This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/sceneRadio.c

894 lines
26 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can Redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Willian P. Germano
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "sceneRadio.h" /*This must come first*/
#include "BKE_global.h"
#include "BKE_object.h" /* disable_where_script() */
#include "gen_utils.h"
#include "constant.h"
#include "radio.h"
/* bitflags */
#define EXPP_RADIO_flag_SHOWLIM 1
#define EXPP_RADIO_flag_Z 2
/* shorts */
#define EXPP_RADIO_hemires_MIN 100
#define EXPP_RADIO_hemires_MAX 1000
#define EXPP_RADIO_maxiter_MIN 0
#define EXPP_RADIO_maxiter_MAX 10000
#define EXPP_RADIO_subshootp_MIN 0
#define EXPP_RADIO_subshootp_MAX 10
#define EXPP_RADIO_subshoote_MIN 0
#define EXPP_RADIO_subshoote_MAX 10
#define EXPP_RADIO_nodelim_MIN 0
#define EXPP_RADIO_nodelim_MAX 50
#define EXPP_RADIO_maxsublamp_MIN 1
#define EXPP_RADIO_maxsublamp_MAX 250
#define EXPP_RADIO_pama_MIN 10
#define EXPP_RADIO_pama_MAX 1000
#define EXPP_RADIO_pami_MIN 10
#define EXPP_RADIO_pami_MAX 1000
#define EXPP_RADIO_elma_MIN 1
#define EXPP_RADIO_elma_MAX 500
#define EXPP_RADIO_elmi_MIN 1
#define EXPP_RADIO_elmi_MAX 100
/* ints */
#define EXPP_RADIO_maxnode_MIN 1
#define EXPP_RADIO_maxnode_MAX 250000
/* floats */
#define EXPP_RADIO_convergence_MIN 0.0
#define EXPP_RADIO_convergence_MAX 0.1f
#define EXPP_RADIO_radfac_MIN 0.001f
#define EXPP_RADIO_radfac_MAX 250.0
#define EXPP_RADIO_gamma_MIN 0.2f
#define EXPP_RADIO_gamma_MAX 10.0
/* drawtypes */
#define EXPP_RADIO_drawtype_WIRE 0
#define EXPP_RADIO_drawtype_SOLID 1
#define EXPP_RADIO_drawtype_GOURAUD 2
static int EXPP_check_scene( Scene * scene )
{
if( scene != G.scene ) {
PyErr_SetString( PyExc_EnvironmentError,
"\nradiosity only works on the current scene, check scene.makeCurrent()." );
return 0;
} else if( !scene->radio ) {
PyErr_SetString( PyExc_EnvironmentError,
"\nradiosity data was deleted from scene!" );
return 0;
}
return 1;
}
static PyObject *Radio_collectMeshes( BPy_Radio * self );
static PyObject *Radio_go( BPy_Radio * self );
static PyObject *Radio_freeData( BPy_Radio * self );
static PyObject *Radio_replaceMeshes( BPy_Radio * self );
static PyObject *Radio_addMesh( BPy_Radio * self );
static PyObject *Radio_filterFaces( BPy_Radio * self );
static PyObject *Radio_filterElems( BPy_Radio * self );
static PyObject *Radio_limitSubdivide( BPy_Radio * self );
static PyObject *Radio_subdividePatches( BPy_Radio * self );
static PyObject *Radio_subdivideElems( BPy_Radio * self );
static PyObject *Radio_removeDoubles( BPy_Radio * self );
static PyObject *Radio_repr( BPy_Radio * self );
static PyObject *EXPP_create_ret_PyInt( int value )
{
PyObject *pyval = PyInt_FromLong( value );
if( !pyval )
PyErr_SetString( PyExc_MemoryError,
"couldn't create py int!" );
return pyval;
}
static PyObject *EXPP_create_ret_PyFloat( float value )
{
PyObject *pyval = PyFloat_FromDouble( ( double ) value );
if( !pyval )
PyErr_SetString( PyExc_MemoryError,
"couldn't create py int!" );
return pyval;
}
static PyObject *Radio_get_hemires( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->hemires );
}
static PyObject *Radio_get_maxiter( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->maxiter );
}
static PyObject *Radio_get_subshootp( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->subshootp );
}
static PyObject *Radio_get_subshoote( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->subshoote );
}
static PyObject *Radio_get_nodelim( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->nodelim );
}
static PyObject *Radio_get_maxsublamp( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->maxsublamp );
