This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/io/collada/GeometryExporter.cpp
Hans Goudey 1af62cb3bf Mesh: Move positions to a generic attribute
**Changes**
As described in T93602, this patch removes all use of the `MVert`
struct, replacing it with a generic named attribute with the name
`"position"`, consistent with other geometry types.

Variable names have been changed from `verts` to `positions`, to align
with the attribute name and the more generic design (positions are not
vertices, they are just an attribute stored on the point domain).

This change is made possible by previous commits that moved all other
data out of `MVert` to runtime data or other generic attributes. What
remains is mostly a simple type change. Though, the type still shows up
859 times, so the patch is quite large.

One compromise is that now `CD_MASK_BAREMESH` now contains
`CD_PROP_FLOAT3`. With the general move towards generic attributes
over custom data types, we are removing use of these type masks anyway.

**Benefits**
The most obvious benefit is reduced memory usage and the benefits
that brings in memory-bound situations. `float3` is only 3 bytes, in
comparison to `MVert` which was 4. When there are millions of vertices
this starts to matter more.

The other benefits come from using a more generic type. Instead of
writing algorithms specifically for `MVert`, code can just use arrays
of vectors. This will allow eliminating many temporary arrays or
wrappers used to extract positions.

Many possible improvements aren't implemented in this patch, though
I did switch simplify or remove the process of creating temporary
position arrays in a few places.

The design clarity that "positions are just another attribute" brings
allows removing explicit copying of vertices in some procedural
operations-- they are just processed like most other attributes.

**Performance**
This touches so many areas that it's hard to benchmark exhaustively,
but I observed some areas as examples.
* The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster.
* The Spring splash screen went from ~4.3 to ~4.5 fps.
* The subdivision surface modifier/node was slightly faster
RNA access through Python may be slightly slower, since now we need
a name lookup instead of just a custom data type lookup for each index.

**Future Improvements**
* Remove uses of "vert_coords" functions:
  * `BKE_mesh_vert_coords_alloc`
  * `BKE_mesh_vert_coords_get`
  * `BKE_mesh_vert_coords_apply{_with_mat4}`
* Remove more hidden copying of positions
* General simplification now possible in many areas
* Convert more code to C++ to use `float3` instead of `float[3]`
  * Currently `reinterpret_cast` is used for those C-API functions

Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00

704 lines
22 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup collada
*/
#include <sstream>
#include "COLLADABUUtils.h"
#include "COLLADASWPrimitves.h"
#include "COLLADASWSource.h"
#include "COLLADASWVertices.h"
#include "GeometryExporter.h"
#include "DNA_meshdata_types.h"
#include "BLI_utildefines.h"
#include "BKE_attribute.hh"
#include "BKE_customdata.h"
#include "BKE_global.h"
#include "BKE_lib_id.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "collada_internal.h"
#include "collada_utils.h"
using blender::float3;
using blender::Span;
void GeometryExporter::exportGeom()
{
Scene *sce = blender_context.get_scene();
openLibrary();
GeometryFunctor gf;
gf.forEachMeshObjectInExportSet<GeometryExporter>(
sce, *this, this->export_settings.get_export_set());
closeLibrary();
}
void GeometryExporter::operator()(Object *ob)
{
bool use_instantiation = this->export_settings.get_use_object_instantiation();
Mesh *me = bc_get_mesh_copy(blender_context,
ob,
this->export_settings.get_export_mesh_type(),
this->export_settings.get_apply_modifiers(),
this->export_settings.get_triangulate());
std::string geom_id = get_geometry_id(ob, use_instantiation);
std::vector<Normal> nor;
std::vector<BCPolygonNormalsIndices> norind;
/* Skip if linked geometry was already exported from another reference */
if (use_instantiation && exportedGeometry.find(geom_id) != exportedGeometry.end()) {
return;
}
std::string geom_name = (use_instantiation) ? id_name(ob->data) : id_name(ob);
geom_name = encode_xml(geom_name);
exportedGeometry.insert(geom_id);
bool has_color = bool(CustomData_has_layer(&me->fdata, CD_MCOL));
create_normals(nor, norind, me);
/* openMesh(geoId, geoName, meshId) */
openMesh(geom_id, geom_name);
/* writes <source> for vertex coords */
createVertsSource(geom_id, me);
/* writes <source> for normal coords */
createNormalsSource(geom_id, me, nor);
bool has_uvs = bool(CustomData_has_layer(&me->ldata, CD_MLOOPUV));
/* writes <source> for uv coords if mesh has uv coords */
if (has_uvs) {
createTexcoordsSource(geom_id, me);
}
if (has_color) {
createVertexColorSource(geom_id, me);
}
/* <vertices> */
COLLADASW::Vertices verts(mSW);
verts.setId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::VERTEX));
COLLADASW::InputList &input_list = verts.getInputList();
COLLADASW::Input input(COLLADASW::InputSemantic::POSITION,
getUrlBySemantics(geom_id, COLLADASW::InputSemantic::POSITION));
input_list.push_back(input);
verts.add();
createLooseEdgeList(ob, me, geom_id);
/* Only create Polylists if number of faces > 0 */
if (me->totface > 0) {
/* XXX slow */
if (ob->totcol) {
for (int a = 0; a < ob->totcol; a++) {
create_mesh_primitive_list(a, has_uvs, has_color, ob, me, geom_id, norind);
}
}
else {
create_mesh_primitive_list(0, has_uvs, has_color, ob, me, geom_id, norind);
}
}
closeMesh();
closeGeometry();
if (this->export_settings.get_include_shapekeys()) {
Key *key = BKE_key_from_object(ob);
if (key) {
blender::MutableSpan<float3> positions = me->vert_positions_for_write();
KeyBlock *kb = (KeyBlock *)key->block.first;
/* skip the basis */
kb = kb->next;
for (; kb; kb = kb->next) {
BKE_keyblock_convert_to_mesh(
kb, reinterpret_cast<float(*)[3]>(positions.data()), me->totvert);
export_key_mesh(ob, me, kb);
}
}
}
BKE_id_free(nullptr, me);
}
void GeometryExporter::export_key_mesh(Object *ob, Mesh *me, KeyBlock *kb)
{
std::string geom_id = get_geometry_id(ob, false) + "_morph_" + translate_id(kb->name);
std::vector<Normal> nor;
std::vector<BCPolygonNormalsIndices> norind;
if (exportedGeometry.find(geom_id) != exportedGeometry.end()) {
return;
}
std::string geom_name = kb->name;
exportedGeometry.insert(geom_id);
bool has_color = bool(CustomData_has_layer(&me->fdata, CD_MCOL));
create_normals(nor, norind, me);
// openMesh(geoId, geoName, meshId)
