This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/initrender.c

335 lines
7.8 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup render
*/
/* Global includes */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_ghash.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "DNA_camera_types.h"
#include "BKE_camera.h"
/* this module */
#include "pipeline.h"
#include "render_types.h"
/* Own includes */
#include "initrender.h"
/* ****************** MASKS and LUTS **************** */
static float filt_quadratic(float x)
{
if (x < 0.0f) {
x = -x;
}
if (x < 0.5f) {
return 0.75f - (x * x);
}
if (x < 1.5f) {
return 0.50f * (x - 1.5f) * (x - 1.5f);
}
return 0.0f;
}
static float filt_cubic(float x)
{
float x2 = x * x;
if (x < 0.0f) {
x = -x;
}
if (x < 1.0f) {
return 0.5f * x * x2 - x2 + 2.0f / 3.0f;
}
if (x < 2.0f) {
return (2.0f - x) * (2.0f - x) * (2.0f - x) / 6.0f;
}
return 0.0f;
}
static float filt_catrom(float x)
{
float x2 = x * x;
if (x < 0.0f) {
x = -x;
}
if (x < 1.0f) {
return 1.5f * x2 * x - 2.5f * x2 + 1.0f;
}
if (x < 2.0f) {
return -0.5f * x2 * x + 2.5f * x2 - 4.0f * x + 2.0f;
}
return 0.0f;
}
static float filt_mitchell(float x) /* Mitchell & Netravali's two-param cubic */
{
float b = 1.0f / 3.0f, c = 1.0f / 3.0f;
float p0 = (6.0f - 2.0f * b) / 6.0f;
float p2 = (-18.0f + 12.0f * b + 6.0f * c) / 6.0f;
float p3 = (12.0f - 9.0f * b - 6.0f * c) / 6.0f;
float q0 = (8.0f * b + 24.0f * c) / 6.0f;
float q1 = (-12.0f * b - 48.0f * c) / 6.0f;
float q2 = (6.0f * b + 30.0f * c) / 6.0f;
float q3 = (-b - 6.0f * c) / 6.0f;
if (x < -2.0f) {
return 0.0f;
}
if (x < -1.0f) {
return (q0 - x * (q1 - x * (q2 - x * q3)));
}
if (x < 0.0f) {
return (p0 + x * x * (p2 - x * p3));
}
if (x < 1.0f) {
return (p0 + x * x * (p2 + x * p3));
}
if (x < 2.0f) {
return (q0 + x * (q1 + x * (q2 + x * q3)));
}
return 0.0f;
}
/* x ranges from -1 to 1 */
float RE_filter_value(int type, float x)
{
float gaussfac = 1.6f;
x = fabsf(x);
switch (type) {
case R_FILTER_BOX:
if (x > 1.0f) {
return 0.0f;
}
return 1.0f;
case R_FILTER_TENT:
if (x > 1.0f) {
return 0.0f;
}
return 1.0f - x;
case R_FILTER_GAUSS: {
const float two_gaussfac2 = 2.0f * gaussfac * gaussfac;
x *= 3.0f * gaussfac;
return 1.0f / sqrtf((float)M_PI * two_gaussfac2) * expf(-x * x / two_gaussfac2);
}
case R_FILTER_MITCH:
return filt_mitchell(x * gaussfac);
case R_FILTER_QUAD:
return filt_quadratic(x * gaussfac);
case R_FILTER_CUBIC:
return filt_cubic(x * gaussfac);
case R_FILTER_CATROM:
return filt_catrom(x * gaussfac);
}
return 0.0f;
}
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
struct Object *RE_GetCamera(Render *re)
{
Object *camera = re->camera_override ? re->camera_override : re->scene->camera;
return BKE_camera_multiview_render(re->scene, camera, re->viewname);
}
void RE_SetOverrideCamera(Render *re, Object *cam_ob)
{
re->camera_override = cam_ob;
}
/**
* Per render, there's one persistent view-plane. Parts will set their own view-planes.
*
* \note call this after #RE_InitState().
