2581 lines
70 KiB
C
2581 lines
70 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) Blender Foundation
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/blenkernel/intern/collision.c
|
|
* \ingroup bke
|
|
*/
|
|
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BKE_cloth.h"
|
|
|
|
#include "DNA_cloth_types.h"
|
|
#include "DNA_group_types.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_object_force.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_edgehash.h"
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_ghash.h"
|
|
#include "BLI_memarena.h"
|
|
#include "BLI_rand.h"
|
|
|
|
#include "BKE_DerivedMesh.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_scene.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_modifier.h"
|
|
|
|
#include "BKE_DerivedMesh.h"
|
|
#ifdef USE_BULLET
|
|
#include "Bullet-C-Api.h"
|
|
#endif
|
|
#include "BLI_kdopbvh.h"
|
|
#include "BKE_collision.h"
|
|
|
|
#ifdef WITH_ELTOPO
|
|
#include "eltopo-capi.h"
|
|
#endif
|
|
|
|
|
|
/***********************************
|
|
Collision modifier code start
|
|
***********************************/
|
|
|
|
/* step is limited from 0 (frame start position) to 1 (frame end position) */
|
|
void collision_move_object ( CollisionModifierData *collmd, float step, float prevstep )
|
|
{
|
|
float tv[3] = {0, 0, 0};
|
|
unsigned int i = 0;
|
|
|
|
for ( i = 0; i < collmd->numverts; i++ )
|
|
{
|
|
VECSUB ( tv, collmd->xnew[i].co, collmd->x[i].co );
|
|
VECADDS ( collmd->current_x[i].co, collmd->x[i].co, tv, prevstep );
|
|
VECADDS ( collmd->current_xnew[i].co, collmd->x[i].co, tv, step );
|
|
VECSUB ( collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co );
|
|
}
|
|
|
|
bvhtree_update_from_mvert ( collmd->bvhtree, collmd->mfaces, collmd->numfaces, collmd->current_x, collmd->current_xnew, collmd->numverts, 1 );
|
|
}
|
|
|
|
BVHTree *bvhtree_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int UNUSED(numverts), float epsilon )
|
|
{
|
|
BVHTree *tree;
|
|
float co[12];
|
|
unsigned int i;
|
|
MFace *tface = mfaces;
|
|
|
|
tree = BLI_bvhtree_new ( numfaces*2, epsilon, 4, 26 );
|
|
|
|
// fill tree
|
|
for ( i = 0; i < numfaces; i++, tface++ )
|
|
{
|
|
copy_v3_v3 ( &co[0*3], x[tface->v1].co );
|
|
copy_v3_v3 ( &co[1*3], x[tface->v2].co );
|
|
copy_v3_v3 ( &co[2*3], x[tface->v3].co );
|
|
if ( tface->v4 )
|
|
copy_v3_v3 ( &co[3*3], x[tface->v4].co );
|
|
|
|
BLI_bvhtree_insert ( tree, i, co, ( mfaces->v4 ? 4 : 3 ) );
|
|
}
|
|
|
|
// balance tree
|
|
BLI_bvhtree_balance ( tree );
|
|
|
|
return tree;
|
|
}
|
|
|
|
void bvhtree_update_from_mvert ( BVHTree * bvhtree, MFace *faces, int numfaces, MVert *x, MVert *xnew, int UNUSED(numverts), int moving )
|
|
{
|
|
int i;
|
|
MFace *mfaces = faces;
|
|
float co[12], co_moving[12];
|
|
int ret = 0;
|
|
|
|
if ( !bvhtree )
|
|
return;
|
|
|
|
if ( x )
|
|
{
|
|
for ( i = 0; i < numfaces; i++, mfaces++ )
|
|
{
|
|
copy_v3_v3 ( &co[0*3], x[mfaces->v1].co );
|
|
copy_v3_v3 ( &co[1*3], x[mfaces->v2].co );
|
|
copy_v3_v3 ( &co[2*3], x[mfaces->v3].co );
|
|
if ( mfaces->v4 )
|
|
copy_v3_v3 ( &co[3*3], x[mfaces->v4].co );
|
|
|
|
// copy new locations into array
|
|
if ( moving && xnew )
|
|
{
|
|
// update moving positions
|
|
copy_v3_v3 ( &co_moving[0*3], xnew[mfaces->v1].co );
|
|
copy_v3_v3 ( &co_moving[1*3], xnew[mfaces->v2].co );
|
|
copy_v3_v3 ( &co_moving[2*3], xnew[mfaces->v3].co );
|
|
if ( mfaces->v4 )
|
|
copy_v3_v3 ( &co_moving[3*3], xnew[mfaces->v4].co );
|
|
|
|
ret = BLI_bvhtree_update_node ( bvhtree, i, co, co_moving, ( mfaces->v4 ? 4 : 3 ) );
|
|
}
|
|
else
|
|
{
|
|
ret = BLI_bvhtree_update_node ( bvhtree, i, co, NULL, ( mfaces->v4 ? 4 : 3 ) );
|
|
}
|
|
|
|
// check if tree is already full
|
|
if ( !ret )
|
|
break;
|
|
}
|
|
|
|
BLI_bvhtree_update_tree ( bvhtree );
|
|
}
|
|
}
|
|
|
|
/***********************************
|
|
Collision modifier code end
|
|
***********************************/
|
|
|
|
/**
|
|
* gsl_poly_solve_cubic -
|
|
*
|
|
* copied from SOLVE_CUBIC.C --> GSL
|
|
*/
|
|
|
|
#define mySWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)
|
|
#if 0 /* UNUSED */
|
|
static int
|
|
gsl_poly_solve_cubic (double a, double b, double c,
|
|
double *x0, double *x1, double *x2)
|
|
{
|
|
double q = (a * a - 3 * b);
|
|
double r = (2 * a * a * a - 9 * a * b + 27 * c);
|
|
|
|
double Q = q / 9;
|
|
double R = r / 54;
|
|
|
|
double Q3 = Q * Q * Q;
|
|
double R2 = R * R;
|
|
|
|
double CR2 = 729 * r * r;
|
|
double CQ3 = 2916 * q * q * q;
|
|
|
|
if (R == 0 && Q == 0)
|
|
{
|
|
*x0 = - a / 3 ;
|
|
*x1 = - a / 3 ;
|
|
*x2 = - a / 3 ;
|
|
return 3 ;
|
|
}
|
|
else if (CR2 == CQ3)
|
|
{
|
|
/* this test is actually R2 == Q3, written in a form suitable
|
|
for exact computation with integers */
|
|
|
|
/* Due to finite precision some double roots may be missed, and
|
|
considered to be a pair of complex roots z = x +/- epsilon i
|
|
close to the real axis. */
|
|
|
|
double sqrtQ = sqrt (Q);
|
|
|
|
if (R > 0)
|
|
{
|
|
*x0 = -2 * sqrtQ - a / 3;
|
|
*x1 = sqrtQ - a / 3;
|
|
*x2 = sqrtQ - a / 3;
|
|
}
|
|
else
|
|
{
|
|
*x0 = - sqrtQ - a / 3;
|
|
*x1 = - sqrtQ - a / 3;
|
|
*x2 = 2 * sqrtQ - a / 3;
|
|
}
|
|
return 3 ;
|
|
}
|
|
else if (CR2 < CQ3) /* equivalent to R2 < Q3 */
|
|
{
|
|
double sqrtQ = sqrt (Q);
|
|
double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
|
|
double theta = acos (R / sqrtQ3);
|
|
double norm = -2 * sqrtQ;
|
|
*x0 = norm * cos (theta / 3) - a / 3;
|
|
*x1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
|
|
*x2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;
|
|
|
|
/* Sort *x0, *x1, *x2 into increasing order */
|
|
|
|
if (*x0 > *x1)
|
|
mySWAP(*x0, *x1) ;
|
|
|
|
if (*x1 > *x2)
|
|
{
|
|
mySWAP(*x1, *x2) ;
|
|
|
|
if (*x0 > *x1)
|
|
mySWAP(*x0, *x1) ;
|
|
}
|
|
|
|
return 3;
|
|
}
|
|
else
|
|
{
|
|
double sgnR = (R >= 0 ? 1 : -1);
|
|
double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0/3.0);
|
|
double B = Q / A ;
|
|
*x0 = A + B - a / 3;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* gsl_poly_solve_quadratic
|
|
*
|
|
* copied from GSL
|
|
*/
|
|
static int
|
|
gsl_poly_solve_quadratic (double a, double b, double c,
|
|
double *x0, double *x1)
|
|
{
|
|
double disc = b * b - 4 * a * c;
|
|
|
|
if (a == 0) /* Handle linear case */
|
|
{
|
|
if (b == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
*x0 = -c / b;
|
|
return 1;
|
|
};
|
|
}
|
|
|
|
if (disc > 0)
|
|
{
|
|
if (b == 0)
|
|
{
|
|
double r = fabs (0.5 * sqrt (disc) / a);
|
|
*x0 = -r;
|
|
*x1 = r;
|
|
}
|
|
else
|
|
{
|
|
double sgnb = (b > 0 ? 1 : -1);
|
|
double temp = -0.5 * (b + sgnb * sqrt (disc));
|
|
double r1 = temp / a ;
|
|
double r2 = c / temp ;
|
|
|
|
if (r1 < r2)
|
|
{
|
|
*x0 = r1 ;
|
|
*x1 = r2 ;
|
|
}
|
|
else
|
|
{
|
|
*x0 = r2 ;
|
|
*x1 = r1 ;
|
|
}
|
|
}
|
|
return 2;
|
|
}
|
|
else if (disc == 0)
|
|
{
|
|
*x0 = -0.5 * b / a ;
|
|
*x1 = -0.5 * b / a ;
|
|
return 2 ;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
#endif /* UNUSED */
|
|
|
|
|
|
|
|
/*
|
|
* See Bridson et al. "Robust Treatment of Collision, Contact and Friction for Cloth Animation"
|
|
* page 4, left column
|
|
*/
|
|
#if 0
|
|
static int cloth_get_collision_time ( double a[3], double b[3], double c[3], double d[3], double e[3], double f[3], double solution[3] )
|
|
{
|
|
int num_sols = 0;
|
|
|
|
// x^0 - checked
|
|
double g = a[0] * c[1] * e[2] - a[0] * c[2] * e[1] +
|
|
a[1] * c[2] * e[0] - a[1] * c[0] * e[2] +
|
|
a[2] * c[0] * e[1] - a[2] * c[1] * e[0];
|
|
|
|
// x^1
|
|
double h = -b[2] * c[1] * e[0] + b[1] * c[2] * e[0] - a[2] * d[1] * e[0] +
|
|
a[1] * d[2] * e[0] + b[2] * c[0] * e[1] - b[0] * c[2] * e[1] +
|
|
a[2] * d[0] * e[1] - a[0] * d[2] * e[1] - b[1] * c[0] * e[2] +
|
|
b[0] * c[1] * e[2] - a[1] * d[0] * e[2] + a[0] * d[1] * e[2] -
|
|
a[2] * c[1] * f[0] + a[1] * c[2] * f[0] + a[2] * c[0] * f[1] -
|
|
a[0] * c[2] * f[1] - a[1] * c[0] * f[2] + a[0] * c[1] * f[2];
|
|
|
|
// x^2
|
|
double i = -b[2] * d[1] * e[0] + b[1] * d[2] * e[0] +
|
|
b[2] * d[0] * e[1] - b[0] * d[2] * e[1] -
|
|
b[1] * d[0] * e[2] + b[0] * d[1] * e[2] -
|
|
b[2] * c[1] * f[0] + b[1] * c[2] * f[0] -
|
|
a[2] * d[1] * f[0] + a[1] * d[2] * f[0] +
|
|
b[2] * c[0] * f[1] - b[0] * c[2] * f[1] +
|
|
a[2] * d[0] * f[1] - a[0] * d[2] * f[1] -
|
|
b[1] * c[0] * f[2] + b[0] * c[1] * f[2] -
|
|
a[1] * d[0] * f[2] + a[0] * d[1] * f[2];
|
|
|
|
// x^3 - checked
|
|
double j = -b[2] * d[1] * f[0] + b[1] * d[2] * f[0] +
|
|
b[2] * d[0] * f[1] - b[0] * d[2] * f[1] -
|
|
b[1] * d[0] * f[2] + b[0] * d[1] * f[2];
|
|
|
|
/*
|
|
printf("r1: %lf\n", a[0] * c[1] * e[2] - a[0] * c[2] * e[1]);
|
|
printf("r2: %lf\n", a[1] * c[2] * e[0] - a[1] * c[0] * e[2]);
|
|
printf("r3: %lf\n", a[2] * c[0] * e[1] - a[2] * c[1] * e[0]);
|
|
|
|
printf("x1 x: %f, y: %f, z: %f\n", a[0], a[1], a[2]);
|
|
printf("x2 x: %f, y: %f, z: %f\n", c[0], c[1], c[2]);
|
|
printf("x3 x: %f, y: %f, z: %f\n", e[0], e[1], e[2]);
|
|
|
|
printf("v1 x: %f, y: %f, z: %f\n", b[0], b[1], b[2]);
|
|
printf("v2 x: %f, y: %f, z: %f\n", d[0], d[1], d[2]);
|
|
printf("v3 x: %f, y: %f, z: %f\n", f[0], f[1], f[2]);
|
|
|
|
printf("t^3: %lf, t^2: %lf, t^1: %lf, t^0: %lf\n", j, i, h, g);
|
|
|
|
*/
|
|
// Solve cubic equation to determine times t1, t2, t3, when the collision will occur.