}
static PyObject *Radio_get_pama( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->pama );
}
static PyObject *Radio_get_pami( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->pami );
}
static PyObject *Radio_get_elma( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->elma );
}
static PyObject *Radio_get_elmi( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->elmi );
}
static PyObject *Radio_get_drawtype( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->drawtype );
}
static PyObject *Radio_get_flag( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->flag );
}
static PyObject *Radio_get_maxnode( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyInt( ( int ) self->scene->radio->maxnode );
}
static PyObject *Radio_get_convergence( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyFloat( self->scene->radio->convergence );
}
static PyObject *Radio_get_radfac( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyFloat( self->scene->radio->radfac );
}
static PyObject *Radio_get_gamma( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_create_ret_PyFloat( self->scene->radio->gamma );
}
static PyObject *EXPP_unpack_set_int( PyObject * args, int *ptr,
int min, int max )
{
int value;
if( !PyArg_ParseTuple( args, "i", &value ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" );
*ptr = EXPP_ClampInt( value, min, max );
return EXPP_incr_ret( Py_None );
}
/* could merge with set_int, but is cleaner this way */
static PyObject *EXPP_unpack_set_short( PyObject * args, short *ptr,
short min, short max )
{
int value;
if( !PyArg_ParseTuple( args, "i", &value ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument" );
*ptr = ( short ) EXPP_ClampInt( value, min, max );
return EXPP_incr_ret( Py_None );
}
static PyObject *EXPP_unpack_set_float( PyObject * args, float *ptr,
float min, float max )
{
float value;
if( !PyArg_ParseTuple( args, "f", &value ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected float argument" );
*ptr = EXPP_ClampFloat( value, min, max );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_set_hemires( BPy_Radio * self, PyObject * args )
{
PyObject *ret;
if( !EXPP_check_scene( self->scene ) )
return NULL;
ret = EXPP_unpack_set_short( args, &self->scene->radio->hemires,
EXPP_RADIO_hemires_MIN,
EXPP_RADIO_hemires_MAX );
if( ret )
rad_setlimits( );
return ret;
}
static PyObject *Radio_set_maxiter( BPy_Radio * self, PyObject * args )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_unpack_set_short( args, &self->scene->radio->maxiter,
EXPP_RADIO_maxiter_MIN,
EXPP_RADIO_maxiter_MAX );
}
static PyObject *Radio_set_subshootp( BPy_Radio * self, PyObject * args )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_unpack_set_short( args, &self->scene->radio->subshootp,
EXPP_RADIO_subshootp_MIN,
EXPP_RADIO_subshootp_MAX );
}
static PyObject *Radio_set_subshoote( BPy_Radio * self, PyObject * args )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_unpack_set_short( args, &self->scene->radio->subshoote,
EXPP_RADIO_subshoote_MIN,
EXPP_RADIO_subshoote_MAX );
}
static PyObject *Radio_set_nodelim( BPy_Radio * self, PyObject * args )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_unpack_set_short( args, &self->scene->radio->nodelim,
EXPP_RADIO_nodelim_MIN,
EXPP_RADIO_nodelim_MAX );
}
static PyObject *Radio_set_maxsublamp( BPy_Radio * self, PyObject * args )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_unpack_set_short( args, &self->scene->radio->maxsublamp,
EXPP_RADIO_maxsublamp_MIN,
EXPP_RADIO_maxsublamp_MAX );
}
static PyObject *Radio_set_pama( BPy_Radio * self, PyObject * args )
{
PyObject *ret;
if( !EXPP_check_scene( self->scene ) )
return NULL;