*/
void RE_SetCamera(Render *re, Object *cam_ob)
{
CameraParams params;
/* setup parameters */
BKE_camera_params_init(&params);
BKE_camera_params_from_object(&params, cam_ob);
BKE_camera_multiview_params(&re->r, &params, cam_ob, re->viewname);
/* compute matrix, viewplane, .. */
BKE_camera_params_compute_viewplane(&params, re->winx, re->winy, re->r.xasp, re->r.yasp);
BKE_camera_params_compute_matrix(&params);
/* extract results */
copy_m4_m4(re->winmat, params.winmat);
re->clip_start = params.clip_start;
re->clip_end = params.clip_end;
re->viewplane = params.viewplane;
}
void RE_GetCameraWindow(struct Render *re, struct Object *camera, float r_winmat[4][4])
{
RE_SetCamera(re, camera);
copy_m4_m4(r_winmat, re->winmat);
}
/* Must be called after RE_GetCameraWindow(), does not change re->winmat. */
void RE_GetCameraWindowWithOverscan(struct Render *re, float overscan, float r_winmat[4][4])
{
CameraParams params;
params.is_ortho = re->winmat[3][3] != 0.0f;
params.clip_start = re->clip_start;
params.clip_end = re->clip_end;
params.viewplane = re->viewplane;
overscan *= max_ff(BLI_rctf_size_x(&params.viewplane), BLI_rctf_size_y(&params.viewplane));
params.viewplane.xmin -= overscan;
params.viewplane.xmax += overscan;
params.viewplane.ymin -= overscan;
params.viewplane.ymax += overscan;
BKE_camera_params_compute_matrix(&params);
copy_m4_m4(r_winmat, params.winmat);
}
void RE_GetCameraModelMatrix(Render *re, struct Object *camera, float r_modelmat[4][4])
{
BKE_camera_multiview_model_matrix(&re->r, camera, re->viewname, r_modelmat);
}
void RE_GetViewPlane(Render *re, rctf *r_viewplane, rcti *r_disprect)
{
*r_viewplane = re->viewplane;
/* make disprect zero when no border render, is needed to detect changes in 3d view render */
if (re->r.mode & R_BORDER) {
*r_disprect = re->disprect;
}
else {
BLI_rcti_init(r_disprect, 0, 0, 0, 0);
}
}
/* ~~~~~~~~~~~~~~~~ part (tile) calculus ~~~~~~~~~~~~~~~~~~~~~~ */
void RE_parts_free(Render *re)
{
if (re->parts) {
BLI_ghash_free(re->parts, NULL, MEM_freeN);
re->parts = NULL;
}
}
void RE_parts_clamp(Render *re)
{
/* part size */
re->partx = max_ii(1, min_ii(re->r.tilex, re->rectx));
re->party = max_ii(1, min_ii(re->r.tiley, re->recty));
}
void RE_parts_init(Render *re)
{
int nr, xd, yd, partx, party, xparts, yparts;
int xminb, xmaxb, yminb, ymaxb;
RE_parts_free(re);
re->parts = BLI_ghash_new(
BLI_ghashutil_inthash_v4_p, BLI_ghashutil_inthash_v4_cmp, "render parts");
/* just for readable code.. */
xminb = re->disprect.xmin;
yminb = re->disprect.ymin;
xmaxb = re->disprect.xmax;
ymaxb = re->disprect.ymax;
RE_parts_clamp(re);
partx = re->partx;
party = re->party;
/* part count */
xparts = (re->rectx + partx - 1) / partx;
yparts = (re->recty + party - 1) / party;
for (nr = 0; nr < xparts * yparts; nr++) {
rcti disprect;
int rectx, recty;
xd = (nr % xparts);
yd = (nr - xd) / xparts;
disprect.xmin = xminb + xd * partx;
disprect.ymin = yminb + yd * party;
/* ensure we cover the entire picture, so last parts go to end */
if (xd < xparts - 1) {
disprect.xmax = disprect.xmin + partx;
if (disprect.xmax > xmaxb) {
disprect.xmax = xmaxb;
}
}
else {
disprect.xmax = xmaxb;
}
if (yd < yparts - 1) {
disprect.ymax = disprect.ymin + party;
if (disprect.ymax > ymaxb) {
disprect.ymax = ymaxb;
}
}
else {
disprect.ymax = ymaxb;
}
rectx = BLI_rcti_size_x(&disprect);
recty = BLI_rcti_size_y(&disprect);
/* so, now can we add this part? */
if (rectx > 0 && recty > 0) {
RenderPart *pa = MEM_callocN(sizeof(RenderPart), "new part");
pa->disprect = disprect;
pa->rectx = rectx;
pa->recty = recty;
BLI_ghash_insert(re->parts, &pa->disprect, pa);
}
}
}