|
|
if ( ABS ( j ) > DBL_EPSILON )
|
|
{
|
|
i /= j;
|
|
h /= j;
|
|
g /= j;
|
|
num_sols = gsl_poly_solve_cubic ( i, h, g, &solution[0], &solution[1], &solution[2] );
|
|
}
|
|
else
|
|
{
|
|
num_sols = gsl_poly_solve_quadratic ( i, h, g, &solution[0], &solution[1] );
|
|
solution[2] = -1.0;
|
|
}
|
|
|
|
// printf("num_sols: %d, sol1: %lf, sol2: %lf, sol3: %lf\n", num_sols, solution[0], solution[1], solution[2]);
|
|
|
|
// Discard negative solutions
|
|
if ( ( num_sols >= 1 ) && ( solution[0] < DBL_EPSILON ) )
|
|
{
|
|
--num_sols;
|
|
solution[0] = solution[num_sols];
|
|
}
|
|
if ( ( num_sols >= 2 ) && ( solution[1] < DBL_EPSILON ) )
|
|
{
|
|
--num_sols;
|
|
solution[1] = solution[num_sols];
|
|
}
|
|
if ( ( num_sols == 3 ) && ( solution[2] < DBL_EPSILON ) )
|
|
{
|
|
--num_sols;
|
|
}
|
|
|
|
// Sort
|
|
if ( num_sols == 2 )
|
|
{
|
|
if ( solution[0] > solution[1] )
|
|
{
|
|
double tmp = solution[0];
|
|
solution[0] = solution[1];
|
|
solution[1] = tmp;
|
|
}
|
|
}
|
|
else if ( num_sols == 3 )
|
|
{
|
|
|
|
// Bubblesort
|
|
if ( solution[0] > solution[1] )
|
|
{
|
|
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
|
|
}
|
|
if ( solution[1] > solution[2] )
|
|
{
|
|
double tmp = solution[1]; solution[1] = solution[2]; solution[2] = tmp;
|
|
}
|
|
if ( solution[0] > solution[1] )
|
|
{
|
|
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
|
|
}
|
|
}
|
|
|
|
return num_sols;
|
|
}
|
|
#endif
|
|
|
|
|
|
// w3 is not perfect
|
|
static void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
|
|
{
|
|
double tempV1[3], tempV2[3], tempV4[3];
|
|
double a,b,c,d,e,f;
|
|
|
|
VECSUB ( tempV1, p1, p3 );
|
|
VECSUB ( tempV2, p2, p3 );
|
|
VECSUB ( tempV4, pv, p3 );
|
|
|
|
a = INPR ( tempV1, tempV1 );
|
|
b = INPR ( tempV1, tempV2 );
|
|
c = INPR ( tempV2, tempV2 );
|
|
e = INPR ( tempV1, tempV4 );
|
|
f = INPR ( tempV2, tempV4 );
|
|
|
|
d = ( a * c - b * b );
|
|
|
|
if ( ABS ( d ) < (double)ALMOST_ZERO )
|
|
{
|
|
*w1 = *w2 = *w3 = 1.0 / 3.0;
|
|
return;
|
|
}
|
|
|
|
w1[0] = ( float ) ( ( e * c - b * f ) / d );
|
|
|
|
if ( w1[0] < 0 )
|
|
w1[0] = 0;
|
|
|
|
w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
|
|
|
|
if ( w2[0] < 0 )
|
|
w2[0] = 0;
|
|
|
|
w3[0] = 1.0f - w1[0] - w2[0];
|
|
}
|
|
|
|
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
|
|
{
|
|
to[0] = to[1] = to[2] = 0;
|
|
VECADDMUL ( to, v1, w1 );
|
|
VECADDMUL ( to, v2, w2 );
|
|
VECADDMUL ( to, v3, w3 );
|
|
}
|
|
|
|
#ifndef WITH_ELTOPO
|
|
static int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
|
|
{
|
|
int result = 0;
|
|
Cloth *cloth1;
|
|
float w1, w2, w3, u1, u2, u3;
|
|
float v1[3], v2[3], relativeVelocity[3];
|
|
float magrelVel;
|
|
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
|
|
|
|
cloth1 = clmd->clothObject;
|
|
|
|
for ( ; collpair != collision_end; collpair++ )
|
|
{
|
|
// only handle static collisions here
|
|
if ( collpair->flag & COLLISION_IN_FUTURE )
|
|
continue;
|
|
|
|
// compute barycentric coordinates for both collision points
|
|
collision_compute_barycentric ( collpair->pa,
|
|
cloth1->verts[collpair->ap1].txold,
|
|
cloth1->verts[collpair->ap2].txold,
|
|
cloth1->verts[collpair->ap3].txold,
|
|
&w1, &w2, &w3 );
|
|
|
|
// was: txold
|
|
collision_compute_barycentric ( collpair->pb,
|
|
collmd->current_x[collpair->bp1].co,
|
|
collmd->current_x[collpair->bp2].co,
|
|
collmd->current_x[collpair->bp3].co,
|
|
&u1, &u2, &u3 );
|
|
|
|
// Calculate relative "velocity".
|
|
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
|
|
|
|
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
|
|
|
|
VECSUB ( relativeVelocity, v2, v1 );
|
|
|
|
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
|
|
magrelVel = INPR ( relativeVelocity, collpair->normal );
|
|
|
|
// printf("magrelVel: %f\n", magrelVel);
|
|
|
|
// Calculate masses of points.
|
|
// TODO
|
|
|
|
// If v_n_mag < 0 the edges are approaching each other.
|
|
if ( magrelVel > ALMOST_ZERO )
|
|
{
|
|
// Calculate Impulse magnitude to stop all motion in normal direction.
|
|
float magtangent = 0, repulse = 0, d = 0;
|
|
double impulse = 0.0;
|
|
float vrel_t_pre[3];
|
|
float temp[3], spf;
|
|
|
|
// calculate tangential velocity
|
|
copy_v3_v3 ( temp, collpair->normal );
|
|
mul_v3_fl( temp, magrelVel );
|
|
VECSUB ( vrel_t_pre, relativeVelocity, temp );
|
|
|
|
// Decrease in magnitude of relative tangential velocity due to coulomb friction
|
|
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
|
|
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01f * magrelVel, sqrtf( INPR ( vrel_t_pre,vrel_t_pre ) ) );
|
|
|
|
// Apply friction impulse.
|
|
if ( magtangent > ALMOST_ZERO )
|
|
{
|
|
normalize_v3( vrel_t_pre );
|
|
|
|
impulse = magtangent / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); // 2.0 *
|
|
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
|
|
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
|
|
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
|
|
}
|
|
|
|
// Apply velocity stopping impulse
|
|
// I_c = m * v_N / 2.0
|
|
// no 2.0 * magrelVel normally, but looks nicer DG
|
|
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
|
|
|
|
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
|
|
cloth1->verts[collpair->ap1].impulse_count++;
|
|
|
|
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
|
|
cloth1->verts[collpair->ap2].impulse_count++;
|
|
|
|
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
|
|
cloth1->verts[collpair->ap3].impulse_count++;
|
|
|
|
// Apply repulse impulse if distance too short
|
|
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
|
|
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
|
|
|
|
d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - collpair->distance;
|
|
if ( ( magrelVel < 0.1f*d*spf ) && ( d > ALMOST_ZERO ) )
|
|
{
|
|
repulse = MIN2 ( d*1.0f/spf, 0.1f*d*spf - magrelVel );
|
|
|
|
// stay on the safe side and clamp repulse
|
|
if ( impulse > ALMOST_ZERO )
|
|
repulse = MIN2 ( repulse, 5.0*impulse );
|
|
repulse = MAX2 ( impulse, repulse );
|
|
|
|
impulse = repulse / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
|
|
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
|
|
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
|
|
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
|
|
}
|
|
|
|
result = 1;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
#endif /* !WITH_ELTOPO */
|
|
|
|
#ifdef WITH_ELTOPO
|
|
typedef struct edgepairkey {
|
|
int a1, a2, b1, b2;
|
|
} edgepairkey;
|
|
|
|
unsigned int edgepair_hash(void *vkey)
|
|
{
|
|
edgepairkey *key = vkey;
|
|
int keys[4] = {key->a1, key->a2, key->b1, key->b2};
|
|
int i, j;
|
|
|
|
for (i=0; i<4; i++) {
|
|
for (j=0; j<3; j++) {
|
|
if (keys[j] >= keys[j+1]) {
|
|
SWAP(int, keys[j], keys[j+1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return keys[0]*101 + keys[1]*72 + keys[2]*53 + keys[3]*34;
|
|
}
|
|
|
|
int edgepair_cmp(const void *va, const void *vb)
|
|
{
|
|
edgepairkey *a = va, *b = vb;
|
|
int keysa[4] = {a->a1, a->a2, a->b1, a->b2};
|
|
int keysb[4] = {b->a1, b->a2, b->b1, b->b2};
|
|
int i;
|
|
|
|
for (i=0; i<4; i++) {
|
|
int j, ok=0;
|
|
for (j=0; j<4; j++) {
|
|
if (keysa[i] == keysa[j]) {
|
|
ok = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!ok)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_edgepairkey(edgepairkey *key, int a1, int a2, int b1, int b2)
|
|
{
|
|
key->a1 = a1;
|
|
key->a2 = a2;
|
|
key->b1 = b1;
|
|
key->b2 = b2;
|
|
}
|
|
|
|
/*an immense amount of duplication goes on here. . .a major performance hit, I'm sure*/
|
|
static CollPair* cloth_edge_collision ( ModifierData *md1, ModifierData *md2,
|
|
BVHTreeOverlap *overlap, CollPair *collpair,
|
|
GHash *visithash, MemArena *arena)
|
|
{
|
|
ClothModifierData *clmd = ( ClothModifierData * ) md1;
|
|
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
|
|
MFace *face1=NULL, *face2 = NULL;
|
|
ClothVertex *verts1 = clmd->clothObject->verts;
|
|
double distance = 0;
|
|
edgepairkey *key, tstkey;
|
|
float epsilon1 = clmd->coll_parms->epsilon;
|
|
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
|
|
float no[3], uv[3], t, relnor;
|
|
int i, i1, i2, i3, i4, i5, i6;
|
|
Cloth *cloth = clmd->clothObject;
|
|
float n1[3], n2[3], off[3], v1[2][3], v2[2][3], v3[2][3], v4[2][3], v5[2][3], v6[2][3];
|
|
void **verts[] = {v1, v2, v3, v4, v5, v6};
|
|
int j, ret, bp1, bp2, bp3, ap1, ap2, ap3, table[6];
|
