This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/blender_interface/BlenderFileLoader.cpp
Hans Goudey 2a4323c2f5 Mesh: Move edges to a generic attribute
Implements #95966, as the final step of #95965.

This commit changes the storage of mesh edge vertex indices from the
`MEdge` type to the generic `int2` attribute type. This follows the
general design for geometry and the attribute system, where the data
storage type and the usage semantics are separated.

The main benefit of the change is reduced memory usage-- the
requirements of storing mesh edges is reduced by 1/3. For example,
this saves 8MB on a 1 million vertex grid. This also gives performance
benefits to any memory-bound mesh processing algorithm that uses edges.

Another benefit is that all of the edge's vertex indices are
contiguous. In a few cases, it's helpful to process all of them as
`Span<int>` rather than `Span<int2>`. Similarly, the type is more
likely to match a generic format used by a library, or code that
shouldn't know about specific Blender `Mesh` types.

Various Notes:
- The `.edge_verts` name is used to reflect a mapping between domains,
  similar to `.corner_verts`, etc. The period means that it the data
  shouldn't change arbitrarily by the user or procedural operations.
- `edge[0]` is now used instead of `edge.v1`
- Signed integers are used instead of unsigned to reduce the mixing
  of signed-ness, which can be error prone.
- All of the previously used core mesh data types (`MVert`, `MEdge`,
  `MLoop`, `MPoly` are now deprecated. Only generic types are used).
- The `vec2i` DNA type is used in the few C files where necessary.

Pull Request: blender/blender#106638
2023-04-17 13:47:41 +02:00

808 lines
23 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup freestyle
*/
#include "BlenderFileLoader.h"
#include "BLI_utildefines.h"
#include "BKE_attribute.hh"
#include "BKE_global.h"
#include "BKE_mesh.hh"
#include "BKE_object.h"
#include <sstream>
using blender::float3;
using blender::Span;
namespace Freestyle {
BlenderFileLoader::BlenderFileLoader(Render *re, ViewLayer *view_layer, Depsgraph *depsgraph)
{
_re = re;
_depsgraph = depsgraph;
_Scene = nullptr;
_numFacesRead = 0;
#if 0
_minEdgeSize = DBL_MAX;
#endif
_smooth = (view_layer->freestyle_config.flags & FREESTYLE_FACE_SMOOTHNESS_FLAG) != 0;
_pRenderMonitor = nullptr;
}
BlenderFileLoader::~BlenderFileLoader()
{
_Scene = nullptr;
}
NodeGroup *BlenderFileLoader::Load()
{
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "\n=== Importing triangular meshes into Blender ===" << endl;
}
// creation of the scene root node
_Scene = new NodeGroup;
if (_re->clip_start < 0.0f) {
// Adjust clipping start/end and set up a Z offset when the viewport preview
// is used with the orthographic view. In this case, _re->clip_start is negative,
// while Freestyle assumes that imported mesh data are in the camera coordinate
// system with the view point located at origin [bug #36009].
_z_near = -0.001f;
_z_offset = _re->clip_start + _z_near;
_z_far = -_re->clip_end + _z_offset;
}
else {
_z_near = -_re->clip_start;
_z_far = -_re->clip_end;
_z_offset = 0.0f;
}
int id = 0;
const eEvaluationMode eval_mode = DEG_get_mode(_depsgraph);
DEGObjectIterSettings deg_iter_settings{};
deg_iter_settings.depsgraph = _depsgraph;
deg_iter_settings.flags = DEG_ITER_OBJECT_FLAG_LINKED_DIRECTLY |
DEG_ITER_OBJECT_FLAG_LINKED_VIA_SET | DEG_ITER_OBJECT_FLAG_VISIBLE |
DEG_ITER_OBJECT_FLAG_DUPLI;
DEG_OBJECT_ITER_BEGIN (&deg_iter_settings, ob) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
if ((ob->base_flag & (BASE_HOLDOUT | BASE_INDIRECT_ONLY)) ||
(ob->visibility_flag & OB_HOLDOUT)) {
continue;
}
if (!(BKE_object_visibility(ob, eval_mode) & OB_VISIBLE_SELF)) {
continue;
}
/* Evaluated metaballs will appear as mesh objects in the iterator. */
if (ob->type == OB_MBALL) {
continue;
}
Mesh *mesh = BKE_object_to_mesh(nullptr, ob, false);
if (mesh) {
insertShapeNode(ob, mesh, ++id);
BKE_object_to_mesh_clear(ob);
}
}
DEG_OBJECT_ITER_END;
// Return the built scene.
