3332 lines
74 KiB
C
3332 lines
74 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/blenkernel/intern/curve.c
|
|
* \ingroup bke
|
|
*/
|
|
|
|
|
|
#include <math.h> // floor
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_bpath.h"
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_ghash.h"
|
|
|
|
#include "DNA_curve_types.h"
|
|
#include "DNA_material_types.h"
|
|
|
|
/* for dereferencing pointers */
|
|
#include "DNA_key_types.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_vfont_types.h"
|
|
#include "DNA_object_types.h"
|
|
|
|
#include "BKE_animsys.h"
|
|
#include "BKE_anim.h"
|
|
#include "BKE_curve.h"
|
|
#include "BKE_displist.h"
|
|
#include "BKE_font.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_key.h"
|
|
#include "BKE_library.h"
|
|
#include "BKE_main.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_material.h"
|
|
|
|
/* globals */
|
|
|
|
/* local */
|
|
static int cu_isectLL(float *v1, float *v2, float *v3, float *v4,
|
|
short cox, short coy,
|
|
float *labda, float *mu, float *vec);
|
|
|
|
void unlink_curve(Curve *cu)
|
|
{
|
|
int a;
|
|
|
|
for(a=0; a<cu->totcol; a++) {
|
|
if(cu->mat[a]) cu->mat[a]->id.us--;
|
|
cu->mat[a]= NULL;
|
|
}
|
|
if(cu->vfont) cu->vfont->id.us--;
|
|
cu->vfont= NULL;
|
|
|
|
if(cu->vfontb) cu->vfontb->id.us--;
|
|
cu->vfontb= NULL;
|
|
|
|
if(cu->vfonti) cu->vfonti->id.us--;
|
|
cu->vfonti= NULL;
|
|
|
|
if(cu->vfontbi) cu->vfontbi->id.us--;
|
|
cu->vfontbi= NULL;
|
|
|
|
if(cu->key) cu->key->id.us--;
|
|
cu->key= NULL;
|
|
}
|
|
|
|
/* frees editcurve entirely */
|
|
void BKE_free_editfont(Curve *cu)
|
|
{
|
|
if(cu->editfont) {
|
|
EditFont *ef= cu->editfont;
|
|
|
|
if(ef->oldstr) MEM_freeN(ef->oldstr);
|
|
if(ef->oldstrinfo) MEM_freeN(ef->oldstrinfo);
|
|
if(ef->textbuf) MEM_freeN(ef->textbuf);
|
|
if(ef->textbufinfo) MEM_freeN(ef->textbufinfo);
|
|
if(ef->copybuf) MEM_freeN(ef->copybuf);
|
|
if(ef->copybufinfo) MEM_freeN(ef->copybufinfo);
|
|
|
|
MEM_freeN(ef);
|
|
cu->editfont= NULL;
|
|
}
|
|
}
|
|
|
|
void free_curve_editNurb_keyIndex(EditNurb *editnurb)
|
|
{
|
|
if (!editnurb->keyindex) {
|
|
return;
|
|
}
|
|
BLI_ghash_free(editnurb->keyindex, NULL, (GHashValFreeFP)MEM_freeN);
|
|
editnurb->keyindex= NULL;
|
|
}
|
|
|
|
void free_curve_editNurb (Curve *cu)
|
|
{
|
|
if(cu->editnurb) {
|
|
freeNurblist(&cu->editnurb->nurbs);
|
|
free_curve_editNurb_keyIndex(cu->editnurb);
|
|
MEM_freeN(cu->editnurb);
|
|
cu->editnurb= NULL;
|
|
}
|
|
}
|
|
|
|
/* don't free curve itself */
|
|
void free_curve(Curve *cu)
|
|
{
|
|
freeNurblist(&cu->nurb);
|
|
BLI_freelistN(&cu->bev);
|
|
freedisplist(&cu->disp);
|
|
BKE_free_editfont(cu);
|
|
|
|
free_curve_editNurb(cu);
|
|
unlink_curve(cu);
|
|
BKE_free_animdata((ID *)cu);
|
|
|
|
if(cu->mat) MEM_freeN(cu->mat);
|
|
if(cu->str) MEM_freeN(cu->str);
|
|
if(cu->strinfo) MEM_freeN(cu->strinfo);
|
|
if(cu->bb) MEM_freeN(cu->bb);
|
|
if(cu->path) free_path(cu->path);
|
|
if(cu->tb) MEM_freeN(cu->tb);
|
|
}
|
|
|
|
Curve *add_curve(const char *name, int type)
|
|
{
|
|
Curve *cu;
|
|
|
|
cu= alloc_libblock(&G.main->curve, ID_CU, name);
|
|
|
|
cu->size[0]= cu->size[1]= cu->size[2]= 1.0;
|
|
cu->flag= CU_FRONT|CU_BACK|CU_DEFORM_BOUNDS_OFF|CU_PATH_RADIUS;
|
|
cu->pathlen= 100;
|
|
cu->resolu= cu->resolv= (type == OB_SURF) ? 4 : 12;
|
|
cu->width= 1.0;
|
|
cu->wordspace = 1.0;
|
|
cu->spacing= cu->linedist= 1.0;
|
|
cu->fsize= 1.0;
|
|
cu->ulheight = 0.05;
|
|
cu->texflag= CU_AUTOSPACE;
|
|
cu->smallcaps_scale= 0.75f;
|
|
cu->twist_mode= CU_TWIST_MINIMUM; // XXX: this one seems to be the best one in most cases, at least for curve deform...