ret = EXPP_unpack_set_short( args, &self->scene->radio->pama,
EXPP_RADIO_pama_MIN,
EXPP_RADIO_pama_MAX );
if( ret )
rad_setlimits( );
return ret;
}
static PyObject *Radio_set_pami( BPy_Radio * self, PyObject * args )
{
PyObject *ret;
if( !EXPP_check_scene( self->scene ) )
return NULL;
ret = EXPP_unpack_set_short( args, &self->scene->radio->pami,
EXPP_RADIO_pami_MIN,
EXPP_RADIO_pami_MAX );
if( ret )
rad_setlimits( );
return ret;
}
static PyObject *Radio_set_elma( BPy_Radio * self, PyObject * args )
{
PyObject *ret;
if( !EXPP_check_scene( self->scene ) )
return NULL;
ret = EXPP_unpack_set_short( args, &self->scene->radio->elma,
EXPP_RADIO_elma_MIN,
EXPP_RADIO_elma_MAX );
if( ret )
rad_setlimits( );
return ret;
}
static PyObject *Radio_set_elmi( BPy_Radio * self, PyObject * args )
{
PyObject *ret;
if( !EXPP_check_scene( self->scene ) )
return NULL;
ret = EXPP_unpack_set_short( args, &self->scene->radio->elmi,
EXPP_RADIO_elmi_MIN,
EXPP_RADIO_elmi_MAX );
if( ret )
rad_setlimits( );
return ret;
}
static PyObject *Radio_set_drawtype( BPy_Radio * self, PyObject * args )
{
PyObject *pyob = NULL;
char *str = NULL;
short dt = EXPP_RADIO_drawtype_WIRE;
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( !PyArg_ParseTuple( args, "O", &pyob ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int or string and another optional int as arguments" );
if( PyString_Check( pyob ) ) {
str = PyString_AsString( pyob );
if( !str )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create py string!" );
else if( !strcmp( str, "Wire" ) )
dt = EXPP_RADIO_drawtype_WIRE;
else if( !strcmp( str, "Solid" ) )
dt = EXPP_RADIO_drawtype_SOLID;
else if( !strcmp( str, "Gouraud" ) )
dt = EXPP_RADIO_drawtype_GOURAUD;
else
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"unknown drawtype string" );
} else if( PyInt_Check( pyob ) ) {
dt = ( short ) EXPP_ClampInt( PyInt_AsLong( pyob ),
EXPP_RADIO_drawtype_WIRE,
EXPP_RADIO_drawtype_GOURAUD );
} else
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int or string as argument" );
self->scene->radio->drawtype = dt;
set_radglobal( ); /* needed to update 3d view(s) */
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_set_flag( BPy_Radio * self, PyObject * args )
{
int i, imode = 0;
char *mode[2] = { NULL, NULL };
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( !PyArg_ParseTuple( args, "|ss", &mode[0], &mode[1] ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string arguments (or nothing)" );
for( i = 0; i < 2; i++ ) {
if( !mode[i] )
break;
else if( !strcmp( mode[i], "ShowLimits" ) )
imode |= EXPP_RADIO_flag_SHOWLIM;
else if( !strcmp( mode[i], "Z" ) )
imode |= EXPP_RADIO_flag_Z;
else
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"unknown mode string" );
}
self->scene->radio->flag = ( short ) EXPP_ClampInt( imode, 0, 3 );
set_radglobal( ); /* needed to update 3d view(s) */
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_set_maxnode( BPy_Radio * self, PyObject * args )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_unpack_set_int( args, &self->scene->radio->maxnode,
EXPP_RADIO_maxnode_MIN,
EXPP_RADIO_maxnode_MAX );
}
static PyObject *Radio_set_convergence( BPy_Radio * self, PyObject * args )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_unpack_set_float( args, &self->scene->radio->convergence,
EXPP_RADIO_convergence_MIN,
EXPP_RADIO_convergence_MAX );
}
static PyObject *Radio_set_radfac( BPy_Radio * self, PyObject * args )
{
PyObject *ret;
if( !EXPP_check_scene( self->scene ) )
return NULL;
ret = EXPP_unpack_set_float( args, &self->scene->radio->radfac,
EXPP_RADIO_radfac_MIN,
EXPP_RADIO_radfac_MAX );
if( ret ) {
set_radglobal( );
if( rad_phase( ) & RAD_PHASE_FACES )
make_face_tab( );
else