openMesh(geom_id, geom_name);
/* writes <source> for vertex coords */
createVertsSource(geom_id, me);
/* writes <source> for normal coords */
createNormalsSource(geom_id, me, nor);
bool has_uvs = bool(CustomData_has_layer(&me->ldata, CD_MLOOPUV));
/* writes <source> for uv coords if mesh has uv coords */
if (has_uvs) {
createTexcoordsSource(geom_id, me);
}
if (has_color) {
createVertexColorSource(geom_id, me);
}
/* <vertices> */
COLLADASW::Vertices verts(mSW);
verts.setId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::VERTEX));
COLLADASW::InputList &input_list = verts.getInputList();
COLLADASW::Input input(COLLADASW::InputSemantic::POSITION,
getUrlBySemantics(geom_id, COLLADASW::InputSemantic::POSITION));
input_list.push_back(input);
verts.add();
// createLooseEdgeList(ob, me, geom_id, norind);
/* XXX slow */
if (ob->totcol) {
for (int a = 0; a < ob->totcol; a++) {
create_mesh_primitive_list(a, has_uvs, has_color, ob, me, geom_id, norind);
}
}
else {
create_mesh_primitive_list(0, has_uvs, has_color, ob, me, geom_id, norind);
}
closeMesh();
closeGeometry();
}
void GeometryExporter::createLooseEdgeList(Object *ob, Mesh *me, std::string &geom_id)
{
using namespace blender;
const Span<MEdge> edges = me->edges();
int edges_in_linelist = 0;
std::vector<uint> edge_list;
int index;
/* Find all loose edges in Mesh
* and save vertex indices in edge_list */
const bke::LooseEdgeCache &loose_edges = me->loose_edges();
if (loose_edges.count > 0) {
for (const int64_t i : edges.index_range()) {
if (loose_edges.is_loose_bits[i]) {
const MEdge *edge = &edges[i];
edges_in_linelist += 1;
edge_list.push_back(edge->v1);
edge_list.push_back(edge->v2);
}
}
}
if (edges_in_linelist > 0) {
/* Create the list of loose edges */
COLLADASW::Lines lines(mSW);
lines.setCount(edges_in_linelist);
COLLADASW::InputList &til = lines.getInputList();
/* creates <input> in <lines> for vertices */
COLLADASW::Input input1(COLLADASW::InputSemantic::VERTEX,
getUrlBySemantics(geom_id, COLLADASW::InputSemantic::VERTEX),
0);
til.push_back(input1);
lines.prepareToAppendValues();
for (index = 0; index < edges_in_linelist; index++) {
lines.appendValues(edge_list[2 * index + 1]);
lines.appendValues(edge_list[2 * index]);
}
lines.finish();
}
}
static void prepareToAppendValues(bool is_triangulated,
COLLADASW::PrimitivesBase &primitive_list,
std::vector<ulong> &vcount_list)
{
/* performs the actual writing */
if (is_triangulated) {
((COLLADASW::Triangles &)primitive_list).prepareToAppendValues();
}
else {
/* sets <vcount> */
primitive_list.setVCountList(vcount_list);
((COLLADASW::Polylist &)primitive_list).prepareToAppendValues();
}
}
static void finish_and_delete_primitive_List(bool is_triangulated,
COLLADASW::PrimitivesBase *primitive_list)
{
if (is_triangulated) {
((COLLADASW::Triangles *)primitive_list)->finish();
}
else {
((COLLADASW::Polylist *)primitive_list)->finish();
}
delete primitive_list;
}
static COLLADASW::PrimitivesBase *create_primitive_list(bool is_triangulated,
COLLADASW::StreamWriter *mSW)
{
COLLADASW::PrimitivesBase *primitive_list;
if (is_triangulated) {
primitive_list = new COLLADASW::Triangles(mSW);
}
else {
primitive_list = new COLLADASW::Polylist(mSW);
}
return primitive_list;
}
static bool collect_vertex_counts_per_poly(Mesh *me,
int material_index,
std::vector<ulong> &vcount_list)
{
const Span<MPoly> polys = me->polys();
const blender::bke::AttributeAccessor attributes = me->attributes();
const blender::VArray<int> material_indices = attributes.lookup_or_default<int>(
"material_index", ATTR_DOMAIN_FACE, 0);
bool is_triangulated = true;
/* Expecting that the material index is always 0 if the mesh has no materials assigned */
for (const int i : polys.index_range()) {
if (material_indices[i] == material_index) {
const MPoly &poly = polys[i];
const int vertex_count = poly.totloop;