|
|
cu->type= type;
|
|
|
|
cu->bb= unit_boundbox();
|
|
|
|
if(type==OB_FONT) {
|
|
cu->vfont= cu->vfontb= cu->vfonti= cu->vfontbi= get_builtin_font();
|
|
cu->vfont->id.us+=4;
|
|
cu->str= MEM_mallocN(12, "str");
|
|
BLI_strncpy(cu->str, "Text", 12);
|
|
cu->len= cu->pos= 4;
|
|
cu->strinfo= MEM_callocN(12*sizeof(CharInfo), "strinfo new");
|
|
cu->totbox= cu->actbox= 1;
|
|
cu->tb= MEM_callocN(MAXTEXTBOX*sizeof(TextBox), "textbox");
|
|
cu->tb[0].w = cu->tb[0].h = 0.0;
|
|
}
|
|
|
|
return cu;
|
|
}
|
|
|
|
Curve *copy_curve(Curve *cu)
|
|
{
|
|
Curve *cun;
|
|
int a;
|
|
|
|
cun= copy_libblock(&cu->id);
|
|
cun->nurb.first= cun->nurb.last= NULL;
|
|
duplicateNurblist( &(cun->nurb), &(cu->nurb));
|
|
|
|
cun->mat= MEM_dupallocN(cu->mat);
|
|
for(a=0; a<cun->totcol; a++) {
|
|
id_us_plus((ID *)cun->mat[a]);
|
|
}
|
|
|
|
cun->str= MEM_dupallocN(cu->str);
|
|
cun->strinfo= MEM_dupallocN(cu->strinfo);
|
|
cun->tb= MEM_dupallocN(cu->tb);
|
|
cun->bb= MEM_dupallocN(cu->bb);
|
|
|
|
cun->key= copy_key(cu->key);
|
|
if(cun->key) cun->key->from= (ID *)cun;
|
|
|
|
cun->disp.first= cun->disp.last= NULL;
|
|
cun->bev.first= cun->bev.last= NULL;
|
|
cun->path= NULL;
|
|
|
|
cun->editnurb= NULL;
|
|
cun->editfont= NULL;
|
|
cun->selboxes= NULL;
|
|
|
|
#if 0 // XXX old animation system
|
|
/* single user ipo too */
|
|
if(cun->ipo) cun->ipo= copy_ipo(cun->ipo);
|
|
#endif // XXX old animation system
|
|
|
|
id_us_plus((ID *)cun->vfont);
|
|
id_us_plus((ID *)cun->vfontb);
|
|
id_us_plus((ID *)cun->vfonti);
|
|
id_us_plus((ID *)cun->vfontbi);
|
|
|
|
return cun;
|
|
}
|
|
|
|
static void extern_local_curve(Curve *cu)
|
|
{
|
|
id_lib_extern((ID *)cu->vfont);
|
|
id_lib_extern((ID *)cu->vfontb);
|
|
id_lib_extern((ID *)cu->vfonti);
|
|
id_lib_extern((ID *)cu->vfontbi);
|
|
|
|
if(cu->mat) {
|
|
extern_local_matarar(cu->mat, cu->totcol);
|
|
}
|
|
}
|
|
|
|
void make_local_curve(Curve *cu)
|
|
{
|
|
Main *bmain= G.main;
|
|
Object *ob;
|
|
int is_local= FALSE, is_lib= FALSE;
|
|
|
|
/* - when there are only lib users: don't do
|
|
* - when there are only local users: set flag
|
|
* - mixed: do a copy
|
|
*/
|
|
|
|
if(cu->id.lib==NULL) return;
|
|
|
|
if(cu->id.us==1) {
|
|
id_clear_lib_data(bmain, &cu->id);
|
|
extern_local_curve(cu);
|
|
return;
|
|
}
|
|
|
|
for(ob= bmain->object.first; ob && ELEM(0, is_lib, is_local); ob= ob->id.next) {
|
|
if(ob->data == cu) {
|
|
if(ob->id.lib) is_lib= TRUE;
|
|
else is_local= TRUE;
|
|
}
|
|
}
|
|
|
|
if(is_local && is_lib == FALSE) {
|
|
id_clear_lib_data(bmain, &cu->id);
|
|
extern_local_curve(cu);
|
|
}
|
|
else if(is_local && is_lib) {
|
|
Curve *cu_new= copy_curve(cu);
|
|
cu_new->id.us= 0;
|
|
|
|
BKE_id_lib_local_paths(bmain, cu->id.lib, &cu_new->id);
|
|
|
|
for(ob= bmain->object.first; ob; ob= ob->id.next) {
|
|
if(ob->data==cu) {
|
|
if(ob->id.lib==NULL) {
|
|
ob->data= cu_new;
|
|
cu_new->id.us++;
|
|
cu->id.us--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Get list of nurbs from editnurbs structure */
|
|
ListBase *curve_editnurbs(Curve *cu)
|
|
{
|
|
if (cu->editnurb) {
|
|
return &cu->editnurb->nurbs;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
short curve_type(Curve *cu)
|
|
{
|
|
Nurb *nu;
|
|
int type= cu->type;
|
|
|
|
if(cu->vfont) {
|
|
return OB_FONT;
|
|
}
|
|
|
|
if(!cu->type) {
|
|
type= OB_CURVE;
|
|
|
|
for (nu= cu->nurb.first; nu; nu= nu->next) {
|
|
if(nu->pntsv>1) {
|
|
type= OB_SURF;
|
|
}
|
|
}
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
void update_curve_dimension(Curve *cu)
|
|
{
|
|
ListBase *nurbs= BKE_curve_nurbs(cu);
|
|
Nurb *nu= nurbs->first;
|
|
|
|
if(cu->flag&CU_3D) {
|
|
for( ; nu; nu= nu->next) {
|
|
nu->flag &= ~CU_2D;
|
|
}
|
|
}
|
|
else {
|
|
for( ; nu; nu= nu->next) {
|
|
nu->flag |= CU_2D;
|
|
test2DNurb(nu);
|
|
|
|
/* since the handles are moved they need to be auto-located again */
|
|
if(nu->type == CU_BEZIER)
|
|
calchandlesNurb(nu);
|
|
}
|
|
}
|
|
}
|
|
|
|
void test_curve_type(Object *ob)
|
|
{
|
|
ob->type= curve_type(ob->data);
|
|
|
|
if(ob->type==OB_CURVE)
|
|
update_curve_dimension((Curve *)ob->data);
|
|
}
|
|
|
|
void tex_space_curve(Curve *cu)
|
|
{
|
|
DispList *dl;
|
|
BoundBox *bb;
|
|
float *fp, min[3], max[3];
|
|
int tot, doit= 0;
|
|
|
|
if(cu->bb==NULL) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
|
|
bb= cu->bb;
|
|
|
|
INIT_MINMAX(min, max);
|
|
|
|
dl= cu->disp.first;
|
|
while(dl) {
|
|
|
|
if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr;
|
|
else tot= dl->nr*dl->parts;
|
|
|
|
if(tot) doit= 1;
|
|
fp= dl->verts;
|
|
while(tot--) {
|
|