return _Scene;
}
#define CLIPPED_BY_NEAR -1
#define NOT_CLIPPED 0
#define CLIPPED_BY_FAR 1
// check if each vertex of a triangle (V1, V2, V3) is clipped by the near/far plane
// and calculate the number of triangles to be generated by clipping
int BlenderFileLoader::countClippedFaces(float v1[3], float v2[3], float v3[3], int clip[3])
{
float *v[3];
int numClipped, sum, numTris = 0;
v[0] = v1;
v[1] = v2;
v[2] = v3;
numClipped = sum = 0;
for (int i = 0; i < 3; i++) {
if (v[i][2] > _z_near) {
clip[i] = CLIPPED_BY_NEAR;
numClipped++;
}
else if (v[i][2] < _z_far) {
clip[i] = CLIPPED_BY_FAR;
numClipped++;
}
else {
clip[i] = NOT_CLIPPED;
}
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
printf("%d %s\n",
i,
(clip[i] == NOT_CLIPPED) ? "not" : (clip[i] == CLIPPED_BY_NEAR) ? "near" : "far");
}
#endif
sum += clip[i];
}
switch (numClipped) {
case 0:
numTris = 1; // triangle
break;
case 1:
numTris = 2; // tetragon
break;
case 2:
if (sum == 0) {
numTris = 3; // pentagon
}
else {
numTris = 1; // triangle
}
break;
case 3:
if (ELEM(sum, 3, -3)) {
numTris = 0;
}
else {
numTris = 2; // tetragon
}
break;
}
return numTris;
}
// find the intersection point C between the line segment from V1 to V2 and
// a clipping plane at depth Z (i.e., the Z component of C is known, while
// the X and Y components are unknown).
void BlenderFileLoader::clipLine(float v1[3], float v2[3], float c[3], float z)
{
// Order v1 and v2 by Z values to make sure that clipLine(P, Q, c, z)
// and clipLine(Q, P, c, z) gives exactly the same numerical result.
float *p, *q;
if (v1[2] < v2[2]) {
p = v1;
q = v2;
}
else {
p = v2;
q = v1;
}
double d[3];
for (int i = 0; i < 3; i++) {
d[i] = q[i] - p[i];
}
double t = (z - p[2]) / d[2];
c[0] = p[0] + t * d[0];
c[1] = p[1] + t * d[1];
c[2] = z;
}
// clip the triangle (V1, V2, V3) by the near and far clipping plane and
// obtain a set of vertices after the clipping. The number of vertices
// is at most 5.
