This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/geometry/intern/add_curves_on_mesh.cc
Jacques Lucke 1c05f30e4d Curves: add warning when invalid uv map is used when adding curves
UV maps that are used for surface attachment must not have overlapping
uv islands, because then the same uv coordinate would correspond to
multiple surface positions.

Ref T99936.
2022-07-25 11:42:27 +02:00

377 lines
16 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include "BLI_length_parameterize.hh"
#include "BKE_attribute_math.hh"
#include "BKE_mesh_sample.hh"
#include "GEO_add_curves_on_mesh.hh"
#include "GEO_reverse_uv_sampler.hh"
/**
* The code below uses a suffix naming convention to indicate the coordinate space:
* cu: Local space of the curves object that is being edited.
* su: Local space of the surface object.
*/
namespace blender::geometry {
using bke::CurvesGeometry;
struct NeighborCurve {
/* Curve index of the neighbor. */
int index;
/* The weights of all neighbors of a new curve add up to 1. */
float weight;
};
static constexpr int max_neighbors = 5;
using NeighborCurves = Vector<NeighborCurve, max_neighbors>;
float3 compute_surface_point_normal(const MLoopTri &looptri,
const float3 &bary_coord,
const Span<float3> corner_normals)
{
const int l0 = looptri.tri[0];
const int l1 = looptri.tri[1];
const int l2 = looptri.tri[2];
const float3 &l0_normal = corner_normals[l0];
const float3 &l1_normal = corner_normals[l1];
const float3 &l2_normal = corner_normals[l2];
const float3 normal = math::normalize(
attribute_math::mix3(bary_coord, l0_normal, l1_normal, l2_normal));
return normal;
}
static void initialize_straight_curve_positions(const float3 &p1,
const float3 &p2,
MutableSpan<float3> r_positions)
{
const float step = 1.0f / (float)(r_positions.size() - 1);
for (const int i : r_positions.index_range()) {
r_positions[i] = math::interpolate(p1, p2, i * step);
}
}
static Array<NeighborCurves> find_curve_neighbors(const Span<float3> root_positions,
const KDTree_3d &old_roots_kdtree)
{
const int tot_added_curves = root_positions.size();
Array<NeighborCurves> neighbors_per_curve(tot_added_curves);
threading::parallel_for(IndexRange(tot_added_curves), 128, [&](const IndexRange range) {
for (const int i : range) {
const float3 root = root_positions[i];
std::array<KDTreeNearest_3d, max_neighbors> nearest_n;
const int found_neighbors = BLI_kdtree_3d_find_nearest_n(
&old_roots_kdtree, root, nearest_n.data(), max_neighbors);
float tot_weight = 0.0f;
for (const int neighbor_i : IndexRange(found_neighbors)) {
KDTreeNearest_3d &nearest = nearest_n[neighbor_i];
const float weight = 1.0f / std::max(nearest.dist, 0.00001f);
tot_weight += weight;
neighbors_per_curve[i].append({nearest.index, weight});
}
/* Normalize weights. */
for (NeighborCurve &neighbor : neighbors_per_curve[i]) {
neighbor.weight /= tot_weight;
}
}
});
return neighbors_per_curve;
}
template<typename T, typename GetValueF>
void interpolate_from_neighbors(const Span<NeighborCurves> neighbors_per_curve,
const T &fallback,
const GetValueF &get_value_from_neighbor,
MutableSpan<T> r_interpolated_values)
{
attribute_math::DefaultMixer<T> mixer{r_interpolated_values};
threading::parallel_for(r_interpolated_values.index_range(), 512, [&](const IndexRange range) {
for (const int i : range) {
const NeighborCurves &neighbors = neighbors_per_curve[i];
if (neighbors.is_empty()) {
mixer.mix_in(i, fallback, 1.0f);
}
else {
for (const NeighborCurve &neighbor : neighbors) {
const T neighbor_value = get_value_from_neighbor(neighbor.index);
mixer.mix_in(i, neighbor_value, neighbor.weight);
}
}
}
});
mixer.finalize();
}
static void interpolate_position_without_interpolation(
CurvesGeometry &curves,
const int old_curves_num,
const Span<float3> root_positions_cu,
const Span<float> new_lengths_cu,
const Span<float3> new_normals_su,
const float4x4 &surface_to_curves_normal_mat)
{
const int added_curves_num = root_positions_cu.size();
MutableSpan<float3> positions_cu = curves.positions_for_write();
threading::parallel_for(IndexRange(added_curves_num), 256, [&](const IndexRange range) {
for (const int i : range) {
const int curve_i = old_curves_num + i;
const IndexRange points = curves.points_for_curve(curve_i);
const float3 &root_cu = root_positions_cu[i];
const float length = new_lengths_cu[i];
const float3 &normal_su = new_normals_su[i];
const float3 normal_cu = math::normalize(surface_to_curves_normal_mat * normal_su);
const float3 tip_cu = root_cu + length * normal_cu;