|
|
|
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
|
|
face2 = & ( collmd->mfaces[overlap->indexB] );
|
|
|
|
// check all 4 possible collisions
|
|
for ( i = 0; i < 4; i++ )
|
|
{
|
|
if ( i == 0 )
|
|
{
|
|
// fill faceA
|
|
ap1 = face1->v1;
|
|
ap2 = face1->v2;
|
|
ap3 = face1->v3;
|
|
|
|
// fill faceB
|
|
bp1 = face2->v1;
|
|
bp2 = face2->v2;
|
|
bp3 = face2->v3;
|
|
}
|
|
else if ( i == 1 )
|
|
{
|
|
if ( face1->v4 )
|
|
{
|
|
// fill faceA
|
|
ap1 = face1->v1;
|
|
ap2 = face1->v3;
|
|
ap3 = face1->v4;
|
|
|
|
// fill faceB
|
|
bp1 = face2->v1;
|
|
bp2 = face2->v2;
|
|
bp3 = face2->v3;
|
|
}
|
|
else {
|
|
continue;
|
|
}
|
|
}
|
|
if ( i == 2 )
|
|
{
|
|
if ( face2->v4 )
|
|
{
|
|
// fill faceA
|
|
ap1 = face1->v1;
|
|
ap2 = face1->v2;
|
|
ap3 = face1->v3;
|
|
|
|
// fill faceB
|
|
bp1 = face2->v1;
|
|
bp2 = face2->v3;
|
|
bp3 = face2->v4;
|
|
}
|
|
else {
|
|
continue;
|
|
}
|
|
}
|
|
else if ( i == 3 )
|
|
{
|
|
if ( face1->v4 && face2->v4 )
|
|
{
|
|
// fill faceA
|
|
ap1 = face1->v1;
|
|
ap2 = face1->v3;
|
|
ap3 = face1->v4;
|
|
|
|
// fill faceB
|
|
bp1 = face2->v1;
|
|
bp2 = face2->v3;
|
|
bp3 = face2->v4;
|
|
}
|
|
else {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
copy_v3_v3(v1[0], cloth->verts[ap1].txold);
|
|
copy_v3_v3(v1[1], cloth->verts[ap1].tx);
|
|
copy_v3_v3(v2[0], cloth->verts[ap2].txold);
|
|
copy_v3_v3(v2[1], cloth->verts[ap2].tx);
|
|
copy_v3_v3(v3[0], cloth->verts[ap3].txold);
|
|
copy_v3_v3(v3[1], cloth->verts[ap3].tx);
|
|
|
|
copy_v3_v3(v4[0], collmd->current_x[bp1].co);
|
|
copy_v3_v3(v4[1], collmd->current_xnew[bp1].co);
|
|
copy_v3_v3(v5[0], collmd->current_x[bp2].co);
|
|
copy_v3_v3(v5[1], collmd->current_xnew[bp2].co);
|
|
copy_v3_v3(v6[0], collmd->current_x[bp3].co);
|
|
copy_v3_v3(v6[1], collmd->current_xnew[bp3].co);
|
|
|
|
normal_tri_v3(n2, v4[1], v5[1], v6[1]);
|
|
|
|
/*offset new positions a bit, to account for margins*/
|
|
i1 = ap1; i2 = ap2; i3 = ap3;
|
|
i4 = bp1; i5 = bp2; i6 = bp3;
|
|
|
|
for (j=0; j<3; j++) {
|
|
int collp1, collp2, k, j2 = (j+1)%3;
|
|
|
|
table[0] = ap1; table[1] = ap2; table[2] = ap3;
|
|
table[3] = bp1; table[4] = bp2; table[5] = bp3;
|
|
for (k=0; k<3; k++) {
|
|
float p1[3], p2[3];
|
|
int k2 = (k+1)%3;
|
|
|
|
get_edgepairkey(&tstkey, table[j], table[j2], table[k+3], table[k2+3]);
|
|
//if (BLI_ghash_haskey(visithash, &tstkey))
|
|
// continue;
|
|
|
|
key = BLI_memarena_alloc(arena, sizeof(edgepairkey));
|
|
*key = tstkey;
|
|
BLI_ghash_insert(visithash, key, NULL);
|
|
|
|
sub_v3_v3v3(p1, verts[j], verts[j2]);
|
|
sub_v3_v3v3(p2, verts[k+3], verts[k2+3]);
|
|
|
|
cross_v3_v3v3(off, p1, p2);
|
|
normalize_v3(off);
|
|
|
|
if (dot_v3v3(n2, off) < 0.0)
|
|
negate_v3(off);
|
|
|
|
mul_v3_fl(off, epsilon1 + epsilon2 + ALMOST_ZERO);
|
|
copy_v3_v3(p1, verts[k+3]);
|
|
copy_v3_v3(p2, verts[k2+3]);
|
|
add_v3_v3(p1, off);
|
|
add_v3_v3(p2, off);
|
|
|
|
ret = eltopo_line_line_moving_isect_v3v3_f(verts[j], table[j], verts[j2], table[j2],
|
|
p1, table[k+3], p2, table[k2+3],
|
|
no, uv, &t, &relnor);
|
|
/*cloth vert versus coll face*/
|
|
if (ret) {
|
|
collpair->ap1 = table[j]; collpair->ap2 = table[j2];
|
|
collpair->bp1 = table[k+3]; collpair->bp2 = table[k2+3];
|
|
|
|
/*I'm not sure if this is correct, but hopefully it's
|
|
better then simply ignoring back edges*/
|
|
if (dot_v3v3(n2, no) < 0.0) {
|
|
negate_v3(no);
|
|
}
|
|
|
|
copy_v3_v3(collpair->normal, no);
|
|
mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
|
|
collpair->distance = relnor;
|
|
collpair->time = t;
|
|
|
|
copy_v2_v2(collpair->bary, uv);
|
|
|
|
collpair->flag = COLLISION_IS_EDGES;
|
|
collpair++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return collpair;
|
|
}
|
|
|
|
static int cloth_edge_collision_response_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
|
|
{
|
|
int result = 0;
|
|
Cloth *cloth1;
|
|
float w1, w2;
|
|
float v1[3], v2[3], relativeVelocity[3];
|
|
float magrelVel, pimpulse[3];
|
|
|
|
cloth1 = clmd->clothObject;
|
|
|
|
for ( ; collpair != collision_end; collpair++ )
|
|
{
|
|
if (!(collpair->flag & COLLISION_IS_EDGES))
|
|
continue;
|
|
|
|
// was: txold
|
|
w1 = collpair->bary[0]; w2 = collpair->bary[1];
|
|
|
|
// Calculate relative "velocity".
|
|
VECADDFAC(v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, w1);
|
|
VECADDFAC(v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, w2);
|
|
|
|
VECSUB ( relativeVelocity, v2, v1);
|
|
|
|
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
|
|
magrelVel = INPR ( relativeVelocity, collpair->normal );
|
|
|
|
// If v_n_mag < 0 the edges are approaching each other.
|
|
if ( magrelVel > ALMOST_ZERO )
|
|
{
|
|
// Calculate Impulse magnitude to stop all motion in normal direction.
|
|
float magtangent = 0, repulse = 0, d = 0;
|
|
double impulse = 0.0;
|
|
float vrel_t_pre[3];
|
|
float temp[3], spf;
|
|
|
|
zero_v3(pimpulse);
|
|
|
|
// calculate tangential velocity
|
|
VECCOPY ( temp, collpair->normal );
|
|
mul_v3_fl( temp, magrelVel );
|
|
VECSUB ( vrel_t_pre, relativeVelocity, temp );
|
|
|
|
// Decrease in magnitude of relative tangential velocity due to coulomb friction
|
|
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
|
|
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
|
|
|
|
// Apply friction impulse.
|
|
if ( magtangent > ALMOST_ZERO )
|
|
{
|
|
normalize_v3( vrel_t_pre );
|
|
|
|
impulse = magtangent;
|
|
VECADDMUL ( pimpulse, vrel_t_pre, impulse);
|
|
}
|
|
|
|
// Apply velocity stopping impulse
|
|
// I_c = m * v_N / 2.0
|
|
// no 2.0 * magrelVel normally, but looks nicer DG
|
|
impulse = magrelVel;
|
|
|
|
mul_v3_fl(collpair->normal, 0.5);
|
|
VECADDMUL ( pimpulse, collpair->normal, impulse);
|
|
|
|
// Apply repulse impulse if distance too short
|
|
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
|
|
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
|
|
|
|
d = collpair->distance;
|
|
if ( ( magrelVel < 0.1*d*spf && ( d > ALMOST_ZERO ) ) )
|
|
{
|
|
repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
|
|
|
|
// stay on the safe side and clamp repulse
|
|
if ( impulse > ALMOST_ZERO )
|
|
repulse = MIN2 ( repulse, 5.0*impulse );
|
|
repulse = MAX2 ( impulse, repulse );
|
|
|
|
impulse = repulse / ( 5.0 ); // original 2.0 / 0.25
|
|
VECADDMUL ( pimpulse, collpair->normal, impulse);
|
|
}
|
|
|
|
w2 = 1.0f-w1;
|
|
if (w1 < 0.5)
|
|
w1 *= 2.0;
|
|
else
|
|
w2 *= 2.0;
|
|
|
|
VECADDFAC(cloth1->verts[collpair->ap1].impulse, cloth1->verts[collpair->ap1].impulse, pimpulse, w1*2.0);
|
|
VECADDFAC(cloth1->verts[collpair->ap2].impulse, cloth1->verts[collpair->ap2].impulse, pimpulse, w2*2.0);
|
|
|
|
cloth1->verts[collpair->ap1].impulse_count++;
|
|
cloth1->verts[collpair->ap2].impulse_count++;
|
|
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int cloth_collision_response_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
|
|
{
|
|
int result = 0;
|
|
Cloth *cloth1;
|
|
float w1, w2, w3, u1, u2, u3;
|
|
float v1[3], v2[3], relativeVelocity[3];
|
|
float magrelVel;
|
|
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
|
|
|
|
cloth1 = clmd->clothObject;
|
|
|
|
for ( ; collpair != collision_end; collpair++ )
|
|
{
|
|
if (collpair->flag & COLLISION_IS_EDGES)
|
|
continue;
|
|
|
|
if ( collpair->flag & COLLISION_USE_COLLFACE ) {
|
|
// was: txold
|
|
w1 = collpair->bary[0]; w2 = collpair->bary[1]; w3 = collpair->bary[2];
|
|
|
|
// Calculate relative "velocity".
|
|
collision_interpolateOnTriangle ( v1, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, w1, w2, w3);
|
|
|
|
VECSUB ( relativeVelocity, v1, cloth1->verts[collpair->collp].tv);
|
|
|
|
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
|
|
magrelVel = INPR ( relativeVelocity, collpair->normal );
|
|
|
|
// If v_n_mag < 0 the edges are approaching each other.
|
|
if ( magrelVel > ALMOST_ZERO )
|
|
{
|
|
// Calculate Impulse magnitude to stop all motion in normal direction.
|
|
float magtangent = 0, repulse = 0, d = 0;
|
|
double impulse = 0.0;
|
|
float vrel_t_pre[3];
|
|
float temp[3], spf;
|
|
|
|
// calculate tangential velocity
|
|
VECCOPY ( temp, collpair->normal );
|
|
mul_v3_fl( temp, magrelVel );
|
|
VECSUB ( vrel_t_pre, relativeVelocity, temp );
|
|
|
|
// Decrease in magnitude of relative tangential velocity due to coulomb friction
|
|
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
|
|
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
|
|
|
|
// Apply friction impulse.