void BlenderFileLoader::clipTriangle(int numTris,
float triCoords[][3],
float v1[3],
float v2[3],
float v3[3],
float triNormals[][3],
float n1[3],
float n2[3],
float n3[3],
bool edgeMarks[5],
bool em1,
bool em2,
bool em3,
const int clip[3])
{
float *v[3], *n[3];
bool em[3];
int i, j, k;
v[0] = v1;
n[0] = n1;
v[1] = v2;
n[1] = n2;
v[2] = v3;
n[2] = n3;
em[0] = em1; /* edge mark of the edge between v1 and v2 */
em[1] = em2; /* edge mark of the edge between v2 and v3 */
em[2] = em3; /* edge mark of the edge between v3 and v1 */
k = 0;
for (i = 0; i < 3; i++) {
j = (i + 1) % 3;
if (clip[i] == NOT_CLIPPED) {
copy_v3_v3(triCoords[k], v[i]);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
if (clip[j] != NOT_CLIPPED) {
clipLine(v[i], v[j], triCoords[k], (clip[j] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[j]);
edgeMarks[k] = false;
k++;
}
}
else if (clip[i] != clip[j]) {
if (clip[j] == NOT_CLIPPED) {
clipLine(v[i], v[j], triCoords[k], (clip[i] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
}
else {
clipLine(v[i], v[j], triCoords[k], (clip[i] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[i]);
edgeMarks[k] = em[i];
k++;
clipLine(v[i], v[j], triCoords[k], (clip[j] == CLIPPED_BY_NEAR) ? _z_near : _z_far);
copy_v3_v3(triNormals[k], n[j]);
edgeMarks[k] = false;
k++;
}
}
}
BLI_assert(k == 2 + numTris);
(void)numTris; /* Ignored in release builds. */
}
void BlenderFileLoader::addTriangle(struct LoaderState *ls,
float v1[3],
float v2[3],
float v3[3],
float n1[3],
float n2[3],
float n3[3],
bool fm,
bool em1,
bool em2,
bool em3)
{
float *fv[3], *fn[3];
#if 0
float len;
#endif
uint i, j;
IndexedFaceSet::FaceEdgeMark marks = 0;
// initialize the bounding box by the first vertex
if (ls->currentIndex == 0) {
copy_v3_v3(ls->minBBox, v1);
copy_v3_v3(ls->maxBBox, v1);
}
fv[0] = v1;
fn[0] = n1;
fv[1] = v2;
fn[1] = n2;
fv[2] = v3;
fn[2] = n3;
for (i = 0; i < 3; i++) {
copy_v3_v3(ls->pv, fv[i]);
copy_v3_v3(ls->pn, fn[i]);
// update the bounding box
for (j = 0; j < 3; j++) {
if (ls->minBBox[j] > ls->pv[j]) {
ls->minBBox[j] = ls->pv[j];
}
if (ls->maxBBox[j] < ls->pv[j]) {
ls->maxBBox[j] = ls->pv[j];
}
}
#if 0
len = len_v3v3(fv[i], fv[(i + 1) % 3]);
if (_minEdgeSize > len) {
_minEdgeSize = len;
}
#endif
*ls->pvi = ls->currentIndex;
*ls->pni = ls->currentIndex;
*ls->pmi = ls->currentMIndex;
ls->currentIndex += 3;
ls->pv += 3;
ls->pn += 3;
ls->pvi++;
ls->pni++;
ls->pmi++;
}
if (fm) {
marks |= IndexedFaceSet::FACE_MARK;
}
if (em1) {
marks |= IndexedFaceSet::EDGE_MARK_V1V2;
}
if (em2) {
marks |= IndexedFaceSet::EDGE_MARK_V2V3;
}
if (em3) {
marks |= IndexedFaceSet::EDGE_MARK_V3V1;
}
*(ls->pm++) = marks;
}
// With A, B and P indicating the three vertices of a given triangle, returns:
// 1 if points A and B are in the same position in the 3D space;
// 2 if the distance between point P and line segment AB is zero; and
// zero otherwise.