make_node_display( );
}
return ret;
}
static PyObject *Radio_set_gamma( BPy_Radio * self, PyObject * args )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
return EXPP_unpack_set_float( args, &self->scene->radio->gamma,
EXPP_RADIO_gamma_MIN,
EXPP_RADIO_gamma_MAX );
}
static PyMethodDef BPy_Radio_methods[] = {
{"collectMeshes", ( PyCFunction ) Radio_collectMeshes, METH_NOARGS,
"() - Convert selected meshes to patches."},
{"go", ( PyCFunction ) Radio_go, METH_NOARGS,
"() - Start radiosity calculations."},
{"freeData", ( PyCFunction ) Radio_freeData, METH_NOARGS,
"() - Free all memory used by radiosity."},
{"addMesh", ( PyCFunction ) Radio_addMesh, METH_NOARGS,
"() - Add a new mesh with the radio values as vertex colors to Blender."},
{"replaceMeshes", ( PyCFunction ) Radio_replaceMeshes, METH_NOARGS,
"() - Replace input meshes with the one created by radiosity simulation."},
{"limitSubdivide", ( PyCFunction ) Radio_limitSubdivide, METH_NOARGS,
"() - Subdivide patches."},
{"filterFaces", ( PyCFunction ) Radio_filterFaces, METH_NOARGS,
"() - Force an extra smoothing."},
{"filterElems", ( PyCFunction ) Radio_filterElems, METH_NOARGS,
"() - Filter elements to remove aliasing artifacts."},
{"subdividePatches", ( PyCFunction ) Radio_subdividePatches,
METH_NOARGS,
"() - Pre-subdivision: detect high-energy patches and subdivide them."},
{"subdivideElems", ( PyCFunction ) Radio_subdivideElems, METH_NOARGS,
"() - Pre-subdivision: detect high-energy elements and subdivide them."},
{"removeDoubles", ( PyCFunction ) Radio_removeDoubles, METH_NOARGS,
"() - Join elements which differ less than the defined node limit."},
{"getHemiRes", ( PyCFunction ) Radio_get_hemires, METH_NOARGS,
"() - Get hemicube size."},
{"setHemiRes", ( PyCFunction ) Radio_set_hemires, METH_VARARGS,
"(int) - Set hemicube size, the range is [100, 1000]."},
{"getMaxIter", ( PyCFunction ) Radio_get_maxiter, METH_NOARGS,
"() - Get maximum number of radiosity rounds."},
{"setMaxIter", ( PyCFunction ) Radio_set_maxiter, METH_VARARGS,
"(i) - Set maximum number of radiosity rounds in [0, 10000]."},
{"getSubShPatch", ( PyCFunction ) Radio_get_subshootp, METH_NOARGS,
"() - Get max number of times environment is tested to detect patches."},
{"setSubShPatch", ( PyCFunction ) Radio_set_subshootp, METH_VARARGS,
"(i) - Set max number of times environment is tested to detect patches.\n\
Range is [0, 10]."},
{"getSubShElem", ( PyCFunction ) Radio_get_subshoote, METH_NOARGS,
"() - Get number of times environment is tested to detect elements."},
{"setSubShElem", ( PyCFunction ) Radio_set_subshoote, METH_VARARGS,
"(i) - Set number of times environment is tested to detect elements.\n\
Range is [0, 10]."},
{"getElemLimit", ( PyCFunction ) Radio_get_nodelim, METH_NOARGS,
"() - Get the range for removing doubles."},
{"setElemLimit", ( PyCFunction ) Radio_set_nodelim, METH_VARARGS,
"(i) - Set the range for removing doubles in [0, 50]."},
{"getMaxSubdivSh", ( PyCFunction ) Radio_get_maxsublamp, METH_NOARGS,
"() - Get max number of initial shoot patches evaluated."},
{"setMaxSubdivSh", ( PyCFunction ) Radio_set_maxsublamp, METH_VARARGS,
"(i) - Set max number of initial shoot patches evaluated in [1, 250]."},
{"getPatchMax", ( PyCFunction ) Radio_get_pama, METH_NOARGS,
"() - Get max size of a patch."},
{"setPatchMax", ( PyCFunction ) Radio_set_pama, METH_VARARGS,
"(i) - Set max size of a patch in [10, 1000]."},
{"getPatchMin", ( PyCFunction ) Radio_get_pami, METH_NOARGS,
"() - Get minimum size of a patch."},
{"setPatchMin", ( PyCFunction ) Radio_set_pami, METH_VARARGS,
"(i) - Set minimum size of a patch in [10, 1000]."},
{"getElemMax", ( PyCFunction ) Radio_get_elma, METH_NOARGS,
"() - Get max size of an element."},