DO_MINMAX(fp, min, max);
|
|
fp += 3;
|
|
}
|
|
dl= dl->next;
|
|
}
|
|
|
|
if(!doit) {
|
|
min[0] = min[1] = min[2] = -1.0f;
|
|
max[0] = max[1] = max[2] = 1.0f;
|
|
}
|
|
|
|
boundbox_set_from_min_max(bb, min, max);
|
|
|
|
if(cu->texflag & CU_AUTOSPACE) {
|
|
mid_v3_v3v3(cu->loc, min, max);
|
|
cu->size[0]= (max[0]-min[0])/2.0f;
|
|
cu->size[1]= (max[1]-min[1])/2.0f;
|
|
cu->size[2]= (max[2]-min[2])/2.0f;
|
|
|
|
cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0f;
|
|
|
|
if(cu->size[0]==0.0f) cu->size[0]= 1.0f;
|
|
else if(cu->size[0]>0.0f && cu->size[0]<0.00001f) cu->size[0]= 0.00001f;
|
|
else if(cu->size[0]<0.0f && cu->size[0]> -0.00001f) cu->size[0]= -0.00001f;
|
|
|
|
if(cu->size[1]==0.0f) cu->size[1]= 1.0f;
|
|
else if(cu->size[1]>0.0f && cu->size[1]<0.00001f) cu->size[1]= 0.00001f;
|
|
else if(cu->size[1]<0.0f && cu->size[1]> -0.00001f) cu->size[1]= -0.00001f;
|
|
|
|
if(cu->size[2]==0.0f) cu->size[2]= 1.0f;
|
|
else if(cu->size[2]>0.0f && cu->size[2]<0.00001f) cu->size[2]= 0.00001f;
|
|
else if(cu->size[2]<0.0f && cu->size[2]> -0.00001f) cu->size[2]= -0.00001f;
|
|
|
|
}
|
|
}
|
|
|
|
int count_curveverts(ListBase *nurb)
|
|
{
|
|
Nurb *nu;
|
|
int tot=0;
|
|
|
|
nu= nurb->first;
|
|
while(nu) {
|
|
if(nu->bezt) tot+= 3*nu->pntsu;
|
|
else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
|
|
|
|
nu= nu->next;
|
|
}
|
|
return tot;
|
|
}
|
|
|
|
int count_curveverts_without_handles(ListBase *nurb)
|
|
{
|
|
Nurb *nu;
|
|
int tot=0;
|
|
|
|
nu= nurb->first;
|
|
while(nu) {
|
|
if(nu->bezt) tot+= nu->pntsu;
|
|
else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
|
|
|
|
nu= nu->next;
|
|
}
|
|
return tot;
|
|
}
|
|
|
|
/* **************** NURBS ROUTINES ******************** */
|
|
|
|
void freeNurb(Nurb *nu)
|
|
{
|
|
|
|
if(nu==NULL) return;
|
|
|
|
if(nu->bezt) MEM_freeN(nu->bezt);
|
|
nu->bezt= NULL;
|
|
if(nu->bp) MEM_freeN(nu->bp);
|
|
nu->bp= NULL;
|
|
if(nu->knotsu) MEM_freeN(nu->knotsu);
|
|
nu->knotsu= NULL;
|
|
if(nu->knotsv) MEM_freeN(nu->knotsv);
|
|
nu->knotsv= NULL;
|
|
/* if(nu->trim.first) freeNurblist(&(nu->trim)); */
|
|
|
|
MEM_freeN(nu);
|
|
|
|
}
|
|
|
|
|
|
void freeNurblist(ListBase *lb)
|
|
{
|
|
Nurb *nu, *next;
|
|
|
|
if(lb==NULL) return;
|
|
|
|
nu= lb->first;
|
|
while(nu) {
|
|
next= nu->next;
|
|
freeNurb(nu);
|
|
nu= next;
|
|
}
|
|
lb->first= lb->last= NULL;
|
|
}
|
|
|
|
Nurb *duplicateNurb(Nurb *nu)
|
|
{
|
|
Nurb *newnu;
|
|
int len;
|
|
|
|
newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb");
|
|
if(newnu==NULL) return NULL;
|
|
memcpy(newnu, nu, sizeof(Nurb));
|
|
|
|
if(nu->bezt) {
|
|
newnu->bezt=
|
|
(BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2");
|
|
memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple));
|
|
}
|
|
else {
|
|
len= nu->pntsu*nu->pntsv;
|
|
newnu->bp=
|
|
(BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3");
|
|
memcpy(newnu->bp, nu->bp, len*sizeof(BPoint));
|
|
|
|
newnu->knotsu= newnu->knotsv= NULL;
|
|
|
|
if(nu->knotsu) {
|
|
len= KNOTSU(nu);
|
|
if(len) {
|
|
newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4");
|
|
memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len);
|
|
}
|
|
}
|
|
if(nu->pntsv>1 && nu->knotsv) {
|
|
len= KNOTSV(nu);
|
|
if(len) {
|
|
newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5");
|
|
memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len);
|
|
}
|
|
}
|
|
}
|
|
return newnu;
|
|
}
|
|
|
|
void duplicateNurblist(ListBase *lb1, ListBase *lb2)
|
|
{
|
|
Nurb *nu, *nun;
|
|
|
|
freeNurblist(lb1);
|
|
|
|
nu= lb2->first;
|
|
while(nu) {
|
|
nun= duplicateNurb(nu);
|
|
BLI_addtail(lb1, nun);
|
|
|
|
nu= nu->next;
|
|
}
|
|
}
|
|
|
|
void test2DNurb(Nurb *nu)
|
|
{
|
|
BezTriple *bezt;
|
|
BPoint *bp;
|
|
int a;
|
|
|
|
if((nu->flag & CU_2D)==0)
|
|
return;
|
|
|
|
if(nu->type == CU_BEZIER) {
|
|
a= nu->pntsu;
|
|
bezt= nu->bezt;
|
|
while(a--) {
|
|
bezt->vec[0][2]= 0.0;
|
|
bezt->vec[1][2]= 0.0;
|
|
bezt->vec[2][2]= 0.0;
|
|
bezt++;
|
|
}
|
|
}
|
|
else {
|
|
a= nu->pntsu*nu->pntsv;
|
|
bp= nu->bp;
|
|
while(a--) {
|
|
bp->vec[2]= 0.0;
|
|
bp++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void minmaxNurb(Nurb *nu, float *min, float *max)
|
|
{
|
|
BezTriple *bezt;
|
|
BPoint *bp;
|
|
int a;
|
|
|
|
if(nu->type == CU_BEZIER) {
|
|
a= nu->pntsu;
|
|
bezt= nu->bezt;
|
|
while(a--) {
|
|
DO_MINMAX(bezt->vec[0], min, max);
|
|
DO_MINMAX(bezt->vec[1], min, max);
|
|
DO_MINMAX(bezt->vec[2], min, max);
|
|
bezt++;
|
|
}
|
|
}
|
|
else {
|
|
a= nu->pntsu*nu->pntsv;
|
|
bp= nu->bp;
|
|
while(a--) {
|
|
DO_MINMAX(bp->vec, min, max);