int BlenderFileLoader::testDegenerateTriangle(float v1[3], float v2[3], float v3[3])
{
const float eps = 1.0e-6;
const float eps_sq = eps * eps;
#if 0
float area = area_tri_v3(v1, v2, v3);
bool verbose = (area < 1.0e-6);
#endif
if (equals_v3v3(v1, v2) || equals_v3v3(v2, v3) || equals_v3v3(v1, v3)) {
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 1\n");
}
#endif
return 1;
}
if (dist_squared_to_line_segment_v3(v1, v2, v3) < eps_sq ||
dist_squared_to_line_segment_v3(v2, v1, v3) < eps_sq ||
dist_squared_to_line_segment_v3(v3, v1, v2) < eps_sq) {
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 2\n");
}
#endif
return 2;
}
#if 0
if (verbose && G.debug & G_DEBUG_FREESTYLE) {
printf("BlenderFileLoader::testDegenerateTriangle = 0\n");
}
#endif
return 0;
}
static bool testEdgeMark(Mesh *me, const FreestyleEdge *fed, const MLoopTri *lt, int i)
{
const Span<blender::int2> edges = me->edges();
const Span<int> corner_verts = me->corner_verts();
const Span<int> corner_edges = me->corner_edges();
const int corner = lt->tri[i];
const int corner_next = lt->tri[(i + 1) % 3];
const blender::int2 &edge = edges[corner_edges[corner]];
if (!ELEM(corner_verts[corner_next], edge[0], edge[1])) {
/* Not an edge in the original mesh before triangulation. */
return false;
}
return (fed[corner_edges[corner]].flag & FREESTYLE_EDGE_MARK) != 0;
}
void BlenderFileLoader::insertShapeNode(Object *ob, Mesh *me, int id)
{
using namespace blender;
char *name = ob->id.name + 2;
const Span<float3> vert_positions = me->vert_positions();
const OffsetIndices mesh_polys = me->polys();
const Span<int> corner_verts = me->corner_verts();
// Compute loop triangles
int tottri = poly_to_tri_count(me->totpoly, me->totloop);
MLoopTri *mlooptri = (MLoopTri *)MEM_malloc_arrayN(tottri, sizeof(*mlooptri), __func__);
blender::bke::mesh::looptris_calc(vert_positions, mesh_polys, corner_verts, {mlooptri, tottri});
// Compute loop normals
BKE_mesh_calc_normals_split(me);
const float(*lnors)[3] = nullptr;
if (CustomData_has_layer(&me->ldata, CD_NORMAL)) {
lnors = (const float(*)[3])CustomData_get_layer(&me->ldata, CD_NORMAL);
}
// Get other mesh data
const FreestyleEdge *fed = (const FreestyleEdge *)CustomData_get_layer(&me->edata,
CD_FREESTYLE_EDGE);
const FreestyleFace *ffa = (const FreestyleFace *)CustomData_get_layer(&me->pdata,
CD_FREESTYLE_FACE);
// Compute view matrix
Object *ob_camera_eval = DEG_get_evaluated_object(_depsgraph, RE_GetCamera(_re));
float viewinv[4][4], viewmat[4][4];
RE_GetCameraModelMatrix(_re, ob_camera_eval, viewinv);
invert_m4_m4(viewmat, viewinv);
// Compute matrix including camera transform
float obmat[4][4], nmat[4][4];
mul_m4_m4m4(obmat, viewmat, ob->object_to_world);
invert_m4_m4(nmat, obmat);
transpose_m4(nmat);
// We count the number of triangles after the clipping by the near and far view
// planes is applied (NOTE: mesh vertices are in the camera coordinate system).
uint numFaces = 0;
float v1[3], v2[3], v3[3];
float n1[3], n2[3], n3[3], facenormal[3];
int clip[3];
for (int a = 0; a < tottri; a++) {
const MLoopTri *lt = &mlooptri[a];