vcount_list.push_back(vertex_count);
if (vertex_count != 3) {
is_triangulated = false;
}
}
}
return is_triangulated;
}
std::string GeometryExporter::makeVertexColorSourceId(std::string &geom_id, char *layer_name)
{
std::string result = getIdBySemantics(geom_id, COLLADASW::InputSemantic::COLOR) + "-" +
layer_name;
return result;
}
void GeometryExporter::create_mesh_primitive_list(short material_index,
bool has_uvs,
bool has_color,
Object *ob,
Mesh *me,
std::string &geom_id,
std::vector<BCPolygonNormalsIndices> &norind)
{
const Span<MPoly> polys = me->polys();
const Span<MLoop> loops = me->loops();
std::vector<ulong> vcount_list;
bool is_triangulated = collect_vertex_counts_per_poly(me, material_index, vcount_list);
int polygon_count = vcount_list.size();
/* no faces using this material */
if (polygon_count == 0) {
fprintf(
stderr, "%s: material with index %d is not used.\n", id_name(ob).c_str(), material_index);
return;
}
Material *ma = ob->totcol ? BKE_object_material_get(ob, material_index + 1) : nullptr;
COLLADASW::PrimitivesBase *primitive_list = create_primitive_list(is_triangulated, mSW);
/* sets count attribute in <polylist> */
primitive_list->setCount(polygon_count);
/* sets material name */
if (ma) {
std::string material_id = get_material_id(ma);
std::ostringstream ostr;
ostr << translate_id(material_id);
primitive_list->setMaterial(ostr.str());
}
COLLADASW::Input vertex_input(COLLADASW::InputSemantic::VERTEX,
getUrlBySemantics(geom_id, COLLADASW::InputSemantic::VERTEX),
0);
COLLADASW::Input normals_input(COLLADASW::InputSemantic::NORMAL,
getUrlBySemantics(geom_id, COLLADASW::InputSemantic::NORMAL),
1);
COLLADASW::InputList &til = primitive_list->getInputList();
til.push_back(vertex_input);
til.push_back(normals_input);
/* if mesh has uv coords writes <input> for TEXCOORD */
int num_layers = CustomData_number_of_layers(&me->ldata, CD_MLOOPUV);
int active_uv_index = CustomData_get_active_layer_index(&me->ldata, CD_MLOOPUV);
for (int i = 0; i < num_layers; i++) {
int layer_index = CustomData_get_layer_index_n(&me->ldata, CD_MLOOPUV, i);
if (!this->export_settings.get_active_uv_only() || layer_index == active_uv_index) {
// char *name = CustomData_get_layer_name(&me->ldata, CD_MLOOPUV, i);
COLLADASW::Input texcoord_input(
COLLADASW::InputSemantic::TEXCOORD,
makeUrl(makeTexcoordSourceId(geom_id, i, this->export_settings.get_active_uv_only())),
2, /* this is only until we have optimized UV sets */
(this->export_settings.get_active_uv_only()) ? 0 : layer_index - 1 /* set (0,1,2,...) */
);
til.push_back(texcoord_input);
}
}
int totlayer_mcol = CustomData_number_of_layers(&me->ldata, CD_PROP_BYTE_COLOR);
if (totlayer_mcol > 0) {
int map_index = 0;
for (int a = 0; a < totlayer_mcol; a++) {
char *layer_name = bc_CustomData_get_layer_name(&me->ldata, CD_PROP_BYTE_COLOR, a);
COLLADASW::Input input4(COLLADASW::InputSemantic::COLOR,
makeUrl(makeVertexColorSourceId(geom_id, layer_name)),
(has_uvs) ? 3 : 2, /* all color layers have same index order */
map_index /* set number equals color map index */
);
til.push_back(input4);
map_index++;
}
}
/* performs the actual writing */
prepareToAppendValues(is_triangulated, *primitive_list, vcount_list);
const blender::bke::AttributeAccessor attributes = me->attributes();
const blender::VArray<int> material_indices = attributes.lookup_or_default<int>(
"material_index", ATTR_DOMAIN_FACE, 0);
/* <p> */
int texindex = 0;
for (const int i : polys.index_range()) {
const MPoly *p = &polys[i];
int loop_count = p->totloop;
if (material_indices[i] == material_index) {
const MLoop *l = &loops[p->loopstart];
BCPolygonNormalsIndices normal_indices = norind[i];
for (int j = 0; j < loop_count; j++) {
primitive_list->appendValues(l[j].v);
primitive_list->appendValues(normal_indices[j]);
if (has_uvs) {
primitive_list->appendValues(texindex + j);
}
if (has_color) {