|
|
if ( magtangent > ALMOST_ZERO )
|
|
{
|
|
normalize_v3( vrel_t_pre );
|
|
|
|
impulse = magtangent; // 2.0 *
|
|
VECADDMUL ( cloth1->verts[collpair->collp].impulse, vrel_t_pre, impulse);
|
|
}
|
|
|
|
// Apply velocity stopping impulse
|
|
// I_c = m * v_N / 2.0
|
|
// no 2.0 * magrelVel normally, but looks nicer DG
|
|
impulse = magrelVel/2.0;
|
|
|
|
VECADDMUL ( cloth1->verts[collpair->collp].impulse, collpair->normal, impulse);
|
|
cloth1->verts[collpair->collp].impulse_count++;
|
|
|
|
// Apply repulse impulse if distance too short
|
|
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
|
|
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
|
|
|
|
d = -collpair->distance;
|
|
if ( ( magrelVel < 0.1*d*spf ) && ( d > ALMOST_ZERO ) )
|
|
{
|
|
repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
|
|
|
|
// stay on the safe side and clamp repulse
|
|
if ( impulse > ALMOST_ZERO )
|
|
repulse = MIN2 ( repulse, 5.0*impulse );
|
|
repulse = MAX2 ( impulse, repulse );
|
|
|
|
impulse = repulse / ( 5.0 ); // original 2.0 / 0.25
|
|
VECADDMUL ( cloth1->verts[collpair->collp].impulse, collpair->normal, impulse);
|
|
}
|
|
|
|
result = 1;
|
|
}
|
|
} else {
|
|
w1 = collpair->bary[0]; w2 = collpair->bary[1]; w3 = collpair->bary[2];
|
|
|
|
// Calculate relative "velocity".
|
|
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
|
|
|
|
VECSUB ( relativeVelocity, collmd->current_v[collpair->collp].co, v1);
|
|
|
|
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
|
|
magrelVel = INPR ( relativeVelocity, collpair->normal );
|
|
|
|
// If v_n_mag < 0 the edges are approaching each other.
|
|
if ( magrelVel > ALMOST_ZERO )
|
|
{
|
|
// Calculate Impulse magnitude to stop all motion in normal direction.
|
|
float magtangent = 0, repulse = 0, d = 0;
|
|
double impulse = 0.0;
|
|
float vrel_t_pre[3], pimpulse[3] = {0.0f, 0.0f, 0.0f};
|
|
float temp[3], spf;
|
|
|
|
// calculate tangential velocity
|
|
VECCOPY ( temp, collpair->normal );
|
|
mul_v3_fl( temp, magrelVel );
|
|
VECSUB ( vrel_t_pre, relativeVelocity, temp );
|
|
|
|
// Decrease in magnitude of relative tangential velocity due to coulomb friction
|
|
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
|
|
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
|
|
|
|
// Apply friction impulse.
|
|
if ( magtangent > ALMOST_ZERO )
|
|
{
|
|
normalize_v3( vrel_t_pre );
|
|
|
|
impulse = magtangent; // 2.0 *
|
|
VECADDMUL ( pimpulse, vrel_t_pre, impulse);
|
|
}
|
|
|
|
// Apply velocity stopping impulse
|
|
// I_c = m * v_N / 2.0
|
|
// no 2.0 * magrelVel normally, but looks nicer DG
|
|
impulse = magrelVel/2.0;
|
|
|
|
VECADDMUL ( pimpulse, collpair->normal, impulse);
|
|
|
|
// Apply repulse impulse if distance too short
|
|
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
|
|
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
|
|
|
|
d = -collpair->distance;
|
|
if ( ( magrelVel < 0.1*d*spf ) && ( d > ALMOST_ZERO ) )
|
|
{
|
|
repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
|
|
|
|
// stay on the safe side and clamp repulse
|
|
if ( impulse > ALMOST_ZERO )
|
|
repulse = MIN2 ( repulse, 5.0*impulse );
|
|
repulse = MAX2 ( impulse, repulse );
|
|
|
|
impulse = repulse / ( 2.0 ); // original 2.0 / 0.25
|
|
VECADDMUL ( pimpulse, collpair->normal, impulse);
|
|
}
|
|
|
|
if (w1 < 0.5) w1 *= 2.0;
|
|
if (w2 < 0.5) w2 *= 2.0;
|
|
if (w3 < 0.5) w3 *= 2.0;
|
|
|
|
VECADDMUL(cloth1->verts[collpair->ap1].impulse, pimpulse, w1*2.0);
|
|
VECADDMUL(cloth1->verts[collpair->ap2].impulse, pimpulse, w2*2.0);
|
|
VECADDMUL(cloth1->verts[collpair->ap3].impulse, pimpulse, w3*2.0);
|
|
cloth1->verts[collpair->ap1].impulse_count++;
|
|
cloth1->verts[collpair->ap2].impulse_count++;
|
|
cloth1->verts[collpair->ap3].impulse_count++;
|
|
|
|
result = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
typedef struct tripairkey {
|
|
int p, a1, a2, a3;
|
|
} tripairkey;
|
|
|
|
unsigned int tripair_hash(void *vkey)
|
|
{
|
|
tripairkey *key = vkey;
|
|
int keys[4] = {key->p, key->a1, key->a2, key->a3};
|
|
int i, j;
|
|
|
|
for (i=0; i<4; i++) {
|
|
for (j=0; j<3; j++) {
|
|
if (keys[j] >= keys[j+1]) {
|
|
SWAP(int, keys[j], keys[j+1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return keys[0]*101 + keys[1]*72 + keys[2]*53 + keys[3]*34;
|
|
}
|
|
|
|
int tripair_cmp(const void *va, const void *vb)
|
|
{
|
|
tripairkey *a = va, *b = vb;
|
|
int keysa[4] = {a->p, a->a1, a->a2, a->a3};
|
|
int keysb[4] = {b->p, b->a1, b->a2, b->a3};
|
|
int i;
|
|
|
|
for (i=0; i<4; i++) {
|
|
int j, ok=0;
|
|
for (j=0; j<4; j++) {
|
|
if (keysa[i] == keysa[j]) {
|
|
ok = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!ok)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_tripairkey(tripairkey *key, int p, int a1, int a2, int a3)
|
|
{
|
|
key->a1 = a1;
|
|
key->a2 = a2;
|
|
key->a3 = a3;
|
|
key->p = p;
|
|
}
|
|
|
|
static int checkvisit(MemArena *arena, GHash *gh, int p, int a1, int a2, int a3)
|
|
{
|
|
tripairkey key, *key2;
|
|
|
|
get_tripairkey(&key, p, a1, a2, a3);
|
|
if (BLI_ghash_haskey(gh, &key))
|
|
return 1;
|
|
|
|
key2 = BLI_memarena_alloc(arena, sizeof(*key2));
|
|
*key2 = key;
|
|
BLI_ghash_insert(gh, key2, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cloth_point_tri_moving_v3v3_f(float v1[2][3], int i1, float v2[2][3], int i2,
|
|
float v3[2][3], int i3, float v4[2][3], int i4,
|
|
float normal[3], float bary[3], float *t,
|
|
float *relnor, GHash *gh, MemArena *arena)
|
|
{
|
|
if (checkvisit(arena, gh, i1, i2, i3, i4))
|
|
return 0;
|
|
|
|
return eltopo_point_tri_moving_v3v3_f(v1, i1, v2, i2, v3, i3, v4, i4, normal, bary, t, relnor);
|
|
}
|
|
|
|
static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap *overlap,
|
|
CollPair *collpair, double dt, GHash *gh, MemArena *arena)
|
|
{
|
|
ClothModifierData *clmd = ( ClothModifierData * ) md1;
|
|
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
|
|
MFace *face1=NULL, *face2 = NULL;
|
|
ClothVertex *verts1 = clmd->clothObject->verts;
|
|
double distance = 0;
|
|
float epsilon1 = clmd->coll_parms->epsilon;
|
|
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
|
|
float no[3], uv[3], t, relnor;
|
|
int i, i1, i2, i3, i4, i5, i6;
|
|
Cloth *cloth = clmd->clothObject;
|
|
float n1[3], sdis, p[3], l, n2[3], off[3], v1[2][3], v2[2][3], v3[2][3], v4[2][3], v5[2][3], v6[2][3];
|
|
int j, ret, bp1, bp2, bp3, ap1, ap2, ap3;
|
|
|
|
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
|
|
face2 = & ( collmd->mfaces[overlap->indexB] );
|
|
|
|
// check all 4 possible collisions
|
|
for ( i = 0; i < 4; i++ )
|
|
{
|
|
if ( i == 0 )
|
|
{
|
|
// fill faceA
|
|
ap1 = face1->v1;
|
|
ap2 = face1->v2;
|
|
ap3 = face1->v3;
|
|
|
|
// fill faceB
|
|
bp1 = face2->v1;
|
|
bp2 = face2->v2;
|
|
bp3 = face2->v3;
|
|
}
|
|
else if ( i == 1 )
|
|
{
|
|
if ( face1->v4 )
|
|
{
|
|
// fill faceA
|
|
ap1 = face1->v1;
|
|
ap2 = face1->v3;
|
|
ap3 = face1->v4;
|
|
|
|
// fill faceB
|
|
bp1 = face2->v1;
|
|
bp2 = face2->v2;
|
|
bp3 = face2->v3;
|
|
}
|
|
else {
|
|
continue;
|
|
}
|
|
}
|
|
if ( i == 2 )
|
|
{
|
|
if ( face2->v4 )
|
|
{
|
|
// fill faceA
|
|
ap1 = face1->v1;
|
|
ap2 = face1->v2;
|
|
ap3 = face1->v3;
|
|
|
|
// fill faceB
|
|
bp1 = face2->v1;
|
|
bp2 = face2->v3;
|
|
bp3 = face2->v4;
|
|
}
|
|
else {
|
|
continue;
|
|
}
|
|
}
|
|
else if ( i == 3 )
|
|
{
|
|
if ( face1->v4 && face2->v4 )
|
|
{
|
|
// fill faceA
|
|
ap1 = face1->v1;
|
|
ap2 = face1->v3;
|
|
ap3 = face1->v4;
|
|
|
|
// fill faceB
|
|
bp1 = face2->v1;
|
|
bp2 = face2->v3;
|
|
bp3 = face2->v4;
|
|
}
|
|
else {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
copy_v3_v3(v1[0], cloth->verts[ap1].txold);
|
|
copy_v3_v3(v1[1], cloth->verts[ap1].tx);
|
|
copy_v3_v3(v2[0], cloth->verts[ap2].txold);
|
|
copy_v3_v3(v2[1], cloth->verts[ap2].tx);
|
|
copy_v3_v3(v3[0], cloth->verts[ap3].txold);
|
|
copy_v3_v3(v3[1], cloth->verts[ap3].tx);
|
|
|
|
copy_v3_v3(v4[0], collmd->current_x[bp1].co);
|
|
copy_v3_v3(v4[1], collmd->current_xnew[bp1].co);
|
|
copy_v3_v3(v5[0], collmd->current_x[bp2].co);
|
|
copy_v3_v3(v5[1], collmd->current_xnew[bp2].co);
|
|
copy_v3_v3(v6[0], collmd->current_x[bp3].co);
|
|
copy_v3_v3(v6[1], collmd->current_xnew[bp3].co);
|
|
|
|
normal_tri_v3(n2, v4[1], v5[1], v6[1]);
|
|
|
|
sdis = clmd->coll_parms->distance_repel + epsilon2 + FLT_EPSILON;
|
|
|
|
/*apply a repulsion force, to help the solver along*/
|
|
copy_v3_v3(off, n2);
|
|
negate_v3(off);
|
|
if (isect_ray_plane_v3(v1[1], off, v4[1], v5[1], v6[1], &l, 0)) {
|
|
if (l >= 0.0 && l < sdis) {
|
|
mul_v3_fl(off, (l-sdis)*cloth->verts[ap1].mass*dt*clmd->coll_parms->repel_force*0.1);
|
|
|
|
add_v3_v3(cloth->verts[ap1].tv, off);
|
|