|
|
bp++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* be sure to call makeknots after this */
|
|
void addNurbPoints(Nurb *nu, int number)
|
|
{
|
|
BPoint *tmp= nu->bp;
|
|
int i;
|
|
nu->bp= (BPoint *)MEM_mallocN((nu->pntsu + number) * sizeof(BPoint), "rna_Curve_spline_points_add");
|
|
|
|
if(tmp) {
|
|
memmove(nu->bp, tmp, nu->pntsu * sizeof(BPoint));
|
|
MEM_freeN(tmp);
|
|
}
|
|
|
|
memset(nu->bp + nu->pntsu, 0, number * sizeof(BPoint));
|
|
|
|
for(i=0, tmp= nu->bp + nu->pntsu; i < number; i++, tmp++) {
|
|
tmp->radius= 1.0f;
|
|
}
|
|
|
|
nu->pntsu += number;
|
|
}
|
|
|
|
void addNurbPointsBezier(Nurb *nu, int number)
|
|
{
|
|
BezTriple *tmp= nu->bezt;
|
|
int i;
|
|
nu->bezt= (BezTriple *)MEM_mallocN((nu->pntsu + number) * sizeof(BezTriple), "rna_Curve_spline_points_add");
|
|
|
|
if(tmp) {
|
|
memmove(nu->bezt, tmp, nu->pntsu * sizeof(BezTriple));
|
|
MEM_freeN(tmp);
|
|
}
|
|
|
|
memset(nu->bezt + nu->pntsu, 0, number * sizeof(BezTriple));
|
|
|
|
for(i=0, tmp= nu->bezt + nu->pntsu; i < number; i++, tmp++) {
|
|
tmp->radius= 1.0f;
|
|
}
|
|
|
|
nu->pntsu += number;
|
|
}
|
|
|
|
/* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */
|
|
|
|
|
|
static void calcknots(float *knots, const short pnts, const short order, const short flag)
|
|
{
|
|
/* knots: number of pnts NOT corrected for cyclic */
|
|
const int pnts_order= pnts + order;
|
|
float k;
|
|
int a;
|
|
|
|
switch(flag & (CU_NURB_ENDPOINT|CU_NURB_BEZIER)) {
|
|
case CU_NURB_ENDPOINT:
|
|
k= 0.0;
|
|
for(a=1; a <= pnts_order; a++) {
|
|
knots[a-1]= k;
|
|
if(a >= order && a <= pnts) k+= 1.0f;
|
|
}
|
|
break;
|
|
case CU_NURB_BEZIER:
|
|
/* Warning, the order MUST be 2 or 4,
|
|
* if this is not enforced, the displist will be corrupt */
|
|
if(order==4) {
|
|
k= 0.34;
|
|
for(a=0; a < pnts_order; a++) {
|
|
knots[a]= floorf(k);
|
|
k+= (1.0f/3.0f);
|
|
}
|
|
}
|
|
else if(order==3) {
|
|
k= 0.6f;
|
|
for(a=0; a < pnts_order; a++) {
|
|
if(a >= order && a <= pnts) k+= 0.5f;
|
|
knots[a]= floorf(k);
|
|
}
|
|
}
|
|
else {
|
|
printf("bez nurb curve order is not 3 or 4, should never happen\n");
|
|
}
|
|
break;
|
|
default:
|
|
for(a=0; a < pnts_order; a++) {
|
|
knots[a]= (float)a;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void makecyclicknots(float *knots, short pnts, short order)
|
|
/* pnts, order: number of pnts NOT corrected for cyclic */
|
|
{
|
|
int a, b, order2, c;
|
|
|
|
if(knots==NULL) return;
|
|
|
|
order2=order-1;
|
|
|
|
/* do first long rows (order -1), remove identical knots at endpoints */
|
|
if(order>2) {
|
|
b= pnts+order2;
|
|
for(a=1; a<order2; a++) {
|
|
if(knots[b]!= knots[b-a]) break;
|
|
}
|
|
if(a==order2) knots[pnts+order-2]+= 1.0f;
|
|
}
|
|
|
|
b= order;
|
|
c=pnts + order + order2;
|
|
for(a=pnts+order2; a<c; a++) {
|
|
knots[a]= knots[a-1]+ (knots[b]-knots[b-1]);
|
|
b--;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void makeknots(Nurb *nu, short uv)
|
|
{
|
|
if(nu->type == CU_NURBS) {
|
|
if(uv == 1) {
|
|
if(nu->knotsu) MEM_freeN(nu->knotsu);
|
|
if(check_valid_nurb_u(nu)) {
|
|
nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots");
|
|
if(nu->flagu & CU_NURB_CYCLIC) {
|
|
calcknots(nu->knotsu, nu->pntsu, nu->orderu, 0); /* cyclic should be uniform */
|
|
makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
|
|
} else {
|
|
calcknots(nu->knotsu, nu->pntsu, nu->orderu, nu->flagu);
|
|
}
|
|
}
|
|
else nu->knotsu= NULL;
|
|
|
|
} else if(uv == 2) {
|
|
if(nu->knotsv) MEM_freeN(nu->knotsv);
|
|
if(check_valid_nurb_v(nu)) {
|
|
nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots");
|
|
if(nu->flagv & CU_NURB_CYCLIC) {
|
|
calcknots(nu->knotsv, nu->pntsv, nu->orderv, 0); /* cyclic should be uniform */
|
|
makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
|
|
} else {
|
|
calcknots(nu->knotsv, nu->pntsv, nu->orderv, nu->flagv);
|
|
}
|
|
}
|
|
else nu->knotsv= NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void nurbs_knot_calc_u(Nurb *nu)
|
|
{
|
|
makeknots(nu, 1);
|
|
}
|
|
|
|
void nurbs_knot_calc_v(Nurb *nu)
|
|
{
|
|
makeknots(nu, 2);
|
|
}
|
|
|
|
static void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
|
|
{
|
|
float d, e;
|
|
int i, i1 = 0, i2 = 0 ,j, orderpluspnts, opp2, o2;
|
|
|
|
orderpluspnts= order+pnts;
|
|
opp2 = orderpluspnts-1;
|
|
|
|
/* this is for float inaccuracy */
|
|
if(t < knots[0]) t= knots[0];
|
|
else if(t > knots[opp2]) t= knots[opp2];
|
|
|
|
/* this part is order '1' */
|
|
o2 = order + 1;
|
|
for(i=0;i<opp2;i++) {
|
|
if(knots[i]!=knots[i+1] && t>= knots[i] && t<=knots[i+1]) {
|
|