{"setElemMax", ( PyCFunction ) Radio_set_elma, METH_VARARGS,
"(i) - Set max size of an element in [1, 100]."},
{"getElemMin", ( PyCFunction ) Radio_get_elmi, METH_NOARGS,
"() - Get minimum size of an element."},
{"setElemMin", ( PyCFunction ) Radio_set_elmi, METH_VARARGS,
"(i) - Set minimum size of an element in [1, 100]."},
{"getMaxElems", ( PyCFunction ) Radio_get_maxnode, METH_NOARGS,
"() - Get maximum number of elements."},
{"setMaxElems", ( PyCFunction ) Radio_set_maxnode, METH_VARARGS,
"(i) - Set maximum nunber of elements in [1, 250000]."},
{"getConvergence", ( PyCFunction ) Radio_get_convergence, METH_NOARGS,
"() - Get lower threshold of unshot energy."},
{"setConvergence", ( PyCFunction ) Radio_set_convergence, METH_VARARGS,
"(f) - Set lower threshold of unshot energy in [0.0, 1.0]."},
{"getMult", ( PyCFunction ) Radio_get_radfac, METH_NOARGS,
"() - Get energy value multiplier."},
{"setMult", ( PyCFunction ) Radio_set_radfac, METH_VARARGS,
"(f) - Set energy value multiplier in [0.001, 250.0]."},
{"getGamma", ( PyCFunction ) Radio_get_gamma, METH_NOARGS,
"() - Get change in the contrast of energy values."},
{"setGamma", ( PyCFunction ) Radio_set_gamma, METH_VARARGS,
"(f) - Set change in the contrast of energy values in [0.2, 10.0]."},
{"getDrawType", ( PyCFunction ) Radio_get_drawtype, METH_NOARGS,
"() - Get the draw type: Wire, Solid or Gouraud as an int value."},
{"setDrawType", ( PyCFunction ) Radio_set_drawtype, METH_VARARGS,
"(i or s) - Set the draw type: wire, solid (default) or gouraud."},
{"getMode", ( PyCFunction ) Radio_get_flag, METH_NOARGS,
"() - Get mode as int (or'ed bitflags), see Radio.Modes dict."},
{"setMode", ( PyCFunction ) Radio_set_flag, METH_VARARGS,
"(|ss) - Set mode flags as strings: 'ShowLimits', 'Z'."},
{NULL, NULL, 0, NULL}
};
static PyTypeObject Radio_Type = {
PyObject_HEAD_INIT( NULL )
0, /*ob_size */
"Blender Radiosity", /*tp_name */
sizeof( BPy_Radio ), /*tp_basicsize */
0, /*tp_itemsize */
NULL, /*tp_dealloc */
0, /*tp_print */
0, /*tp_getattr */
0, /*tp_setattr */
0, /*tp_compare */
( reprfunc ) Radio_repr, /*tp_repr */
0, /*tp_as_number */
0, /*tp_as_sequence */
0, /*tp_as_mapping */
0, /*tp_hash */
0, /*tp_call */
0, /*tp_str */
0, /*tp_getattro */
0, /*tp_setattro */
0, /*tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags */
"Blender radiosity", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
BPy_Radio_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
0, 0, 0, 0, 0, 0, 0, 0, /* up to tp_del, so we don't get a warning */
};
static PyObject *Radio_repr( BPy_Radio * self )
{
if( self->radio )
return PyString_FromFormat( "[Radiosity \"%s\"]",
self->scene->id.name + 2 );
else
return PyString_FromString( "NULL" );
}
PyObject *Radio_CreatePyObject( struct Scene * scene )
{
BPy_Radio *py_radio;
if( scene != G.scene ) {
return EXPP_ReturnPyObjError( PyExc_EnvironmentError,
"\nradiosity only works on the current scene, check scene.makeCurrent()." );
}
py_radio = ( BPy_Radio * ) PyObject_NEW( BPy_Radio, &Radio_Type );
if( !py_radio )
return NULL;
if( !scene->radio )
add_radio( ); /* adds to G.scene */
py_radio->radio = scene->radio;
py_radio->scene = scene;
return ( ( PyObject * ) py_radio );
}
static PyObject *Radio_collectMeshes( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
disable_where_script( 1 ); /* used to avoid error popups */
rad_collect_meshes( );
disable_where_script( 0 );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_freeData( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
delete_radio( );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_go( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( rad_phase( ) == RAD_PHASE_PATCHES )