add_v3_v3(cloth->verts[ap2].tv, off);
|
|
add_v3_v3(cloth->verts[ap3].tv, off);
|
|
}
|
|
}
|
|
|
|
/*offset new positions a bit, to account for margins*/
|
|
copy_v3_v3(off, n2);
|
|
mul_v3_fl(off, epsilon1 + epsilon2 + ALMOST_ZERO);
|
|
add_v3_v3(v4[1], off); add_v3_v3(v5[1], off); add_v3_v3(v6[1], off);
|
|
|
|
i1 = ap1; i2 = ap2; i3 = ap3;
|
|
i4 = bp1+cloth->numverts; i5 = bp2+cloth->numverts; i6 = bp3+cloth->numverts;
|
|
|
|
for (j=0; j<6; j++) {
|
|
int collp;
|
|
|
|
switch (j) {
|
|
case 0:
|
|
ret = cloth_point_tri_moving_v3v3_f(v1, i1, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
|
|
collp = ap1;
|
|
break;
|
|
case 1:
|
|
collp = ap2;
|
|
ret = cloth_point_tri_moving_v3v3_f(v2, i2, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
|
|
break;
|
|
case 2:
|
|
collp = ap3;
|
|
ret = cloth_point_tri_moving_v3v3_f(v3, i3, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
|
|
break;
|
|
case 3:
|
|
collp = bp1;
|
|
ret = cloth_point_tri_moving_v3v3_f(v4, i4, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
|
|
break;
|
|
case 4:
|
|
collp = bp2;
|
|
ret = cloth_point_tri_moving_v3v3_f(v5, i5, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
|
|
break;
|
|
case 5:
|
|
collp = bp3;
|
|
ret = cloth_point_tri_moving_v3v3_f(v6, i6, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
|
|
break;
|
|
}
|
|
|
|
/*cloth vert versus coll face*/
|
|
if (ret && j < 3) {
|
|
collpair->bp1 = bp1; collpair->bp2 = bp2; collpair->bp3 = bp3;
|
|
collpair->collp = collp;
|
|
|
|
copy_v3_v3(collpair->normal, no);
|
|
mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
|
|
collpair->distance = relnor;
|
|
collpair->time = t;
|
|
|
|
copy_v3_v3(collpair->bary, uv);
|
|
|
|
collpair->flag = COLLISION_USE_COLLFACE;
|
|
collpair++;
|
|
} else if (ret && j >= 3) { /*coll vert versus cloth face*/
|
|
collpair->ap1 = ap1; collpair->ap2 = ap2; collpair->ap3 = ap3;
|
|
collpair->collp = collp;
|
|
|
|
copy_v3_v3(collpair->normal, no);
|
|
mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
|
|
collpair->distance = relnor;
|
|
collpair->time = t;
|
|
|
|
copy_v3_v3(collpair->bary, uv);
|
|
|
|
collpair->flag = 0;
|
|
collpair++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return collpair;
|
|
}
|
|
|
|
static void machine_epsilon_offset(Cloth *cloth)
|
|
{
|
|
ClothVertex *cv;
|
|
int i, j;
|
|
|
|
cv = cloth->verts;
|
|
for (i=0; i<cloth->numverts; i++, cv++) {
|
|
/*aggrevatingly enough, it's necassary to offset the coordinates
|
|
by a multiple of the 32-bit floating point epsilon when switching
|
|
into doubles*/
|
|
#define RNDSIGN (float)(-1*(BLI_rand()%2==0)|1)
|
|
for (j=0; j<3; j++) {
|
|
cv->tx[j] += FLT_EPSILON*30.0f*RNDSIGN;
|
|
cv->txold[j] += FLT_EPSILON*30.0f*RNDSIGN;
|
|
cv->tv[j] += FLT_EPSILON*30.0f*RNDSIGN;
|
|
}
|
|
}
|
|
}
|
|
|
|
#else /* !WITH_ELTOPO */
|
|
|
|
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
|
|
static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2,
|
|
BVHTreeOverlap *overlap, CollPair *collpair, float dt )
|
|
{
|
|
ClothModifierData *clmd = ( ClothModifierData * ) md1;
|
|
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
|
|
Cloth *cloth = clmd->clothObject;
|
|
MFace *face1=NULL, *face2 = NULL;
|
|
#ifdef USE_BULLET
|
|
ClothVertex *verts1 = clmd->clothObject->verts;
|
|
#endif
|
|
double distance = 0;
|
|
float epsilon1 = clmd->coll_parms->epsilon;
|
|
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
|
|
float n2[3], sdis, l;
|
|
int i;
|
|
|
|
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
|
|
face2 = & ( collmd->mfaces[overlap->indexB] );
|
|
|
|
// check all 4 possible collisions
|
|
for ( i = 0; i < 4; i++ )
|
|
{
|
|
if ( i == 0 )
|
|
{
|
|
// fill faceA
|
|
collpair->ap1 = face1->v1;
|
|
collpair->ap2 = face1->v2;
|
|
collpair->ap3 = face1->v3;
|
|
|
|
// fill faceB
|
|
collpair->bp1 = face2->v1;
|
|
collpair->bp2 = face2->v2;
|
|
collpair->bp3 = face2->v3;
|
|
}
|
|
else if ( i == 1 )
|
|
{
|
|
if ( face1->v4 )
|
|
{
|
|
// fill faceA
|
|
collpair->ap1 = face1->v1;
|
|
collpair->ap2 = face1->v4;
|
|
collpair->ap3 = face1->v3;
|
|
|
|
// fill faceB
|
|
collpair->bp1 = face2->v1;
|
|
collpair->bp2 = face2->v2;
|
|
collpair->bp3 = face2->v3;
|
|
}
|
|
else
|
|
i++;
|
|
}
|
|
if ( i == 2 )
|
|
{
|
|
if ( face2->v4 )
|
|
{
|
|
// fill faceA
|
|
collpair->ap1 = face1->v1;
|
|
collpair->ap2 = face1->v2;
|
|
collpair->ap3 = face1->v3;
|
|
|
|
// fill faceB
|
|
collpair->bp1 = face2->v1;
|
|
collpair->bp2 = face2->v4;
|
|
collpair->bp3 = face2->v3;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else if ( i == 3 )
|
|
{
|
|
if ( face1->v4 && face2->v4 )
|
|
{
|
|
// fill faceA
|
|
collpair->ap1 = face1->v1;
|
|
collpair->ap2 = face1->v4;
|
|
collpair->ap3 = face1->v3;
|
|
|
|
// fill faceB
|
|
collpair->bp1 = face2->v1;
|
|
collpair->bp2 = face2->v4;
|
|
collpair->bp3 = face2->v3;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
normal_tri_v3(n2, collmd->current_xnew[collpair->bp1].co,
|
|
collmd->current_xnew[collpair->bp2].co,
|
|
collmd->current_xnew[collpair->bp3].co);
|
|
|
|
sdis = clmd->coll_parms->distance_repel + epsilon2 + FLT_EPSILON;
|
|
|
|
/* apply a repulsion force, to help the solver along.
|
|
* this is kindof crude, it only tests one vert of the triangle */
|
|
if (isect_ray_plane_v3(cloth->verts[collpair->ap1].tx, n2, collmd->current_xnew[collpair->bp1].co,
|
|
collmd->current_xnew[collpair->bp2].co,
|
|
collmd->current_xnew[collpair->bp3].co, &l, 0))
|
|
{
|
|
if (l >= 0.0f && l < sdis) {
|
|
mul_v3_fl(n2, (l-sdis)*cloth->verts[collpair->ap1].mass*dt*clmd->coll_parms->repel_force*0.1f);
|
|
|
|
add_v3_v3(cloth->verts[collpair->ap1].tv, n2);
|
|
add_v3_v3(cloth->verts[collpair->ap2].tv, n2);
|
|
add_v3_v3(cloth->verts[collpair->ap3].tv, n2);
|
|
}
|
|
}
|
|
|
|
#ifdef USE_BULLET
|
|
// calc distance + normal
|
|
distance = plNearestPoints (
|
|
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
|
|
#else
|
|
// just be sure that we don't add anything
|
|
distance = 2.0 * (double)( epsilon1 + epsilon2 + ALMOST_ZERO );
|
|
#endif
|
|
|
|
if ( distance <= ( epsilon1 + epsilon2 + ALMOST_ZERO ) )
|
|
{
|
|
normalize_v3_v3( collpair->normal, collpair->vector );
|
|
|
|
collpair->distance = distance;
|
|
collpair->flag = 0;
|
|
collpair++;
|
|
}/*
|
|
else
|
|
{
|
|
float w1, w2, w3, u1, u2, u3;
|
|
float v1[3], v2[3], relativeVelocity[3];
|
|
|
|
// calc relative velocity
|
|
|
|
// compute barycentric coordinates for both collision points
|
|
collision_compute_barycentric ( collpair->pa,
|
|
verts1[collpair->ap1].txold,
|
|
verts1[collpair->ap2].txold,
|
|
verts1[collpair->ap3].txold,
|
|
&w1, &w2, &w3 );
|
|
|
|
// was: txold
|
|
collision_compute_barycentric ( collpair->pb,
|
|
collmd->current_x[collpair->bp1].co,
|
|
collmd->current_x[collpair->bp2].co,
|
|
collmd->current_x[collpair->bp3].co,
|
|
&u1, &u2, &u3 );
|
|
|
|
// Calculate relative "velocity".
|
|
collision_interpolateOnTriangle ( v1, verts1[collpair->ap1].tv, verts1[collpair->ap2].tv, verts1[collpair->ap3].tv, w1, w2, w3 );
|
|
|
|
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
|
|
|
|
VECSUB ( relativeVelocity, v2, v1 );
|
|
|
|
if(sqrt(INPR(relativeVelocity, relativeVelocity)) >= distance)
|
|
{
|
|
// check for collision in the future
|
|
collpair->flag |= COLLISION_IN_FUTURE;
|
|
collpair++;
|
|
}
|
|
}*/
|
|
}
|
|
return collpair;
|
|
}
|
|
#endif /* WITH_ELTOPO */
|
|
|
|
|
|
#if 0
|
|
static int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
|
|
{
|
|
int result = 0;
|
|
Cloth *cloth1;
|
|
float w1, w2, w3, u1, u2, u3;
|
|
float v1[3], v2[3], relativeVelocity[3];
|
|
float magrelVel;
|
|
|
|
cloth1 = clmd->clothObject;
|
|
|
|
for ( ; collpair != collision_end; collpair++ )
|
|
{
|
|
// compute barycentric coordinates for both collision points
|
|
collision_compute_barycentric ( collpair->pa,
|
|
cloth1->verts[collpair->ap1].txold,
|
|
cloth1->verts[collpair->ap2].txold,
|
|
cloth1->verts[collpair->ap3].txold,
|
|
&w1, &w2, &w3 );
|
|
|
|
// was: txold
|
|
collision_compute_barycentric ( collpair->pb,
|
|
collmd->current_x[collpair->bp1].co,
|
|
collmd->current_x[collpair->bp2].co,
|
|
collmd->current_x[collpair->bp3].co,
|
|
&u1, &u2, &u3 );
|
|
|
|
// Calculate relative "velocity".
|
|
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
|
|
|
|
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
|
|
|
|
VECSUB ( relativeVelocity, v2, v1 );
|
|
|
|
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
|
|
magrelVel = INPR ( relativeVelocity, collpair->normal );
|
|
|
|
// printf("magrelVel: %f\n", magrelVel);
|
|
|
|
// Calculate masses of points.
|
|
// TODO
|
|
|
|
// If v_n_mag < 0 the edges are approaching each other.