initialize_straight_curve_positions(root_cu, tip_cu, positions_cu.slice(points));
}
});
}
static void interpolate_position_with_interpolation(CurvesGeometry &curves,
const Span<float3> root_positions_cu,
const Span<NeighborCurves> neighbors_per_curve,
const int old_curves_num,
const Span<float> new_lengths_cu,
const Span<float3> new_normals_su,
const bke::CurvesSurfaceTransforms &transforms,
const ReverseUVSampler &reverse_uv_sampler,
const Span<float3> corner_normals_su)
{
MutableSpan<float3> positions_cu = curves.positions_for_write();
const int added_curves_num = root_positions_cu.size();
const Span<float2> uv_coords = curves.surface_uv_coords();
threading::parallel_for(IndexRange(added_curves_num), 256, [&](const IndexRange range) {
for (const int added_curve_i : range) {
const NeighborCurves &neighbors = neighbors_per_curve[added_curve_i];
const int curve_i = old_curves_num + added_curve_i;
const IndexRange points = curves.points_for_curve(curve_i);
const float length_cu = new_lengths_cu[added_curve_i];
const float3 &normal_su = new_normals_su[added_curve_i];
const float3 normal_cu = math::normalize(transforms.surface_to_curves_normal * normal_su);
const float3 &root_cu = root_positions_cu[added_curve_i];
if (neighbors.is_empty()) {
/* If there are no neighbors, just make a straight line. */
const float3 tip_cu = root_cu + length_cu * normal_cu;
initialize_straight_curve_positions(root_cu, tip_cu, positions_cu.slice(points));
continue;
}
positions_cu.slice(points).fill(root_cu);
for (const NeighborCurve &neighbor : neighbors) {
const int neighbor_curve_i = neighbor.index;
const float2 neighbor_uv = uv_coords[neighbor_curve_i];
const ReverseUVSampler::Result result = reverse_uv_sampler.sample(neighbor_uv);
if (result.type != ReverseUVSampler::ResultType::Ok) {
continue;
}
const float3 neighbor_normal_su = compute_surface_point_normal(
*result.looptri, result.bary_weights, corner_normals_su);
const float3 neighbor_normal_cu = math::normalize(transforms.surface_to_curves_normal *
neighbor_normal_su);
/* The rotation matrix used to transform relative coordinates of the neighbor curve
* to the new curve. */
float normal_rotation_cu[3][3];
rotation_between_vecs_to_mat3(normal_rotation_cu, neighbor_normal_cu, normal_cu);
const IndexRange neighbor_points = curves.points_for_curve(neighbor_curve_i);
const float3 &neighbor_root_cu = positions_cu[neighbor_points[0]];
/* Sample the positions on neighbors and mix them into the final positions of the curve.
* Resampling is necessary if the length of the new curve does not match the length of the
* neighbors or the number of handle points is different.
*
* TODO: The lengths can be cached so they aren't recomputed if a curve is a neighbor for
* multiple new curves. Also, allocations could be avoided by reusing some arrays. */
const Span<float3> neighbor_positions_cu = positions_cu.slice(neighbor_points);
if (neighbor_positions_cu.size() == 1) {
/* Skip interpolating positions from neighbors with only one point. */
continue;
}
Array<float, 32> lengths(length_parameterize::segments_num(neighbor_points.size(), false));
length_parameterize::accumulate_lengths<float3>(neighbor_positions_cu, false, lengths);
const float neighbor_length_cu = lengths.last();
Array<float, 32> sample_lengths(points.size());
const float length_factor = std::min(1.0f, length_cu / neighbor_length_cu);
const float resample_factor = (1.0f / (points.size() - 1.0f)) * length_factor;
for (const int i : sample_lengths.index_range()) {
sample_lengths[i] = i * resample_factor * neighbor_length_cu;
}
Array<int, 32> indices(points.size());
Array<float, 32> factors(points.size());
length_parameterize::sample_at_lengths(lengths, sample_lengths, indices, factors);
for (const int i : IndexRange(points.size())) {
const float3 sample_cu = math::interpolate(neighbor_positions_cu[indices[i]],
neighbor_positions_cu[indices[i] + 1],
factors[i]);
const float3 relative_to_root_cu = sample_cu - neighbor_root_cu;
float3 rotated_relative_coord = relative_to_root_cu;
mul_m3_v3(normal_rotation_cu, rotated_relative_coord);
positions_cu[points[i]] += neighbor.weight * rotated_relative_coord;
}
}
}
});
}
AddCurvesOnMeshOutputs add_curves_on_mesh(CurvesGeometry &curves,
const AddCurvesOnMeshInputs &inputs)
{
AddCurvesOnMeshOutputs outputs;
const bool use_interpolation = inputs.interpolate_length || inputs.interpolate_point_count ||
inputs.interpolate_shape;
Vector<float3> root_positions_cu;
Vector<float3> bary_coords;
Vector<const MLoopTri *> looptris;