basis[i]= 1.0;
|
|
i1= i-o2;
|
|
if(i1<0) i1= 0;
|
|
i2= i;
|
|
i++;
|
|
while(i<opp2) {
|
|
basis[i]= 0.0;
|
|
i++;
|
|
}
|
|
break;
|
|
}
|
|
else basis[i]= 0.0;
|
|
}
|
|
basis[i]= 0.0;
|
|
|
|
/* this is order 2,3,... */
|
|
for(j=2; j<=order; j++) {
|
|
|
|
if(i2+j>= orderpluspnts) i2= opp2-j;
|
|
|
|
for(i= i1; i<=i2; i++) {
|
|
if(basis[i]!=0.0f)
|
|
d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]);
|
|
else
|
|
d= 0.0f;
|
|
|
|
if(basis[i+1] != 0.0f)
|
|
e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]);
|
|
else
|
|
e= 0.0;
|
|
|
|
basis[i]= d+e;
|
|
}
|
|
}
|
|
|
|
*start= 1000;
|
|
*end= 0;
|
|
|
|
for(i=i1; i<=i2; i++) {
|
|
if(basis[i] > 0.0f) {
|
|
*end= i;
|
|
if(*start==1000) *start= i;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void makeNurbfaces(Nurb *nu, float *coord_array, int rowstride, int resolu, int resolv)
|
|
/* coord_array has to be 3*4*resolu*resolv in size, and zero-ed */
|
|
{
|
|
BPoint *bp;
|
|
float *basisu, *basis, *basisv, *sum, *fp, *in;
|
|
float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
|
|
int i, j, iofs, jofs, cycl, len, curu, curv;
|
|
int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
|
|
|
|
int totu = nu->pntsu*resolu, totv = nu->pntsv*resolv;
|
|
|
|
if(nu->knotsu==NULL || nu->knotsv==NULL) return;
|
|
if(nu->orderu>nu->pntsu) return;
|
|
if(nu->orderv>nu->pntsv) return;
|
|
if(coord_array==NULL) return;
|
|
|
|
/* allocate and initialize */
|
|
len = totu * totv;
|
|
if(len==0) return;
|
|
|
|
|
|
|
|
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1");
|
|
|
|
len= totu*totv;
|
|
if(len==0) {
|
|
MEM_freeN(sum);
|
|
return;
|
|
}
|
|
|
|
bp= nu->bp;
|
|
i= nu->pntsu*nu->pntsv;
|
|
ratcomp=0;
|
|
while(i--) {
|
|
if(bp->vec[3] != 1.0f) {
|
|
ratcomp= 1;
|
|
break;
|
|
}
|
|
bp++;
|
|
}
|
|
|
|
fp= nu->knotsu;
|
|
ustart= fp[nu->orderu-1];
|
|
if(nu->flagu & CU_NURB_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1];
|
|
else uend= fp[nu->pntsu];
|
|
ustep= (uend-ustart)/((nu->flagu & CU_NURB_CYCLIC) ? totu : totu - 1);
|
|
|
|
basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3");
|
|
|
|
fp= nu->knotsv;
|
|
vstart= fp[nu->orderv-1];
|
|
|
|
if(nu->flagv & CU_NURB_CYCLIC) vend= fp[nu->pntsv+nu->orderv-1];
|
|
else vend= fp[nu->pntsv];
|
|
vstep= (vend-vstart)/((nu->flagv & CU_NURB_CYCLIC) ? totv : totv - 1);
|
|
|
|
len= KNOTSV(nu);
|
|
basisv= (float *)MEM_mallocN(sizeof(float)*len*totv, "makeNurbfaces3");
|
|
jstart= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces4");
|
|
jend= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces5");
|
|
|
|
/* precalculation of basisv and jstart,jend */
|
|
if(nu->flagv & CU_NURB_CYCLIC) cycl= nu->orderv-1;
|
|
else cycl= 0;
|
|
v= vstart;
|
|
basis= basisv;
|
|
curv= totv;
|
|
while(curv--) {
|
|
basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+curv, jend+curv);
|
|
basis+= KNOTSV(nu);
|
|
v+= vstep;
|
|
}
|
|
|
|
if(nu->flagu & CU_NURB_CYCLIC) cycl= nu->orderu-1;
|
|
else cycl= 0;
|
|
in= coord_array;
|
|
u= ustart;
|
|
curu= totu;
|
|
while(curu--) {
|
|
|
|
basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
|
|
|
|
basis= basisv;
|
|
curv= totv;
|
|
while(curv--) {
|
|
|
|
jsta= jstart[curv];
|
|
jen= jend[curv];
|
|
|
|
/* calculate sum */
|
|
sumdiv= 0.0;
|
|
fp= sum;
|
|
|
|
for(j= jsta; j<=jen; j++) {
|
|
|
|
if(j>=nu->pntsv) jofs= (j - nu->pntsv);
|
|
else jofs= j;
|
|
bp= nu->bp+ nu->pntsu*jofs+istart-1;
|
|
|
|
for(i= istart; i<=iend; i++, fp++) {
|
|
|
|
if(i>= nu->pntsu) {
|
|
iofs= i- nu->pntsu;
|
|
bp= nu->bp+ nu->pntsu*jofs+iofs;
|
|
}
|
|
else bp++;
|
|
|
|
if(ratcomp) {
|
|
*fp= basisu[i]*basis[j]*bp->vec[3];
|
|
sumdiv+= *fp;
|
|
}
|
|
else *fp= basisu[i]*basis[j];
|
|
}
|
|
}
|
|
|
|
if(ratcomp) {
|
|
fp= sum;
|
|
for(j= jsta; j<=jen; j++) {
|
|
for(i= istart; i<=iend; i++, fp++) {
|
|
*fp/= sumdiv;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* one! (1.0) real point now */
|
|
fp= sum;
|
|
for(j= jsta; j<=jen; j++) {
|
|
|
|
if(j>=nu->pntsv) jofs= (j - nu->pntsv);
|
|
else jofs= j;
|
|
bp= nu->bp+ nu->pntsu*jofs+istart-1;
|
|
|
|
for(i= istart; i<=iend; i++, fp++) {
|
|
|
|
if(i>= nu->pntsu) {
|
|
iofs= i- nu->pntsu;
|
|
bp= nu->bp+ nu->pntsu*jofs+iofs;
|
|
}
|
|
else bp++;
|
|
|
|
if(*fp != 0.0f) {
|
|
in[0]+= (*fp) * bp->vec[0];
|
|
in[1]+= (*fp) * bp->vec[1];
|
|
in[2]+= (*fp) * bp->vec[2];
|
|
}
|
|
}
|
|
}
|
|
|
|
in+=3;
|
|
basis+= KNOTSV(nu);
|
|
}
|
|
u+= ustep;
|
|
if (rowstride!=0) in = (float*) (((unsigned char*) in) + (rowstride - 3*totv*sizeof(*in)));
|
|
}
|
|
|
|
/* free */
|
|
MEM_freeN(sum);