|
|
if ( magrelVel > ALMOST_ZERO )
|
|
{
|
|
// Calculate Impulse magnitude to stop all motion in normal direction.
|
|
float magtangent = 0;
|
|
double impulse = 0.0;
|
|
float vrel_t_pre[3];
|
|
float temp[3];
|
|
|
|
// calculate tangential velocity
|
|
VECCOPY ( temp, collpair->normal );
|
|
mul_v3_fl( temp, magrelVel );
|
|
VECSUB ( vrel_t_pre, relativeVelocity, temp );
|
|
|
|
// Decrease in magnitude of relative tangential velocity due to coulomb friction
|
|
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
|
|
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
|
|
|
|
// Apply friction impulse.
|
|
if ( magtangent > ALMOST_ZERO )
|
|
{
|
|
normalize_v3( vrel_t_pre );
|
|
|
|
impulse = 2.0 * magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
|
|
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
|
|
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
|
|
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
|
|
}
|
|
|
|
// Apply velocity stopping impulse
|
|
// I_c = m * v_N / 2.0
|
|
// no 2.0 * magrelVel normally, but looks nicer DG
|
|
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
|
|
|
|
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
|
|
cloth1->verts[collpair->ap1].impulse_count++;
|
|
|
|
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
|
|
cloth1->verts[collpair->ap2].impulse_count++;
|
|
|
|
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
|
|
cloth1->verts[collpair->ap3].impulse_count++;
|
|
|
|
// Apply repulse impulse if distance too short
|
|
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
|
|
/*
|
|
d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
|
|
if ( ( magrelVel < 0.1*d*clmd->sim_parms->stepsPerFrame ) && ( d > ALMOST_ZERO ) )
|
|
{
|
|
repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
|
|
|
|
// stay on the safe side and clamp repulse
|
|
if ( impulse > ALMOST_ZERO )
|
|
repulse = MIN2 ( repulse, 5.0*impulse );
|
|
repulse = MAX2 ( impulse, repulse );
|
|
|
|
impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
|
|
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
|
|
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
|
|
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
|
|
}
|
|
*/
|
|
result = 1;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
static float projectPointOntoLine(float *p, float *a, float *b)
|
|
{
|
|
float ba[3], pa[3];
|
|
VECSUB(ba, b, a);
|
|
VECSUB(pa, p, a);
|
|
return INPR(pa, ba) / INPR(ba, ba);
|
|
}
|
|
|
|
static void calculateEENormal(float *np1, float *np2, float *np3, float *np4,float *out_normal)
|
|
{
|
|
float line1[3], line2[3];
|
|
float length;
|
|
|
|
VECSUB(line1, np2, np1);
|
|
VECSUB(line2, np3, np1);
|
|
|
|
// printf("l1: %f, l1: %f, l2: %f, l2: %f\n", line1[0], line1[1], line2[0], line2[1]);
|
|
|
|
cross_v3_v3v3(out_normal, line1, line2);
|
|
|
|
|
|
|
|
length = normalize_v3(out_normal);
|
|
if (length <= FLT_EPSILON)
|
|
{ // lines are collinear
|
|
VECSUB(out_normal, np2, np1);
|
|
normalize_v3(out_normal);
|
|
}
|
|
}
|
|
|
|
static void findClosestPointsEE(float *x1, float *x2, float *x3, float *x4, float *w1, float *w2)
|
|
{
|
|
float temp[3], temp2[3];
|
|
|
|
double a, b, c, e, f;
|
|
|
|
VECSUB(temp, x2, x1);
|
|
a = INPR(temp, temp);
|
|
|
|
VECSUB(temp2, x4, x3);
|
|
b = -INPR(temp, temp2);
|
|
|
|
c = INPR(temp2, temp2);
|
|
|
|
VECSUB(temp2, x3, x1);
|
|
e = INPR(temp, temp2);
|
|
|
|
VECSUB(temp, x4, x3);
|
|
f = -INPR(temp, temp2);
|
|
|
|
*w1 = (e * c - b * f) / (a * c - b * b);
|
|
*w2 = (f - b * *w1) / c;
|
|
|
|
}
|
|
|
|
// calculates the distance of 2 edges
|
|
static float edgedge_distance(float np11[3], float np12[3], float np21[3], float np22[3], float *out_a1, float *out_a2, float *out_normal)
|
|
{
|
|
float line1[3], line2[3], cross[3];
|
|
float length;
|
|
float temp[3], temp2[3];
|
|
float dist_a1, dist_a2;
|
|
|
|
VECSUB(line1, np12, np11);
|
|
VECSUB(line2, np22, np21);
|
|
|
|
cross_v3_v3v3(cross, line1, line2);
|
|
length = INPR(cross, cross);
|
|
|
|
if (length < FLT_EPSILON)
|
|
{
|
|
*out_a2 = projectPointOntoLine(np11, np21, np22);
|
|
if ((*out_a2 >= -FLT_EPSILON) && (*out_a2 <= 1.0 + FLT_EPSILON))
|
|
{
|
|
*out_a1 = 0;
|
|
calculateEENormal(np11, np12, np21, np22, out_normal);
|
|
VECSUB(temp, np22, np21);
|
|
mul_v3_fl(temp, *out_a2);
|
|
VECADD(temp2, temp, np21);
|
|
VECADD(temp2, temp2, np11);
|
|
return INPR(temp2, temp2);
|
|
}
|
|
|
|
CLAMP(*out_a2, 0.0, 1.0);
|
|
if (*out_a2 > .5)
|
|
{ // == 1.0
|
|
*out_a1 = projectPointOntoLine(np22, np11, np12);
|
|
if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON))
|
|
{
|
|
calculateEENormal(np11, np12, np21, np22, out_normal);
|
|
|
|
// return (np22 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
|
|
VECSUB(temp, np12, np11);
|
|
mul_v3_fl(temp, *out_a1);
|
|
VECADD(temp2, temp, np11);
|
|
VECSUB(temp2, np22, temp2);
|
|
return INPR(temp2, temp2);
|
|
}
|
|
}
|
|
else
|
|
{ // == 0.0
|
|
*out_a1 = projectPointOntoLine(np21, np11, np12);
|
|
if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON))
|
|
{
|
|
calculateEENormal(np11, np11, np21, np22, out_normal);
|
|
|
|
// return (np21 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
|
|
VECSUB(temp, np12, np11);
|
|
mul_v3_fl(temp, *out_a1);
|
|
VECADD(temp2, temp, np11);
|
|
VECSUB(temp2, np21, temp2);
|
|
return INPR(temp2, temp2);
|
|
}
|
|
}
|
|
|
|
CLAMP(*out_a1, 0.0, 1.0);
|
|
calculateEENormal(np11, np12, np21, np22, out_normal);
|
|
if(*out_a1 > .5)
|
|
{
|
|
if(*out_a2 > .5)
|
|
{
|
|
VECSUB(temp, np12, np22);
|
|
}
|
|
else
|
|
{
|
|
VECSUB(temp, np12, np21);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(*out_a2 > .5)
|
|
{
|
|
VECSUB(temp, np11, np22);
|
|
}
|
|
else
|
|
{
|
|
VECSUB(temp, np11, np21);
|
|
}
|
|
}
|
|
|
|
return INPR(temp, temp);
|
|
}
|
|
else
|
|
{
|
|
|
|
// If the lines aren't parallel (but coplanar) they have to intersect
|
|
|
|
findClosestPointsEE(np11, np12, np21, np22, out_a1, out_a2);
|
|
|
|
// If both points are on the finite edges, we're done.
|
|
if (*out_a1 >= 0.0 && *out_a1 <= 1.0 && *out_a2 >= 0.0 && *out_a2 <= 1.0)
|
|
{
|
|
float p1[3], p2[3];
|
|
|
|
// p1= np11 + (np12 - np11) * out_a1;
|
|
VECSUB(temp, np12, np11);
|
|
mul_v3_fl(temp, *out_a1);
|
|
VECADD(p1, np11, temp);
|
|
|
|
// p2 = np21 + (np22 - np21) * out_a2;
|
|
VECSUB(temp, np22, np21);
|
|
mul_v3_fl(temp, *out_a2);
|
|
VECADD(p2, np21, temp);
|
|
|
|
calculateEENormal(np11, np12, np21, np22, out_normal);
|
|
VECSUB(temp, p1, p2);
|
|
return INPR(temp, temp);
|
|
}
|
|
|
|
|
|
/*
|
|
* Clamp both points to the finite edges.
|
|
* The one that moves most during clamping is one part of the solution.
|
|
*/
|
|
dist_a1 = *out_a1;
|
|
CLAMP(dist_a1, 0.0, 1.0);
|
|
dist_a2 = *out_a2;
|
|
CLAMP(dist_a2, 0.0, 1.0);
|
|
|
|
// Now project the "most clamped" point on the other line.