primitive_list->appendValues(texindex + j);
}
}
}
texindex += loop_count;
}
finish_and_delete_primitive_List(is_triangulated, primitive_list);
}
void GeometryExporter::createVertsSource(std::string geom_id, Mesh *me)
{
const Span<float3> positions = me->vert_positions();
COLLADASW::FloatSourceF source(mSW);
source.setId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::POSITION));
source.setArrayId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::POSITION) +
ARRAY_ID_SUFFIX);
source.setAccessorCount(positions.size());
source.setAccessorStride(3);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
param.push_back("X");
param.push_back("Y");
param.push_back("Z");
/* main function, it creates <source id = "">, <float_array id = ""
* count = ""> */
source.prepareToAppendValues();
/* appends data to <float_array> */
for (const int i : positions.index_range()) {
Vector co;
if (export_settings.get_apply_global_orientation()) {
float co_c[3];
copy_v3_v3(co_c, positions[i]);
bc_add_global_transform(co, co_c, export_settings.get_global_transform());
}
else {
copy_v3_v3(co, positions[i]);
}
source.appendValues(co[0], co[1], co[2]);
}
source.finish();
}
void GeometryExporter::createVertexColorSource(std::string geom_id, Mesh *me)
{
/* Find number of vertex color layers */
int totlayer_mcol = CustomData_number_of_layers(&me->ldata, CD_PROP_BYTE_COLOR);
if (totlayer_mcol == 0) {
return;
}
int map_index = 0;
for (int a = 0; a < totlayer_mcol; a++) {
map_index++;
const MLoopCol *mloopcol = (const MLoopCol *)CustomData_get_layer_n(
&me->ldata, CD_PROP_BYTE_COLOR, a);
COLLADASW::FloatSourceF source(mSW);
char *layer_name = bc_CustomData_get_layer_name(&me->ldata, CD_PROP_BYTE_COLOR, a);
std::string layer_id = makeVertexColorSourceId(geom_id, layer_name);
source.setId(layer_id);
source.setNodeName(layer_name);
source.setArrayId(layer_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(me->totloop);
source.setAccessorStride(4);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
param.push_back("R");
param.push_back("G");
param.push_back("B");
param.push_back("A");
source.prepareToAppendValues();
const Span<MPoly> polys = me->polys();
for (const int i : polys.index_range()) {
const MPoly &poly = polys[i];
const MLoopCol *mlc = mloopcol + poly.loopstart;
for (int j = 0; j < poly.totloop; j++, mlc++) {
source.appendValues(mlc->r / 255.0f, mlc->g / 255.0f, mlc->b / 255.0f, mlc->a / 255.0f);
}
}
source.finish();
}
}
std::string GeometryExporter::makeTexcoordSourceId(std::string &geom_id,
int layer_index,
bool is_single_layer)
{
char suffix[20];
if (is_single_layer) {
suffix[0] = '\0';
}
else {
BLI_snprintf(suffix, sizeof(suffix), "-%d", layer_index);
}
return getIdBySemantics(geom_id, COLLADASW::InputSemantic::TEXCOORD) + suffix;
}
void GeometryExporter::createTexcoordsSource(std::string geom_id, Mesh *me)
{
int totuv = me->totloop;
const Span<MPoly> polys = me->polys();
int num_layers = CustomData_number_of_layers(&me->ldata, CD_MLOOPUV);
/* write <source> for each layer
* each <source> will get id like meshName + "map-channel-1" */
int active_uv_index = CustomData_get_active_layer_index(&me->ldata, CD_MLOOPUV);
for (int a = 0; a < num_layers; a++) {
int layer_index = CustomData_get_layer_index_n(&me->ldata, CD_MLOOPUV, a);
if (!this->export_settings.get_active_uv_only() || layer_index == active_uv_index) {
MLoopUV *mloops = (MLoopUV *)CustomData_get_layer_n(&me->ldata, CD_MLOOPUV, a);
COLLADASW::FloatSourceF source(mSW);
std::string layer_id = makeTexcoordSourceId(
geom_id, a, this->export_settings.get_active_uv_only());
source.setId(layer_id);
source.setArrayId(layer_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(totuv);
source.setAccessorStride(2);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
param.push_back("S");
param.push_back("T");
source.prepareToAppendValues();