copy_v3_v3(v1, vert_positions[corner_verts[lt->tri[0]]]);
copy_v3_v3(v2, vert_positions[corner_verts[lt->tri[1]]]);
copy_v3_v3(v3, vert_positions[corner_verts[lt->tri[2]]]);
mul_m4_v3(obmat, v1);
mul_m4_v3(obmat, v2);
mul_m4_v3(obmat, v3);
v1[2] += _z_offset;
v2[2] += _z_offset;
v3[2] += _z_offset;
numFaces += countClippedFaces(v1, v2, v3, clip);
}
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "numFaces " << numFaces << endl;
}
#endif
if (numFaces == 0) {
MEM_freeN(mlooptri);
return;
}
// We allocate memory for the meshes to be imported
NodeGroup *currentMesh = new NodeGroup;
NodeShape *shape = new NodeShape;
uint vSize = 3 * 3 * numFaces;
float *vertices = new float[vSize];
uint nSize = vSize;
float *normals = new float[nSize];
uint *numVertexPerFaces = new uint[numFaces];
vector<Material *> meshMaterials;
vector<FrsMaterial> meshFrsMaterials;
IndexedFaceSet::TRIANGLES_STYLE *faceStyle = new IndexedFaceSet::TRIANGLES_STYLE[numFaces];
uint i;
for (i = 0; i < numFaces; i++) {
faceStyle[i] = IndexedFaceSet::TRIANGLES;
numVertexPerFaces[i] = 3;
}
IndexedFaceSet::FaceEdgeMark *faceEdgeMarks = new IndexedFaceSet::FaceEdgeMark[numFaces];
uint viSize = 3 * numFaces;
uint *VIndices = new uint[viSize];
uint niSize = viSize;
uint *NIndices = new uint[niSize];
uint *MIndices = new uint[viSize]; // Material Indices
struct LoaderState ls;
ls.pv = vertices;
ls.pn = normals;
ls.pm = faceEdgeMarks;
ls.pvi = VIndices;
ls.pni = NIndices;
ls.pmi = MIndices;
ls.currentIndex = 0;
ls.currentMIndex = 0;
FrsMaterial tmpMat;
const bke::AttributeAccessor attributes = me->attributes();
const VArray<int> material_indices = attributes.lookup_or_default<int>(
"material_index", ATTR_DOMAIN_FACE, 0);
const VArray<bool> sharp_faces = attributes.lookup_or_default<bool>(
"sharp_face", ATTR_DOMAIN_FACE, false);
// We parse the vlak nodes again and import meshes while applying the clipping
// by the near and far view planes.
for (int a = 0; a < tottri; a++) {
const MLoopTri *lt = &mlooptri[a];
Material *mat = BKE_object_material_get(ob, material_indices[lt->poly] + 1);
copy_v3_v3(v1, vert_positions[corner_verts[lt->tri[0]]]);
copy_v3_v3(v2, vert_positions[corner_verts[lt->tri[1]]]);
copy_v3_v3(v3, vert_positions[corner_verts[lt->tri[2]]]);
mul_m4_v3(obmat, v1);
mul_m4_v3(obmat, v2);
mul_m4_v3(obmat, v3);
v1[2] += _z_offset;
v2[2] += _z_offset;
v3[2] += _z_offset;
if (_smooth && (!sharp_faces[lt->poly]) && lnors) {
copy_v3_v3(n1, lnors[lt->tri[0]]);
copy_v3_v3(n2, lnors[lt->tri[1]]);
copy_v3_v3(n3, lnors[lt->tri[2]]);
mul_mat3_m4_v3(nmat, n1);
mul_mat3_m4_v3(nmat, n2);
mul_mat3_m4_v3(nmat, n3);
normalize_v3(n1);
normalize_v3(n2);
normalize_v3(n3);
}
else {
normal_tri_v3(facenormal, v3, v2, v1);
copy_v3_v3(n1, facenormal);
copy_v3_v3(n2, facenormal);
copy_v3_v3(n3, facenormal);
}
uint numTris = countClippedFaces(v1, v2, v3, clip);
if (numTris == 0) {
continue;
}
bool fm = (ffa) ? (ffa[lt->poly].flag & FREESTYLE_FACE_MARK) != 0 : false;
bool em1 = false, em2 = false, em3 = false;
if (fed) {
em1 = testEdgeMark(me, fed, lt, 0);
em2 = testEdgeMark(me, fed, lt, 1);