Vector<float2> used_uvs;
/* Find faces that the passed in uvs belong to. */
for (const int i : inputs.uvs.index_range()) {
const float2 &uv = inputs.uvs[i];
const ReverseUVSampler::Result result = inputs.reverse_uv_sampler->sample(uv);
if (result.type != ReverseUVSampler::ResultType::Ok) {
outputs.uv_error = true;
continue;
}
const MLoopTri &looptri = *result.looptri;
bary_coords.append(result.bary_weights);
looptris.append(&looptri);
const float3 root_position_su = attribute_math::mix3<float3>(
result.bary_weights,
inputs.surface->mvert[inputs.surface->mloop[looptri.tri[0]].v].co,
inputs.surface->mvert[inputs.surface->mloop[looptri.tri[1]].v].co,
inputs.surface->mvert[inputs.surface->mloop[looptri.tri[2]].v].co);
root_positions_cu.append(inputs.transforms->surface_to_curves * root_position_su);
used_uvs.append(uv);
}
Array<NeighborCurves> neighbors_per_curve;
if (use_interpolation) {
BLI_assert(inputs.old_roots_kdtree != nullptr);
neighbors_per_curve = find_curve_neighbors(root_positions_cu, *inputs.old_roots_kdtree);
}
const int added_curves_num = root_positions_cu.size();
const int old_points_num = curves.points_num();
const int old_curves_num = curves.curves_num();
const int new_curves_num = old_curves_num + added_curves_num;
/* Grow number of curves first, so that the offsets array can be filled. */
curves.resize(old_points_num, new_curves_num);
/* Compute new curve offsets. */
MutableSpan<int> curve_offsets = curves.offsets_for_write();
MutableSpan<int> new_point_counts_per_curve = curve_offsets.take_back(added_curves_num);
if (inputs.interpolate_point_count) {
interpolate_from_neighbors<int>(
neighbors_per_curve,
inputs.fallback_point_count,
[&](const int curve_i) { return curves.points_for_curve(curve_i).size(); },
new_point_counts_per_curve);
}
else {
new_point_counts_per_curve.fill(inputs.fallback_point_count);
}
for (const int i : IndexRange(added_curves_num)) {
curve_offsets[old_curves_num + i + 1] += curve_offsets[old_curves_num + i];
}
const int new_points_num = curves.offsets().last();
curves.resize(new_points_num, new_curves_num);
MutableSpan<float3> positions_cu = curves.positions_for_write();
/* Initialize attachment information. */
MutableSpan<float2> surface_uv_coords = curves.surface_uv_coords_for_write();
surface_uv_coords.take_back(added_curves_num).copy_from(used_uvs);
/* Determine length of new curves. */
Array<float> new_lengths_cu(added_curves_num);
if (inputs.interpolate_length) {
interpolate_from_neighbors<float>(
neighbors_per_curve,
inputs.fallback_curve_length,
[&](const int curve_i) {
const IndexRange points = curves.points_for_curve(curve_i);
float length = 0.0f;
for (const int segment_i : points.drop_back(1)) {
const float3 &p1 = positions_cu[segment_i];
const float3 &p2 = positions_cu[segment_i + 1];
length += math::distance(p1, p2);
}
return length;
},
new_lengths_cu);
}
else {
new_lengths_cu.fill(inputs.fallback_curve_length);
}
/* Find surface normal at root points. */
Array<float3> new_normals_su(added_curves_num);
threading::parallel_for(IndexRange(added_curves_num), 256, [&](const IndexRange range) {
for (const int i : range) {
new_normals_su[i] = compute_surface_point_normal(
*looptris[i], bary_coords[i], inputs.corner_normals_su);
}
});
/* Update selection arrays when available. */
const VArray<float> points_selection = curves.selection_point_float();
if (points_selection.is_span()) {
MutableSpan<float> points_selection_span = curves.selection_point_float_for_write();
points_selection_span.drop_front(old_points_num).fill(1.0f);
}
const VArray<float> curves_selection = curves.selection_curve_float();
if (curves_selection.is_span()) {
MutableSpan<float> curves_selection_span = curves.selection_curve_float_for_write();
curves_selection_span.drop_front(old_curves_num).fill(1.0f);
}
/* Initialize position attribute. */
if (inputs.interpolate_shape) {
interpolate_position_with_interpolation(curves,
root_positions_cu,
neighbors_per_curve,
old_curves_num,
new_lengths_cu,
new_normals_su,
*inputs.transforms,
*inputs.reverse_uv_sampler,
inputs.corner_normals_su);
}
else {
interpolate_position_without_interpolation(curves,
old_curves_num,
root_positions_cu,
new_lengths_cu,
new_normals_su,
inputs.transforms->surface_to_curves_normal);
}
/* Set curve types. */
MutableSpan<int8_t> types_span = curves.curve_types_for_write();
types_span.drop_front(old_curves_num).fill(CURVE_TYPE_CATMULL_ROM);
curves.update_curve_types();
return outputs;
}
} // namespace blender::geometry