|
|
if (dist_a1 > dist_a2)
|
|
{
|
|
/* keep out_a1 */
|
|
float p1[3];
|
|
|
|
// p1 = np11 + (np12 - np11) * out_a1;
|
|
VECSUB(temp, np12, np11);
|
|
mul_v3_fl(temp, *out_a1);
|
|
VECADD(p1, np11, temp);
|
|
|
|
*out_a2 = projectPointOntoLine(p1, np21, np22);
|
|
CLAMP(*out_a2, 0.0, 1.0);
|
|
|
|
calculateEENormal(np11, np12, np21, np22, out_normal);
|
|
|
|
// return (p1 - (np21 + (np22 - np21) * out_a2)).lengthSquared();
|
|
VECSUB(temp, np22, np21);
|
|
mul_v3_fl(temp, *out_a2);
|
|
VECADD(temp, temp, np21);
|
|
VECSUB(temp, p1, temp);
|
|
return INPR(temp, temp);
|
|
}
|
|
else
|
|
{
|
|
/* keep out_a2 */
|
|
float p2[3];
|
|
|
|
// p2 = np21 + (np22 - np21) * out_a2;
|
|
VECSUB(temp, np22, np21);
|
|
mul_v3_fl(temp, *out_a2);
|
|
VECADD(p2, np21, temp);
|
|
|
|
*out_a1 = projectPointOntoLine(p2, np11, np12);
|
|
CLAMP(*out_a1, 0.0, 1.0);
|
|
|
|
calculateEENormal(np11, np12, np21, np22, out_normal);
|
|
|
|
// return ((np11 + (np12 - np11) * out_a1) - p2).lengthSquared();
|
|
VECSUB(temp, np12, np11);
|
|
mul_v3_fl(temp, *out_a1);
|
|
VECADD(temp, temp, np11);
|
|
VECSUB(temp, temp, p2);
|
|
return INPR(temp, temp);
|
|
}
|
|
}
|
|
|
|
printf("Error in edgedge_distance: end of function\n");
|
|
return 0;
|
|
}
|
|
|
|
static int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair )
|
|
{
|
|
EdgeCollPair edgecollpair;
|
|
Cloth *cloth1=NULL;
|
|
ClothVertex *verts1=NULL;
|
|
unsigned int i = 0, k = 0;
|
|
int numsolutions = 0;
|
|
double x1[3], v1[3], x2[3], v2[3], x3[3], v3[3];
|
|
double solution[3], solution2[3];
|
|
MVert *verts2 = collmd->current_x; // old x
|
|
MVert *velocity2 = collmd->current_v; // velocity
|
|
float distance = 0;
|
|
float triA[3][3], triB[3][3];
|
|
int result = 0;
|
|
|
|
cloth1 = clmd->clothObject;
|
|
verts1 = cloth1->verts;
|
|
|
|
for(i = 0; i < 9; i++)
|
|
{
|
|
// 9 edge - edge possibilities
|
|
|
|
if(i == 0) // cloth edge: 1-2; coll edge: 1-2
|
|
{
|
|
edgecollpair.p11 = collpair->ap1;
|
|
edgecollpair.p12 = collpair->ap2;
|
|
|
|
edgecollpair.p21 = collpair->bp1;
|
|
edgecollpair.p22 = collpair->bp2;
|
|
}
|
|
else if(i == 1) // cloth edge: 1-2; coll edge: 2-3
|
|
{
|
|
edgecollpair.p11 = collpair->ap1;
|
|
edgecollpair.p12 = collpair->ap2;
|
|
|
|
edgecollpair.p21 = collpair->bp2;
|
|
edgecollpair.p22 = collpair->bp3;
|
|
}
|
|
else if(i == 2) // cloth edge: 1-2; coll edge: 1-3
|
|
{
|
|
edgecollpair.p11 = collpair->ap1;
|
|
edgecollpair.p12 = collpair->ap2;
|
|
|
|
edgecollpair.p21 = collpair->bp1;
|
|
edgecollpair.p22 = collpair->bp3;
|
|
}
|
|
else if(i == 3) // cloth edge: 2-3; coll edge: 1-2
|
|
{
|
|
edgecollpair.p11 = collpair->ap2;
|
|
edgecollpair.p12 = collpair->ap3;
|
|
|
|
edgecollpair.p21 = collpair->bp1;
|
|
edgecollpair.p22 = collpair->bp2;
|
|
}
|
|
else if(i == 4) // cloth edge: 2-3; coll edge: 2-3
|
|
{
|
|
edgecollpair.p11 = collpair->ap2;
|
|
edgecollpair.p12 = collpair->ap3;
|
|
|
|
edgecollpair.p21 = collpair->bp2;
|
|
edgecollpair.p22 = collpair->bp3;
|
|
}
|
|
else if(i == 5) // cloth edge: 2-3; coll edge: 1-3
|
|
{
|
|
edgecollpair.p11 = collpair->ap2;
|
|
edgecollpair.p12 = collpair->ap3;
|
|
|
|
edgecollpair.p21 = collpair->bp1;
|
|
edgecollpair.p22 = collpair->bp3;
|
|
}
|
|
else if(i ==6) // cloth edge: 1-3; coll edge: 1-2
|
|
{
|
|
edgecollpair.p11 = collpair->ap1;
|
|
edgecollpair.p12 = collpair->ap3;
|
|
|
|
edgecollpair.p21 = collpair->bp1;
|
|
edgecollpair.p22 = collpair->bp2;
|
|
}
|
|
else if(i ==7) // cloth edge: 1-3; coll edge: 2-3
|
|
{
|
|
edgecollpair.p11 = collpair->ap1;
|
|
edgecollpair.p12 = collpair->ap3;
|
|
|
|
edgecollpair.p21 = collpair->bp2;
|
|
edgecollpair.p22 = collpair->bp3;
|
|
}
|
|
else if(i == 8) // cloth edge: 1-3; coll edge: 1-3
|
|
{
|
|
edgecollpair.p11 = collpair->ap1;
|
|
edgecollpair.p12 = collpair->ap3;
|
|
|
|
edgecollpair.p21 = collpair->bp1;
|
|
edgecollpair.p22 = collpair->bp3;
|
|
}
|
|
/*
|
|
if((edgecollpair.p11 == 3) && (edgecollpair.p12 == 16))
|
|
printf("Ahier!\n");
|
|
if((edgecollpair.p11 == 16) && (edgecollpair.p12 == 3))
|
|
printf("Ahier!\n");
|
|
*/
|
|
|
|
// if ( !cloth_are_edges_adjacent ( clmd, collmd, &edgecollpair ) )
|
|
{
|
|
// always put coll points in p21/p22
|
|
VECSUB ( x1, verts1[edgecollpair.p12].txold, verts1[edgecollpair.p11].txold );
|
|
VECSUB ( v1, verts1[edgecollpair.p12].tv, verts1[edgecollpair.p11].tv );
|
|
|
|
VECSUB ( x2, verts2[edgecollpair.p21].co, verts1[edgecollpair.p11].txold );
|
|
VECSUB ( v2, velocity2[edgecollpair.p21].co, verts1[edgecollpair.p11].tv );
|
|
|
|
VECSUB ( x3, verts2[edgecollpair.p22].co, verts1[edgecollpair.p11].txold );
|
|
VECSUB ( v3, velocity2[edgecollpair.p22].co, verts1[edgecollpair.p11].tv );
|
|
|
|
numsolutions = cloth_get_collision_time ( x1, v1, x2, v2, x3, v3, solution );
|
|
|
|
if((edgecollpair.p11 == 3 && edgecollpair.p12==16)|| (edgecollpair.p11==16 && edgecollpair.p12==3))
|
|
{
|
|
if(edgecollpair.p21==6 || edgecollpair.p22 == 6)
|
|
{
|
|
printf("dist: %f, sol[k]: %f, sol2[k]: %f\n", distance, solution[k], solution2[k]);
|
|
printf("a1: %f, a2: %f, b1: %f, b2: %f\n", x1[0], x2[0], x3[0], v1[0]);
|
|
printf("b21: %d, b22: %d\n", edgecollpair.p21, edgecollpair.p22);
|
|
}
|
|
}
|
|
|
|
for ( k = 0; k < numsolutions; k++ )
|
|
{
|
|
// printf("sol %d: %lf\n", k, solution[k]);
|
|
if ( ( solution[k] >= ALMOST_ZERO ) && ( solution[k] <= 1.0 ) && ( solution[k] > ALMOST_ZERO))
|
|
{
|
|
float a,b;
|
|
float out_normal[3];
|
|
float distance;
|
|
float impulse = 0;
|
|
float I_mag;
|
|
|
|
// move verts
|
|
VECADDS(triA[0], verts1[edgecollpair.p11].txold, verts1[edgecollpair.p11].tv, solution[k]);
|
|
VECADDS(triA[1], verts1[edgecollpair.p12].txold, verts1[edgecollpair.p12].tv, solution[k]);
|
|
|
|
VECADDS(triB[0], collmd->current_x[edgecollpair.p21].co, collmd->current_v[edgecollpair.p21].co, solution[k]);
|
|
VECADDS(triB[1], collmd->current_x[edgecollpair.p22].co, collmd->current_v[edgecollpair.p22].co, solution[k]);
|
|
|
|
// TODO: check for collisions
|
|
distance = edgedge_distance(triA[0], triA[1], triB[0], triB[1], &a, &b, out_normal);
|
|
|
|
if ((distance <= clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree ) + ALMOST_ZERO) && (INPR(out_normal, out_normal) > 0))
|
|
{
|
|
float vrel_1_to_2[3], temp[3], temp2[3], out_normalVelocity;
|
|
float desiredVn;
|
|
|
|
VECCOPY(vrel_1_to_2, verts1[edgecollpair.p11].tv);
|
|
mul_v3_fl(vrel_1_to_2, 1.0 - a);
|
|
VECCOPY(temp, verts1[edgecollpair.p12].tv);
|
|
mul_v3_fl(temp, a);
|
|
|
|
VECADD(vrel_1_to_2, vrel_1_to_2, temp);
|
|
|
|
VECCOPY(temp, verts1[edgecollpair.p21].tv);
|
|
mul_v3_fl(temp, 1.0 - b);
|
|
VECCOPY(temp2, verts1[edgecollpair.p22].tv);
|
|
mul_v3_fl(temp2, b);
|
|
VECADD(temp, temp, temp2);
|
|
|
|
VECSUB(vrel_1_to_2, vrel_1_to_2, temp);
|
|
|
|
out_normalVelocity = INPR(vrel_1_to_2, out_normal);
|
|
/*
|
|
// this correction results in wrong normals sometimes?
|
|
if(out_normalVelocity < 0.0)
|
|
{
|
|
out_normalVelocity*= -1.0;
|
|
negate_v3(out_normal);
|
|
}
|
|
*/
|
|
/* Inelastic repulsion impulse. */
|
|
|
|
// Calculate which normal velocity we need.
|
|
desiredVn = (out_normalVelocity * (float)solution[k] - (.1 * (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree )) - sqrt(distance)) - ALMOST_ZERO);
|
|
|
|
// Now calculate what impulse we need to reach that velocity.
|
|
I_mag = (out_normalVelocity - desiredVn) / 2.0; // / (1/m1 + 1/m2);
|
|
|
|
// Finally apply that impulse.
|
|
impulse = (2.0 * -I_mag) / (a*a + (1.0-a)*(1.0-a) + b*b + (1.0-b)*(1.0-b));
|
|
|
|
VECADDMUL ( verts1[edgecollpair.p11].impulse, out_normal, (1.0-a) * impulse );
|
|
verts1[edgecollpair.p11].impulse_count++;
|
|
|
|
VECADDMUL ( verts1[edgecollpair.p12].impulse, out_normal, a * impulse );
|
|
verts1[edgecollpair.p12].impulse_count++;
|
|
|
|
// return true;
|
|
result = 1;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
// missing from collision.hpp
|
|
}
|
|
// mintime = MIN2(mintime, (float)solution[k]);
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int cloth_collision_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
|
|
{
|
|
Cloth *cloth1;
|
|
cloth1 = clmd->clothObject;
|
|
|
|
for ( ; collpair != collision_end; collpair++ )
|
|
{
|
|
// only handle moving collisions here
|
|
if (!( collpair->flag & COLLISION_IN_FUTURE ))
|
|
continue;
|
|
|
|
cloth_collision_moving_edges ( clmd, collmd, collpair);
|
|
// cloth_collision_moving_tris ( clmd, collmd, collpair);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void add_collision_object(Object ***objs, unsigned int *numobj, unsigned int *maxobj, Object *ob, Object *self, int level)
|
|
{
|
|
CollisionModifierData *cmd= NULL;
|
|
|
|
if(ob == self)
|
|
return;
|
|
|
|
/* only get objects with collision modifier */
|
|
if(ob->pd && ob->pd->deflect)
|
|
cmd= (CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
|
|
|
|
if(cmd) {
|
|
/* extend array */
|
|
if(*numobj >= *maxobj) {
|
|
*maxobj *= 2;
|
|
*objs= MEM_reallocN(*objs, sizeof(Object*)*(*maxobj));
|
|
}
|
|
|
|
(*objs)[*numobj] = ob;
|
|
(*numobj)++;
|
|
}
|
|
|
|
/* objects in dupli groups, one level only for now */
|
|
if(ob->dup_group && level == 0) {
|
|
GroupObject *go;
|
|
Group *group= ob->dup_group;
|
|
|
|
/* add objects */
|
|
for(go= group->gobject.first; go; go= go->next)
|
|
add_collision_object(objs, numobj, maxobj, go->ob, self, level+1);
|
|
}
|
|
}
|
|
|
|
// return all collision objects in scene
|
|
// collision object will exclude self
|
|
Object **get_collisionobjects(Scene *scene, Object *self, Group *group, unsigned int *numcollobj)
|
|
{
|
|
Base *base;
|
|
Object **objs;
|
|
GroupObject *go;
|
|
unsigned int numobj= 0, maxobj= 100;
|
|
|
|
objs= MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
|
|
|
|
/* gather all collision objects */
|
|
if(group) {
|
|
/* use specified group */
|
|
for(go= group->gobject.first; go; go= go->next)
|
|
add_collision_object(&objs, &numobj, &maxobj, go->ob, self, 0);
|
|
}
|
|
else {
|
|
Scene *sce_iter;
|
|
/* add objects in same layer in scene */
|
|
for(SETLOOPER(scene, sce_iter, base)) {
|
|
if(base->lay & self->lay)
|
|
add_collision_object(&objs, &numobj, &maxobj, base->object, self, 0);
|
|
|
|
}
|
|
}
|
|
|
|
*numcollobj= numobj;
|
|
|
|
return objs;
|
|
}
|
|
|
|
static void add_collider_cache_object(ListBase **objs, Object *ob, Object *self, int level)
|
|
{
|
|
CollisionModifierData *cmd= NULL;
|
|
ColliderCache *col;
|
|
|
|