em3 = testEdgeMark(me, fed, lt, 2);
}
if (mat) {
tmpMat.setLine(mat->line_col[0], mat->line_col[1], mat->line_col[2], mat->line_col[3]);
tmpMat.setDiffuse(mat->r, mat->g, mat->b, 1.0f);
tmpMat.setSpecular(mat->specr, mat->specg, mat->specb, 1.0f);
tmpMat.setShininess(128.0f);
tmpMat.setPriority(mat->line_priority);
}
if (meshMaterials.empty()) {
meshMaterials.push_back(mat);
meshFrsMaterials.push_back(tmpMat);
shape->setFrsMaterial(tmpMat);
}
else {
// find if the Blender material is already in the list
uint i = 0;
bool found = false;
for (vector<Material *>::iterator it = meshMaterials.begin(), itend = meshMaterials.end();
it != itend;
it++, i++) {
if (*it == mat) {
ls.currentMIndex = i;
found = true;
break;
}
}
if (!found) {
meshMaterials.push_back(mat);
meshFrsMaterials.push_back(tmpMat);
ls.currentMIndex = meshFrsMaterials.size() - 1;
}
}
float triCoords[5][3], triNormals[5][3];
bool edgeMarks[5]; // edgeMarks[i] is for the edge between i-th and (i+1)-th vertices
clipTriangle(
numTris, triCoords, v1, v2, v3, triNormals, n1, n2, n3, edgeMarks, em1, em2, em3, clip);
for (i = 0; i < numTris; i++) {
addTriangle(&ls,
triCoords[0],
triCoords[i + 1],
triCoords[i + 2],
triNormals[0],
triNormals[i + 1],
triNormals[i + 2],
fm,
(i == 0) ? edgeMarks[0] : false,
edgeMarks[i + 1],
(i == numTris - 1) ? edgeMarks[i + 2] : false);
_numFacesRead++;
}
}
MEM_freeN(mlooptri);
// We might have several times the same vertex. We want a clean
// shape with no real-vertex. Here, we are making a cleaning pass.
float *cleanVertices = nullptr;
uint cvSize;
uint *cleanVIndices = nullptr;
GeomCleaner::CleanIndexedVertexArray(
vertices, vSize, VIndices, viSize, &cleanVertices, &cvSize, &cleanVIndices);
float *cleanNormals = nullptr;
uint cnSize;
uint *cleanNIndices = nullptr;
GeomCleaner::CleanIndexedVertexArray(
normals, nSize, NIndices, niSize, &cleanNormals, &cnSize, &cleanNIndices);
// format materials array
FrsMaterial **marray = new FrsMaterial *[meshFrsMaterials.size()];
uint mindex = 0;
for (vector<FrsMaterial>::iterator m = meshFrsMaterials.begin(), mend = meshFrsMaterials.end();
m != mend;
++m) {
marray[mindex] = new FrsMaterial(*m);
++mindex;
}
// deallocates memory:
delete[] vertices;
delete[] normals;
delete[] VIndices;
delete[] NIndices;
// Fix for degenerated triangles
// A degenerate triangle is a triangle such that
// 1) A and B are in the same position in the 3D space; or
// 2) the distance between point P and line segment AB is zero.
// Only those degenerate triangles in the second form are resolved here
// by adding a small offset to P, whereas those in the first form are
// addressed later in WShape::MakeFace().
vector<detri_t> detriList;
Vec3r zero(0.0, 0.0, 0.0);
uint vi0, vi1, vi2;
for (i = 0; i < viSize; i += 3) {
detri_t detri;
vi0 = cleanVIndices[i];
vi1 = cleanVIndices[i + 1];
vi2 = cleanVIndices[i + 2];
Vec3r v0(cleanVertices[vi0], cleanVertices[vi0 + 1], cleanVertices[vi0 + 2]);
Vec3r v1(cleanVertices[vi1], cleanVertices[vi1 + 1], cleanVertices[vi1 + 2]);
Vec3r v2(cleanVertices[vi2], cleanVertices[vi2 + 1], cleanVertices[vi2 + 2]);
