						|
 | 
						|
            # If were stuill here s1 and s2 are 2 segments in the same polyline
 | 
						|
            s1.pop()  # remove the last vert from s1
 | 
						|
            s1.extend(s2)  # add segment 2 to segment 1
 | 
						|
 | 
						|
            if s1[0][1] == s1[-1][1]:  # remove endpoints double
 | 
						|
                s1.pop()
 | 
						|
 | 
						|
            s2[:] = []  # Empty this segment s2 so we don't use it again.
 | 
						|
            return True
 | 
						|
 | 
						|
        joining_segments = True
 | 
						|
        while joining_segments:
 | 
						|
            joining_segments = False
 | 
						|
            segcount = len(loop_segments)
 | 
						|
 | 
						|
            for j in range(segcount - 1, -1, -1):  # reversed(range(segcount)):
 | 
						|
                seg_j = loop_segments[j]
 | 
						|
                if seg_j:
 | 
						|
                    for k in range(j - 1, -1, -1):  # reversed(range(j)):
 | 
						|
                        if not seg_j:
 | 
						|
                            break
 | 
						|
                        seg_k = loop_segments[k]
 | 
						|
 | 
						|
                        if seg_k and join_seg(seg_j, seg_k):
 | 
						|
                            joining_segments = True
 | 
						|
 | 
						|
        loop_list = loop_segments
 | 
						|
 | 
						|
        for verts in loop_list:
 | 
						|
            while verts and verts[0][1] == verts[-1][1]:
 | 
						|
                verts.pop()
 | 
						|
 | 
						|
        loop_list = [verts for verts in loop_list if len(verts) > 2]
 | 
						|
        # DONE DEALING WITH LOOP FIXING
 | 
						|
 | 
						|
        # vert mapping
 | 
						|
        vert_map = [None] * len(indices)
 | 
						|
        ii = 0
 | 
						|
        for verts in loop_list:
 | 
						|
            if len(verts) > 2:
 | 
						|
                for i, vert in enumerate(verts):
 | 
						|
                    vert_map[i + ii] = vert[2]
 | 
						|
                ii += len(verts)
 | 
						|
 | 
						|
        fill = tessellate_polygon([[v[0] for v in loop] for loop in loop_list])
 | 
						|
        #draw_loops(loop_list)
 | 
						|
        #raise Exception("done loop")
 | 
						|
        # map to original indices
 | 
						|
        fill = [[vert_map[i] for i in reversed(f)] for f in fill]
 | 
						|
 | 
						|
    if not fill:
 | 
						|
        print('Warning Cannot scanfill, fallback on a triangle fan.')
 | 
						|
        fill = [[0, i - 1, i] for i in range(2, len(indices))]
 | 
						|
    else:
 | 
						|
        # Use real scanfill.
 | 
						|
        # See if its flipped the wrong way.
 | 
						|
        flip = None
 | 
						|
        for fi in fill:
 | 
						|
            if flip is not None:
 | 
						|
                break
 | 
						|
            for i, vi in enumerate(fi):
 | 
						|
                if vi == 0 and fi[i - 1] == 1:
 | 
						|
                    flip = False
 | 
						|
                    break
 | 
						|
                elif vi == 1 and fi[i - 1] == 0:
 | 
						|
                    flip = True
 | 
						|
                    break
 | 
						|
 | 
						|
        if not flip:
 | 
						|
            for i, fi in enumerate(fill):
 | 
						|
                fill[i] = tuple([ii for ii in reversed(fi)])
 | 
						|
 | 
						|
    return fill
 | 
						|
 | 
						|
 | 
						|
def face_random_points(num_points, tessfaces):
 | 
						|
    """
 | 
						|
    Generates a list of random points over mesh tessfaces.
 | 
						|
 | 
						|
    :arg num_points: the number of random points to generate on each face.
 | 
						|
    :type int:
 | 
						|
    :arg tessfaces: list of the faces to generate points on.
 | 
						|
    :type tessfaces: :class:`bpy.types.MeshTessFace`, sequence
 | 
						|
    :return: list of random points over all faces.
 | 
						|
    :rtype: list
 | 
						|
    """
 | 
						|
 | 
						|
    from random import random
 | 
						|
    from mathutils.geometry import area_tri
 | 
						|
 | 
						|
    # Split all quads into 2 tris, tris remain unchanged
 | 
						|
    tri_faces = []
 | 
						|
    for f in tessfaces:
 | 
						|
        tris = []
 | 
						|
        verts = f.id_data.vertices
 | 
						|
        fv = f.vertices[:]
 | 
						|
        tris.append((verts[fv[0]].co,
 | 
						|
                     verts[fv[1]].co,
 | 
						|
                     verts[fv[2]].co,
 | 
						|
                    ))
 | 
						|
        if len(fv) == 4:
 | 
						|
            tris.append((verts[fv[0]].co,
 | 
						|
                         verts[fv[3]].co,
 | 
						|
                         verts[fv[2]].co,
 | 
						|
                        ))
 | 
						|
        tri_faces.append(tris)
 | 
						|
 | 
						|
    # For each face, generate the required number of random points
 | 
						|
    sampled_points = [None] * (num_points * len(tessfaces))
 | 
						|
    for i, tf in enumerate(tri_faces):
 | 
						|
        for k in range(num_points):
 | 
						|
            # If this is a quad, we need to weight its 2 tris by their area
 | 
						|
            if len(tf) != 1:
 | 
						|
                area1 = area_tri(*tf[0])
 | 
						|
                area2 = area_tri(*tf[1])
 | 
						|
                area_tot = area1 + area2
 | 
						|
 | 
						|
                area1 = area1 / area_tot
 | 
						|
                area2 = area2 / area_tot
 | 
						|
 | 
						|
                vecs = tf[0 if (random() < area1) else 1]
 | 
						|
            else:
 | 
						|
                vecs = tf[0]
 | 
						|
 | 
						|
            u1 = random()
 | 
						|
            u2 = random()
 | 
						|
            u_tot = u1 + u2
 | 
						|
 | 
						|
            if u_tot > 1:
 | 
						|
                u1 = 1.0 - u1
 | 
						|
                u2 = 1.0 - u2
 | 
						|
 | 
						|
            side1 = vecs[1] - vecs[0]
 | 
						|
            side2 = vecs[2] - vecs[0]
 | 
						|
 | 
						|
            p = vecs[0] + u1 * side1 + u2 * side2
 | 
						|
 | 
						|
            sampled_points[num_points * i + k] = p
 | 
						|
 | 
						|
    return sampled_points
 |