if(ob == self)
|
|
return;
|
|
|
|
if(ob->pd && ob->pd->deflect)
|
|
cmd =(CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
|
|
|
|
if(cmd && cmd->bvhtree) {
|
|
if(*objs == NULL)
|
|
*objs = MEM_callocN(sizeof(ListBase), "ColliderCache array");
|
|
|
|
col = MEM_callocN(sizeof(ColliderCache), "ColliderCache");
|
|
col->ob = ob;
|
|
col->collmd = cmd;
|
|
/* make sure collider is properly set up */
|
|
collision_move_object(cmd, 1.0, 0.0);
|
|
BLI_addtail(*objs, col);
|
|
}
|
|
|
|
/* objects in dupli groups, one level only for now */
|
|
if(ob->dup_group && level == 0) {
|
|
GroupObject *go;
|
|
Group *group= ob->dup_group;
|
|
|
|
/* add objects */
|
|
for(go= group->gobject.first; go; go= go->next)
|
|
add_collider_cache_object(objs, go->ob, self, level+1);
|
|
}
|
|
}
|
|
|
|
ListBase *get_collider_cache(Scene *scene, Object *self, Group *group)
|
|
{
|
|
GroupObject *go;
|
|
ListBase *objs= NULL;
|
|
|
|
/* add object in same layer in scene */
|
|
if(group) {
|
|
for(go= group->gobject.first; go; go= go->next)
|
|
add_collider_cache_object(&objs, go->ob, self, 0);
|
|
}
|
|
else {
|
|
Scene *sce_iter;
|
|
Base *base;
|
|
|
|
/* add objects in same layer in scene */
|
|
for(SETLOOPER(scene, sce_iter, base)) {
|
|
if(!self || (base->lay & self->lay))
|
|
add_collider_cache_object(&objs, base->object, self, 0);
|
|
|
|
}
|
|
}
|
|
|
|
return objs;
|
|
}
|
|
|
|
void free_collider_cache(ListBase **colliders)
|
|
{
|
|
if(*colliders) {
|
|
BLI_freelistN(*colliders);
|
|
MEM_freeN(*colliders);
|
|
*colliders = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd,
|
|
CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap, double dt)
|
|
{
|
|
int i;
|
|
#ifdef WITH_ELTOPO
|
|
GHash *visithash = BLI_ghash_new(edgepair_hash, edgepair_cmp, "visthash, collision.c");
|
|
GHash *tri_visithash = BLI_ghash_new(tripair_hash, tripair_cmp, "tri_visthash, collision.c");
|
|
MemArena *arena = BLI_memarena_new(1<<16, "edge hash arena, collision.c");
|
|
#endif
|
|
|
|
*collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * numresult * 64, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
|
|
*collisions_index = *collisions;
|
|
|
|
#ifdef WITH_ELTOPO
|
|
machine_epsilon_offset(clmd->clothObject);
|
|
|
|
for ( i = 0; i < numresult; i++ )
|
|
{
|
|
*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
|
|
overlap+i, *collisions_index, dt, tri_visithash, arena );
|
|
}
|
|
|
|
for ( i = 0; i < numresult; i++ )
|
|
{
|
|
*collisions_index = cloth_edge_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
|
|
overlap+i, *collisions_index, visithash, arena );
|
|
}
|
|
BLI_ghash_free(visithash, NULL, NULL);
|
|
BLI_ghash_free(tri_visithash, NULL, NULL);
|
|
BLI_memarena_free(arena);
|
|
#else /* WITH_ELTOPO */
|
|
for ( i = 0; i < numresult; i++ )
|
|
{
|
|
*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
|
|
overlap+i, *collisions_index, dt );
|
|
}
|
|
#endif /* WITH_ELTOPO */
|
|
|
|
}
|
|
|
|
static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
|
|
{
|
|
Cloth *cloth = clmd->clothObject;
|
|
int i=0, j = 0, /*numfaces = 0,*/ numverts = 0;
|
|
ClothVertex *verts = NULL;
|
|
int ret = 0;
|
|
int result = 0;
|
|
float tnull[3] = {0,0,0};
|
|
|
|
/*numfaces = clmd->clothObject->numfaces;*/ /*UNUSED*/
|
|
numverts = clmd->clothObject->numverts;
|
|
|
|
verts = cloth->verts;
|
|
|
|
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
|
|
result = 1;
|
|
for ( j = 0; j < 5; j++ ) // 5 is just a value that ensures convergence
|
|
{
|
|
result = 0;
|
|
|
|
if ( collmd->bvhtree )
|
|
{
|
|
#ifdef WITH_ELTOPO
|
|
result += cloth_collision_response_moving(clmd, collmd, collisions, collisions_index);
|
|
result += cloth_edge_collision_response_moving(clmd, collmd, collisions, collisions_index);
|
|
#else
|
|
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
|
|
#endif
|
|
#ifdef WITH_ELTOPO
|
|
{
|
|
#else
|
|
// apply impulses in parallel
|
|
if ( result )
|
|
{
|
|
#endif
|
|
for ( i = 0; i < numverts; i++ )
|
|
{
|
|
// calculate "velocities" (just xnew = xold + v; no dt in v)
|
|
if ( verts[i].impulse_count )
|
|
{
|
|
VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
|
|
copy_v3_v3 ( verts[i].impulse, tnull );
|
|
verts[i].impulse_count = 0;
|
|
|
|
ret++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// cloth - object collisions
|
|
int cloth_bvh_objcollision (Object *ob, ClothModifierData * clmd, float step, float dt )
|
|
{
|
|
Cloth *cloth= clmd->clothObject;
|
|
BVHTree *cloth_bvh= cloth->bvhtree;
|
|
unsigned int i=0, /* numfaces = 0, */ /* UNUSED */ numverts = 0, k, l, j;
|
|
int rounds = 0; // result counts applied collisions; ic is for debug output;
|
|
ClothVertex *verts = NULL;
|
|
int ret = 0, ret2 = 0;
|
|
Object **collobjs = NULL;
|
|
unsigned int numcollobj = 0;
|
|
|
|
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh==NULL)
|
|
return 0;
|
|
|
|
verts = cloth->verts;
|
|
/* numfaces = cloth->numfaces; */ /* UNUSED */
|
|
numverts = cloth->numverts;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// static collisions
|
|
////////////////////////////////////////////////////////////
|
|
|
|
// update cloth bvh
|
|
bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
|
|
bvhselftree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
|
|
|
|
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj);
|
|
|
|
if(!collobjs)
|
|
return 0;
|
|
|
|
do
|
|
{
|
|
CollPair **collisions, **collisions_index;
|
|
|
|
ret2 = 0;
|
|
|
|
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
|
|
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
|
|
|
|
// check all collision objects
|
|
for(i = 0; i < numcollobj; i++)
|
|
{
|
|
Object *collob= collobjs[i];
|
|
CollisionModifierData *collmd = (CollisionModifierData*)modifiers_findByType(collob, eModifierType_Collision);
|
|
BVHTreeOverlap *overlap = NULL;
|
|
unsigned int result = 0;
|
|
|
|
if(!collmd->bvhtree)
|
|
continue;
|
|
|
|
/* move object to position (step) in time */
|
|
|
|
collision_move_object ( collmd, step + dt, step );
|
|
|
|
/* search for overlapping collision pairs */
|
|
overlap = BLI_bvhtree_overlap ( cloth_bvh, collmd->bvhtree, &result );
|
|
|
|
// go to next object if no overlap is there
|
|
if( result && overlap ) {
|
|
/* check if collisions really happen (costly near check) */
|
|
cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i],
|
|
&collisions_index[i], result, overlap, dt/(float)clmd->coll_parms->loop_count);
|
|
|
|
// resolve nearby collisions
|
|
ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i], collisions_index[i]);
|
|
ret2 += ret;
|
|
}
|
|
|
|
if ( overlap )
|
|
MEM_freeN ( overlap );
|
|
}
|
|
rounds++;
|
|
|
|
for(i = 0; i < numcollobj; i++)
|
|
{
|
|
if ( collisions[i] ) MEM_freeN ( collisions[i] );
|
|
}
|
|
|
|
MEM_freeN(collisions);
|
|
MEM_freeN(collisions_index);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// update positions
|
|
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
|
|
////////////////////////////////////////////////////////////
|
|
|
|
// verts come from clmd
|
|
for ( i = 0; i < numverts; i++ )
|
|
{
|
|
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
|
|
{
|
|
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED )
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
|
|
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
|
|
}
|
|
////////////////////////////////////////////////////////////
|
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// Test on *simple* selfcollisions
|
|
////////////////////////////////////////////////////////////
|
|
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF )
|
|
{
|
|
for(l = 0; l < (unsigned int)clmd->coll_parms->self_loop_count; l++)
|
|
{
|
|
// TODO: add coll quality rounds again
|
|
BVHTreeOverlap *overlap = NULL;
|
|
unsigned int result = 0;
|
|
|
|
// collisions = 1;
|
|
verts = cloth->verts; // needed for openMP
|
|
|
|
/* numfaces = cloth->numfaces; */ /* UNUSED */
|
|
numverts = cloth->numverts;
|
|
|
|
verts = cloth->verts;
|
|
|
|
if ( cloth->bvhselftree )
|
|
{
|
|
// search for overlapping collision pairs
|
|
overlap = BLI_bvhtree_overlap ( cloth->bvhselftree, cloth->bvhselftree, &result );
|
|
|
|
// #pragma omp parallel for private(k, i, j) schedule(static)
|
|
for ( k = 0; k < result; k++ )
|
|
{
|
|
float temp[3];
|
|
float length = 0;
|
|
float mindistance;
|
|
|
|
i = overlap[k].indexA;
|
|
j = overlap[k].indexB;
|
|
|
|
mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
|
|
|
|
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
|
|
{
|
|
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
|
|
&& ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
|
|
VECSUB ( temp, verts[i].tx, verts[j].tx );
|
|
|
|
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
|
|
|
|
// check for adjacent points (i must be smaller j)
|
|
if ( BLI_edgehash_haskey ( cloth->edgehash, MIN2(i, j), MAX2(i, j) ) )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
length = normalize_v3( temp );
|
|
|
|
if ( length < mindistance )
|
|
{
|
|
float correction = mindistance - length;
|
|
|
|
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
|
|
{
|
|
mul_v3_fl( temp, -correction );
|
|
VECADD ( verts[j].tx, verts[j].tx, temp );
|
|
}
|
|
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
|
|
{
|
|
mul_v3_fl( temp, correction );
|
|
VECADD ( verts[i].tx, verts[i].tx, temp );
|
|
}
|
|
else
|
|
{
|
|
mul_v3_fl( temp, correction * -0.5 );
|
|
VECADD ( verts[j].tx, verts[j].tx, temp );
|
|
|
|
VECSUB ( verts[i].tx, verts[i].tx, temp );
|
|
}
|
|
ret = 1;
|
|
ret2 += ret;
|
|
}
|
|
else
|
|
{
|
|
// check for approximated time collisions
|
|
}
|
|
}
|
|
|
|
if ( overlap )
|
|
MEM_freeN ( overlap );
|
|
|
|
}
|
|
}
|
|
////////////////////////////////////////////////////////////
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// SELFCOLLISIONS: update velocities
|
|
////////////////////////////////////////////////////////////
|
|
if ( ret2 )
|
|
{
|
|
for ( i = 0; i < cloth->numverts; i++ )
|
|
{
|
|
if ( ! ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) )
|
|
{
|
|
VECSUB ( verts[i].tv, verts[i].tx, verts[i].txold );
|
|
}
|
|
}
|
|
}
|
|
////////////////////////////////////////////////////////////
|
|
}
|
|
}
|
|
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
|
|
|
|
if(collobjs)
|
|
MEM_freeN(collobjs);
|
|
|
|
return 1|MIN2 ( ret, 1 );
|
|
}
|