if (v0 == v1 || v0 == v2 || v1 == v2) {
continue; // do nothing for now
}
if (GeomUtils::distPointSegment<Vec3r>(v0, v1, v2) < 1.0e-6) {
detri.viP = vi0;
detri.viA = vi1;
detri.viB = vi2;
}
else if (GeomUtils::distPointSegment<Vec3r>(v1, v0, v2) < 1.0e-6) {
detri.viP = vi1;
detri.viA = vi0;
detri.viB = vi2;
}
else if (GeomUtils::distPointSegment<Vec3r>(v2, v0, v1) < 1.0e-6) {
detri.viP = vi2;
detri.viA = vi0;
detri.viB = vi1;
}
else {
continue;
}
detri.v = zero;
detri.n = 0;
for (uint j = 0; j < viSize; j += 3) {
if (i == j) {
continue;
}
vi0 = cleanVIndices[j];
vi1 = cleanVIndices[j + 1];
vi2 = cleanVIndices[j + 2];
Vec3r v0(cleanVertices[vi0], cleanVertices[vi0 + 1], cleanVertices[vi0 + 2]);
Vec3r v1(cleanVertices[vi1], cleanVertices[vi1 + 1], cleanVertices[vi1 + 2]);
Vec3r v2(cleanVertices[vi2], cleanVertices[vi2 + 1], cleanVertices[vi2 + 2]);
if (detri.viP == vi0 && (detri.viA == vi1 || detri.viB == vi1)) {
detri.v += (v2 - v0);
detri.n++;
}
else if (detri.viP == vi0 && (detri.viA == vi2 || detri.viB == vi2)) {
detri.v += (v1 - v0);
detri.n++;
}
else if (detri.viP == vi1 && (detri.viA == vi0 || detri.viB == vi0)) {
detri.v += (v2 - v1);
detri.n++;
}
else if (detri.viP == vi1 && (detri.viA == vi2 || detri.viB == vi2)) {
detri.v += (v0 - v1);
detri.n++;
}
else if (detri.viP == vi2 && (detri.viA == vi0 || detri.viB == vi0)) {
detri.v += (v1 - v2);
detri.n++;
}
else if (detri.viP == vi2 && (detri.viA == vi1 || detri.viB == vi1)) {
detri.v += (v0 - v2);
detri.n++;
}
}
if (detri.n > 0) {
detri.v.normalizeSafe();
}
detriList.push_back(detri);
}
if (!detriList.empty()) {
vector<detri_t>::iterator v;
for (v = detriList.begin(); v != detriList.end(); v++) {
detri_t detri = (*v);
if (detri.n == 0) {
cleanVertices[detri.viP] = cleanVertices[detri.viA];
cleanVertices[detri.viP + 1] = cleanVertices[detri.viA + 1];
cleanVertices[detri.viP + 2] = cleanVertices[detri.viA + 2];
}
else if (detri.v.norm() > 0.0) {
cleanVertices[detri.viP] += 1.0e-5 * detri.v.x();
cleanVertices[detri.viP + 1] += 1.0e-5 * detri.v.y();
cleanVertices[detri.viP + 2] += 1.0e-5 * detri.v.z();
}
}
if (G.debug & G_DEBUG_FREESTYLE) {
printf("Warning: Object %s contains %lu degenerated triangle%s (strokes may be incorrect)\n",
name,
ulong(detriList.size()),
(detriList.size() > 1) ? "s" : "");
}
}
// Create the IndexedFaceSet with the retrieved attributes
IndexedFaceSet *rep;
rep = new IndexedFaceSet(cleanVertices,
cvSize,
cleanNormals,
cnSize,
marray,
meshFrsMaterials.size(),
nullptr,
0,
numFaces,
numVertexPerFaces,
faceStyle,
faceEdgeMarks,
cleanVIndices,
viSize,
cleanNIndices,
niSize,
MIndices,
viSize,
nullptr,
0,
0);
// sets the id of the rep
rep->setId(Id(id, 0));
rep->setName(ob->id.name + 2);
rep->setLibraryPath(ob->id.lib ? ob->id.lib->filepath : "");
const BBox<Vec3r> bbox = BBox<Vec3r>(Vec3r(ls.minBBox[0], ls.minBBox[1], ls.minBBox[2]),
Vec3r(ls.maxBBox[0], ls.maxBBox[1], ls.maxBBox[2]));
rep->setBBox(bbox);
shape->AddRep(rep);
currentMesh->AddChild(shape);
_Scene->AddChild(currentMesh);
}
} /* namespace Freestyle */