for (const int i : polys.index_range()) {
const MPoly *mpoly = &polys[i];
MLoopUV *mloop = mloops + mpoly->loopstart;
for (int j = 0; j < mpoly->totloop; j++) {
source.appendValues(mloop[j].uv[0], mloop[j].uv[1]);
}
}
source.finish();
}
}
}
bool operator<(const Normal &a, const Normal &b)
{
/* Only needed to sort normal vectors and find() them later in a map. */
return a.x < b.x || (a.x == b.x && (a.y < b.y || (a.y == b.y && a.z < b.z)));
}
void GeometryExporter::createNormalsSource(std::string geom_id, Mesh *me, std::vector<Normal> &nor)
{
COLLADASW::FloatSourceF source(mSW);
source.setId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::NORMAL));
source.setArrayId(getIdBySemantics(geom_id, COLLADASW::InputSemantic::NORMAL) + ARRAY_ID_SUFFIX);
source.setAccessorCount(ulong(nor.size()));
source.setAccessorStride(3);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
param.push_back("X");
param.push_back("Y");
param.push_back("Z");
source.prepareToAppendValues();
std::vector<Normal>::iterator it;
for (it = nor.begin(); it != nor.end(); it++) {
Normal &n = *it;
Vector no{n.x, n.y, n.z};
if (export_settings.get_apply_global_orientation()) {
bc_add_global_transform(no, export_settings.get_global_transform());
}
source.appendValues(no[0], no[1], no[2]);
}
source.finish();
}
void GeometryExporter::create_normals(std::vector<Normal> &normals,
std::vector<BCPolygonNormalsIndices> &polygons_normals,
Mesh *me)
{
std::map<Normal, uint> shared_normal_indices;
int last_normal_index = -1;
const Span<float3> positions = me->vert_positions();
const float(*vert_normals)[3] = BKE_mesh_vertex_normals_ensure(me);
const Span<MPoly> polys = me->polys();
const Span<MLoop> loops = me->loops();
const float(*lnors)[3] = nullptr;
bool use_custom_normals = false;
BKE_mesh_calc_normals_split(me);
if (CustomData_has_layer(&me->ldata, CD_NORMAL)) {
lnors = (float(*)[3])CustomData_get_layer(&me->ldata, CD_NORMAL);
use_custom_normals = true;
}
for (const int poly_index : polys.index_range()) {
const MPoly *mpoly = &polys[poly_index];
bool use_vertex_normals = use_custom_normals || mpoly->flag & ME_SMOOTH;
if (!use_vertex_normals) {
/* For flat faces use face normal as vertex normal: */
float vector[3];
BKE_mesh_calc_poly_normal(mpoly,
&loops[mpoly->loopstart],
reinterpret_cast<const float(*)[3]>(positions.data()),
vector);
Normal n = {vector[0], vector[1], vector[2]};
normals.push_back(n);
last_normal_index++;
}
BCPolygonNormalsIndices poly_indices;
for (int loop_index = 0; loop_index < mpoly->totloop; loop_index++) {
uint loop_idx = mpoly->loopstart + loop_index;
if (use_vertex_normals) {
float normalized[3];
if (use_custom_normals) {
normalize_v3_v3(normalized, lnors[loop_idx]);
}
else {
copy_v3_v3(normalized, vert_normals[loops[loop_index].v]);
normalize_v3(normalized);
}
Normal n = {normalized[0], normalized[1], normalized[2]};
if (shared_normal_indices.find(n) != shared_normal_indices.end()) {
poly_indices.add_index(shared_normal_indices[n]);
}
else {
last_normal_index++;
poly_indices.add_index(last_normal_index);
shared_normal_indices[n] = last_normal_index;
normals.push_back(n);
}
}
else {
poly_indices.add_index(last_normal_index);
}
}
polygons_normals.push_back(poly_indices);
}
}
std::string GeometryExporter::getIdBySemantics(std::string geom_id,
COLLADASW::InputSemantic::Semantics type,
std::string other_suffix)
{
return geom_id + getSuffixBySemantic(type) + other_suffix;
}
COLLADASW::URI GeometryExporter::getUrlBySemantics(std::string geom_id,
COLLADASW::InputSemantic::Semantics type,
std::string other_suffix)
{
std::string id(getIdBySemantics(geom_id, type, other_suffix));
return COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, id);
}
COLLADASW::URI GeometryExporter::makeUrl(std::string id)
{
return COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, id);
}