|
|
MEM_freeN(basisu);
|
|
MEM_freeN(basisv);
|
|
MEM_freeN(jstart);
|
|
MEM_freeN(jend);
|
|
}
|
|
|
|
void makeNurbcurve(Nurb *nu, float *coord_array, float *tilt_array, float *radius_array, float *weight_array, int resolu, int stride)
|
|
/* coord_array has to be 3*4*pntsu*resolu in size and zero-ed
|
|
* tilt_array and radius_array will be written to if valid */
|
|
{
|
|
BPoint *bp;
|
|
float u, ustart, uend, ustep, sumdiv;
|
|
float *basisu, *sum, *fp;
|
|
float *coord_fp= coord_array, *tilt_fp= tilt_array, *radius_fp= radius_array, *weight_fp= weight_array;
|
|
int i, len, istart, iend, cycl;
|
|
|
|
if(nu->knotsu==NULL) return;
|
|
if(nu->orderu>nu->pntsu) return;
|
|
if(coord_array==NULL) return;
|
|
|
|
/* allocate and initialize */
|
|
len= nu->pntsu;
|
|
if(len==0) return;
|
|
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");
|
|
|
|
resolu= (resolu*SEGMENTSU(nu));
|
|
|
|
if(resolu==0) {
|
|
MEM_freeN(sum);
|
|
return;
|
|
}
|
|
|
|
fp= nu->knotsu;
|
|
ustart= fp[nu->orderu-1];
|
|
if(nu->flagu & CU_NURB_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1];
|
|
else uend= fp[nu->pntsu];
|
|
ustep= (uend-ustart)/(resolu - ((nu->flagu & CU_NURB_CYCLIC) ? 0 : 1));
|
|
|
|
basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3");
|
|
|
|
if(nu->flagu & CU_NURB_CYCLIC) cycl= nu->orderu-1;
|
|
else cycl= 0;
|
|
|
|
u= ustart;
|
|
while(resolu--) {
|
|
|
|
basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
|
|
/* calc sum */
|
|
sumdiv= 0.0;
|
|
fp= sum;
|
|
bp= nu->bp+ istart-1;
|
|
for(i= istart; i<=iend; i++, fp++) {
|
|
|
|
if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
|
|
else bp++;
|
|
|
|
*fp= basisu[i]*bp->vec[3];
|
|
sumdiv+= *fp;
|
|
}
|
|
if(sumdiv != 0.0f) if(sumdiv < 0.999f || sumdiv > 1.001f) {
|
|
/* is normalizing needed? */
|
|
fp= sum;
|
|
for(i= istart; i<=iend; i++, fp++) {
|
|
*fp/= sumdiv;
|
|
}
|
|
}
|
|
|
|
/* one! (1.0) real point */
|
|
fp= sum;
|
|
bp= nu->bp+ istart-1;
|
|
for(i= istart; i<=iend; i++, fp++) {
|
|
|
|
if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
|
|
else bp++;
|
|
|
|
if(*fp != 0.0f) {
|
|
|
|
coord_fp[0]+= (*fp) * bp->vec[0];
|
|
coord_fp[1]+= (*fp) * bp->vec[1];
|
|
coord_fp[2]+= (*fp) * bp->vec[2];
|
|
|
|
if (tilt_fp)
|
|
(*tilt_fp) += (*fp) * bp->alfa;
|
|
|
|
if (radius_fp)
|
|
(*radius_fp) += (*fp) * bp->radius;
|
|
|
|
if (weight_fp)
|
|
(*weight_fp) += (*fp) * bp->weight;
|
|
|
|
}
|
|
}
|
|
|
|
coord_fp = (float *)(((char *)coord_fp) + stride);
|
|
|
|
if (tilt_fp) tilt_fp = (float *)(((char *)tilt_fp) + stride);
|
|
if (radius_fp) radius_fp = (float *)(((char *)radius_fp) + stride);
|
|
if (weight_fp) weight_fp = (float *)(((char *)weight_fp) + stride);
|
|
|
|
u+= ustep;
|
|
}
|
|
|
|
/* free */
|
|
MEM_freeN(sum);
|
|
MEM_freeN(basisu);
|
|
}
|
|
|
|
/* forward differencing method for bezier curve */
|
|
void forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride)
|
|
{
|
|
float rt0,rt1,rt2,rt3,f;
|
|
int a;
|
|
|
|
f= (float)it;
|
|
rt0= q0;
|
|
rt1= 3.0f*(q1-q0)/f;
|
|
f*= f;
|
|
rt2= 3.0f*(q0-2.0f*q1+q2)/f;
|
|
f*= it;
|
|
rt3= (q3-q0+3.0f*(q1-q2))/f;
|
|
|
|
q0= rt0;
|
|
q1= rt1+rt2+rt3;
|
|
q2= 2*rt2+6*rt3;
|
|
q3= 6*rt3;
|
|
|
|
for(a=0; a<=it; a++) {
|
|
*p= q0;
|
|
p = (float *)(((char *)p)+stride);
|
|
q0+= q1;
|
|
q1+= q2;
|
|
q2+= q3;
|
|
}
|
|
}
|
|
|
|
static void forward_diff_bezier_cotangent(float *p0, float *p1, float *p2, float *p3, float *p, int it, int stride)
|
|
{
|
|
/* note that these are not purpendicular to the curve
|
|
* they need to be rotated for this,
|
|
*
|
|
* This could also be optimized like forward_diff_bezier */
|
|
int a;
|
|
for(a=0; a<=it; a++) {
|
|
float t = (float)a / (float)it;
|
|
|
|
int i;
|
|
for(i=0; i<3; i++) {
|
|
p[i]= (-6*t + 6)*p0[i] + (18*t - 12)*p1[i] + (-18*t + 6)*p2[i] + (6*t)*p3[i];
|
|
}
|
|
normalize_v3(p);
|
|
p = (float *)(((char *)p)+stride);
|
|
}
|
|
}
|
|
|
|
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
|
|
|
|
float *make_orco_surf(Object *ob)
|
|
{
|
|
/* Note: this function is used in convertblender only atm, so
|
|
* suppose nonzero curve's render resolution should always be used */
|
|
Curve *cu= ob->data;
|
|
Nurb *nu;
|
|
int a, b, tot=0;
|
|
int sizeu, sizev;
|
|
int resolu, resolv;
|
|
float *fp, *coord_array;
|
|
|
|
/* first calculate the size of the datablock */
|
|
nu= cu->nurb.first;
|
|
while(nu) {
|
|
/* as we want to avoid the seam in a cyclic nurbs
|
|
texture wrapping, reserve extra orco data space to save these extra needed
|
|
vertex based UV coordinates for the meridian vertices.