rad_go( );
else
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"you need to call radio.collectMeshes() first." );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_replaceMeshes( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( rad_phase( ) & RAD_PHASE_FACES )
rad_replacemesh( );
else
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"you need to call radio.collectMeshes() and radio.go() first." );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_addMesh( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( rad_phase( ) & RAD_PHASE_FACES )
rad_addmesh( );
else
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"you need to call radio.collectMeshes() and radio.go() first." );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_filterFaces( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( rad_phase( ) & RAD_PHASE_FACES )
filterFaces( );
else
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"you need to call radio.collectMeshes() and radio.go() first." );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_filterElems( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( rad_phase( ) & RAD_PHASE_FACES ) {
set_radglobal( );
filterNodes( );
make_face_tab( );
} else
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"you need to call radio.collectMeshes() and radio.go() first." );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_limitSubdivide( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( rad_phase( ) == RAD_PHASE_PATCHES )
rad_limit_subdivide( );
else
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"you need to call this before calculating the radiosity simulation." );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_subdividePatches( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( rad_phase( ) == RAD_PHASE_PATCHES )
rad_subdivshootpatch( );
else
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"you need to call this before calculating the radiosity simulation." );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_subdivideElems( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( rad_phase( ) == RAD_PHASE_PATCHES )
rad_subdivshootelem( );
else
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"you need to call radio.collectMeshes() and radio.go() first." );
return EXPP_incr_ret( Py_None );
}
static PyObject *Radio_removeDoubles( BPy_Radio * self )
{
if( !EXPP_check_scene( self->scene ) )
return NULL;
if( rad_phase( ) == RAD_PHASE_FACES ) {
set_radglobal( );
removeEqualNodes( self->scene->radio->nodelim );
make_face_tab( );
} else
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"you need to call radio.collectMeshes() and radio.go() first." );
return EXPP_incr_ret( Py_None );
}
static PyMethodDef M_Radio_methods[] = { {NULL, NULL, 0, NULL} };
PyObject *Radio_Init( void )
{
PyObject *submodule, *Modes, *DrawTypes;
if( PyType_Ready( &Radio_Type ) < 0 )
return NULL;
submodule = Py_InitModule3( "Blender.Scene.Radio", M_Radio_methods,
"The Blender Radiosity submodule" );
Modes = PyConstant_New( );
DrawTypes = PyConstant_New( );
if( Modes ) {
BPy_constant *d = ( BPy_constant * ) Modes;
PyConstant_Insert( d, "ShowLimits",
PyInt_FromLong( EXPP_RADIO_flag_SHOWLIM ) );
PyConstant_Insert( d, "Z", PyInt_FromLong( EXPP_RADIO_flag_Z ) );
PyModule_AddObject( submodule, "Modes", Modes );
}
if( DrawTypes ) {
BPy_constant *d = ( BPy_constant * ) DrawTypes;
PyConstant_Insert( d, "Wire",
PyInt_FromLong( EXPP_RADIO_drawtype_WIRE ) );
PyConstant_Insert( d, "Solid",
PyInt_FromLong( EXPP_RADIO_drawtype_SOLID ) );
PyConstant_Insert( d, "Gouraud",
PyInt_FromLong
( EXPP_RADIO_drawtype_GOURAUD ) );
PyModule_AddObject( submodule, "DrawTypes", DrawTypes );
}
return submodule;
}