|
|
Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
|
|
the renderface/vert construction.
|
|
|
|
See also convertblender.c: init_render_surf()
|
|
*/
|
|
|
|
resolu= cu->resolu_ren ? cu->resolu_ren : nu->resolu;
|
|
resolv= cu->resolv_ren ? cu->resolv_ren : nu->resolv;
|
|
|
|
sizeu = nu->pntsu*resolu;
|
|
sizev = nu->pntsv*resolv;
|
|
if (nu->flagu & CU_NURB_CYCLIC) sizeu++;
|
|
if (nu->flagv & CU_NURB_CYCLIC) sizev++;
|
|
if(nu->pntsv>1) tot+= sizeu * sizev;
|
|
|
|
nu= nu->next;
|
|
}
|
|
/* makeNurbfaces wants zeros */
|
|
fp= coord_array= MEM_callocN(3*sizeof(float)*tot, "make_orco");
|
|
|
|
nu= cu->nurb.first;
|
|
while(nu) {
|
|
resolu= cu->resolu_ren ? cu->resolu_ren : nu->resolu;
|
|
resolv= cu->resolv_ren ? cu->resolv_ren : nu->resolv;
|
|
|
|
if(nu->pntsv>1) {
|
|
sizeu = nu->pntsu*resolu;
|
|
sizev = nu->pntsv*resolv;
|
|
if (nu->flagu & CU_NURB_CYCLIC) sizeu++;
|
|
if (nu->flagv & CU_NURB_CYCLIC) sizev++;
|
|
|
|
if(cu->flag & CU_UV_ORCO) {
|
|
for(b=0; b< sizeu; b++) {
|
|
for(a=0; a< sizev; a++) {
|
|
|
|
if(sizev <2) fp[0]= 0.0f;
|
|
else fp[0]= -1.0f + 2.0f*((float)a)/(sizev - 1);
|
|
|
|
if(sizeu <2) fp[1]= 0.0f;
|
|
else fp[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1);
|
|
|
|
fp[2]= 0.0;
|
|
|
|
fp+= 3;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
float *_tdata= MEM_callocN((nu->pntsu*resolu) * (nu->pntsv*resolv) *3*sizeof(float), "temp data");
|
|
float *tdata= _tdata;
|
|
|
|
makeNurbfaces(nu, tdata, 0, resolu, resolv);
|
|
|
|
for(b=0; b<sizeu; b++) {
|
|
int use_b= b;
|
|
if (b==sizeu-1 && (nu->flagu & CU_NURB_CYCLIC))
|
|
use_b= 0;
|
|
|
|
for(a=0; a<sizev; a++) {
|
|
int use_a= a;
|
|
if (a==sizev-1 && (nu->flagv & CU_NURB_CYCLIC))
|
|
use_a= 0;
|
|
|
|
tdata = _tdata + 3 * (use_b * (nu->pntsv*resolv) + use_a);
|
|
|
|
fp[0]= (tdata[0]-cu->loc[0])/cu->size[0];
|
|
fp[1]= (tdata[1]-cu->loc[1])/cu->size[1];
|
|
fp[2]= (tdata[2]-cu->loc[2])/cu->size[2];
|
|
fp+= 3;
|
|
}
|
|
}
|
|
|
|
MEM_freeN(_tdata);
|
|
}
|
|
}
|
|
nu= nu->next;
|
|
}
|
|
|
|
return coord_array;
|
|
}
|
|
|
|
|
|
/* NOTE: This routine is tied to the order of vertex
|
|
* built by displist and as passed to the renderer.
|
|
*/
|
|
float *make_orco_curve(Scene *scene, Object *ob)
|
|
{
|
|
Curve *cu = ob->data;
|
|
DispList *dl;
|
|
int u, v, numVerts;
|
|
float *fp, *coord_array;
|
|
ListBase disp = {NULL, NULL};
|
|
|
|
makeDispListCurveTypes_forOrco(scene, ob, &disp);
|
|
|
|
numVerts = 0;
|
|
for (dl=disp.first; dl; dl=dl->next) {
|
|
if (dl->type==DL_INDEX3) {
|
|
numVerts += dl->nr;
|
|
} else if (dl->type==DL_SURF) {
|
|
/* convertblender.c uses the Surface code for creating renderfaces when cyclic U only (closed circle beveling) */
|
|
if (dl->flag & DL_CYCL_U) {
|
|
if (dl->flag & DL_CYCL_V)
|
|
numVerts += (dl->parts+1)*(dl->nr+1);
|
|
else
|
|
numVerts += dl->parts*(dl->nr+1);
|
|
}
|
|
else
|
|
numVerts += dl->parts*dl->nr;
|
|
}
|
|
}
|
|
|
|
fp= coord_array= MEM_mallocN(3*sizeof(float)*numVerts, "cu_orco");
|
|
for (dl=disp.first; dl; dl=dl->next) {
|
|
if (dl->type==DL_INDEX3) {
|
|
for (u=0; u<dl->nr; u++, fp+=3) {
|
|
if (cu->flag & CU_UV_ORCO) {
|
|
fp[0]= 2.0f*u/(dl->nr-1) - 1.0f;
|
|
fp[1]= 0.0;
|
|
fp[2]= 0.0;
|
|
} else {
|
|
copy_v3_v3(fp, &dl->verts[u*3]);
|
|
|
|
fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
|
|
fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
|
|
fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
|
|
}
|
|
}
|
|
} else if (dl->type==DL_SURF) {
|
|
int sizeu= dl->nr, sizev= dl->parts;
|
|
|
|
/* exception as handled in convertblender.c too */
|
|
if (dl->flag & DL_CYCL_U) {
|
|
sizeu++;
|
|
if (dl->flag & DL_CYCL_V)
|
|
sizev++;
|
|
}
|
|
|
|
for (u=0; u<sizev; u++) {
|
|
for (v=0; v<sizeu; v++,fp+=3) {
|
|
if (cu->flag & CU_UV_ORCO) {
|
|
fp[0]= 2.0f*u/(sizev - 1) - 1.0f;
|
|
fp[1]= 2.0f*v/(sizeu - 1) - 1.0f;
|
|
fp[2]= 0.0;
|
|
} else {
|
|
float *vert;
|
|
int realv= v % dl->nr;
|
|
int realu= u % dl->parts;
|
|
|
|
vert= dl->verts + 3*(dl->nr*realu + realv);
|
|
copy_v3_v3(fp, vert);
|
|
|
|
fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
|
|
fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
|
|
fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
freedisplist(&disp);
|
|
|
|
return coord_array;
|
|
}
|
|
|
|
|
|
/* ***************** BEVEL ****************** */
|
|
|
|
void makebevelcurve(Scene *scene, Object *ob, ListBase *disp, int forRender)
|
|
{
|
|
DispList *dl, *dlnew;
|
|
Curve *bevcu, *cu;
|
|
float *fp, facx, facy, angle, dangle;
|
|
int nr, a;
|
|
|
|
cu= ob->data;
|
|
disp->first = disp->last = NULL;
|
|
|
|
/* if a font object is being edited, then do nothing */
|
|
// XXX if( ob == obedit && ob->type == OB_FONT ) return;
|
|
|
|
if(cu->bevobj) {
|
|
if (cu->bevobj->type!=OB_CURVE) return;
|
|
|
|
bevcu= cu->bevobj->data;
|
|
if(bevcu->ext1==0.0f && bevcu->ext2==0.0f) {
|
|
ListBase bevdisp= {NULL, NULL};
|
|
facx= cu->bevobj->size[0];
|
|
facy= cu->bevobj->size[1];
|
|
|
|
if (forRender) {
|
|
makeDispListCurveTypes_forRender(scene, cu->bevobj, &bevdisp, NULL, 0);
|
|
dl= bevdisp.first;
|
|
} else {
|
|
dl= cu->bevobj->disp.first;
|
|
if(dl==NULL) {
|
|
makeDispListCurveTypes(scene, cu->bevobj, 0);
|
|
dl= cu->bevobj->disp.first;
|
|
}
|
|
}
|
|
|
|
while(dl) {
|
|
if ELEM(dl->type, DL_POLY, DL_SEGM) {
|
|
dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1");
|
|
*dlnew= *dl;
|
|
dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1");
|
|
memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr);
|
|
|
|
if(dlnew->type==DL_SEGM) dlnew->flag |= (DL_FRONT_CURVE|DL_BACK_CURVE);
|
|
|
|
BLI_addtail(disp, dlnew);
|
|
fp= dlnew->verts;
|
|
nr= dlnew->parts*dlnew->nr;
|
|
while(nr--) {
|
|
fp[2]= fp[1]*facy;
|
|
fp[1]= -fp[0]*facx;
|
|
fp[0]= 0.0;
|
|
fp+= 3;
|
|
}
|
|
}
|
|
dl= dl->next;
|
|
}
|
|
|
|
freedisplist(&bevdisp);
|
|
}
|
|
}
|
|
else if(cu->ext1==0.0f && cu->ext2==0.0f) {
|
|
;
|
|
}
|
|
else if(cu->ext2==0.0f) {
|
|
dl= MEM_callocN(sizeof(DispList), "makebevelcurve2");
|
|
dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2");
|
|
BLI_addtail(disp, dl);
|
|
dl->type= DL_SEGM;
|
|
dl->parts= 1;
|
|
dl->flag= DL_FRONT_CURVE|DL_BACK_CURVE;
|
|
dl->nr= 2;
|
|
|
|
fp= dl->verts;
|
|
fp[0]= fp[1]= 0.0;
|
|
fp[2]= -cu->ext1;
|
|
fp[3]= fp[4]= 0.0;
|
|
fp[5]= cu->ext1;
|
|
}
|
|
else if( (cu->flag & (CU_FRONT|CU_BACK))==0 && cu->ext1==0.0f) { // we make a full round bevel in that case
|
|
|
|
nr= 4+ 2*cu->bevresol;
|
|
|
|
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
|
|
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
|
|
BLI_addtail(disp, dl);
|
|
dl->type= DL_POLY;
|
|
dl->parts= 1;
|
|
dl->flag= DL_BACK_CURVE;
|
|
dl->nr= nr;
|
|
|
|
/* a circle */
|
|
fp= dl->verts;
|
|
dangle= (2.0f*(float)M_PI/(nr));
|
|
angle= -(nr-1)*dangle;
|
|
|
|
for(a=0; a<nr; a++) {
|
|
fp[0]= 0.0;
|
|
fp[1]= (cosf(angle)*(cu->ext2));
|
|
fp[2]= (sinf(angle)*(cu->ext2)) - cu->ext1;
|
|
angle+= dangle;
|
|
fp+= 3;
|
|
}
|
|
}
|
|
else {
|
|
short dnr;
|
|
|
|
/* bevel now in three parts, for proper vertex normals */
|
|
/* part 1, back */
|
|
|
|
if((cu->flag & CU_BACK) || !(cu->flag & CU_FRONT)) {
|
|
dnr= nr= 2+ cu->bevresol;
|
|
if( (cu->flag & (CU_FRONT|CU_BACK))==0)
|
|
nr= 3+ 2*cu->bevresol;
|
|
|
|
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
|
|
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
|
|
BLI_addtail(disp, dl);
|
|
dl->type= DL_SEGM;
|
|
dl->parts= 1;
|
|
dl->flag= DL_BACK_CURVE;
|
|
dl->nr= nr;
|
|
|
|
/* half a circle */
|
|
fp= dl->verts;
|
|
dangle= (0.5*M_PI/(dnr-1));
|
|
angle= -(nr-1)*dangle;
|
|
|
|
for(a=0; a<nr; a++) {
|
|
fp[0]= 0.0;
|
|
fp[1]= (float)(cosf(angle)*(cu->ext2));
|
|
fp[2]= (float)(sinf(angle)*(cu->ext2)) - cu->ext1;
|
|
angle+= dangle;
|
|
fp+= 3;
|
|
}
|
|
}
|
|
|
|
/* part 2, sidefaces */
|
|
if(cu->ext1!=0.0f) {
|
|
nr= 2;
|
|
|
|
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p2");
|
|
dl->verts= MEM_callocN(nr*3*sizeof(float), "makebevelcurve p2");
|
|
BLI_addtail(disp, dl);
|
|
dl->type= DL_SEGM;
|
|
dl->parts= 1;
|
|
dl->nr= nr;
|
|
|
|
fp= dl->verts;
|
|
fp[1]= cu->ext2;
|
|
fp[2]= -cu->ext1;
|
|
fp[4]= cu->ext2;
|
|
fp[5]= cu->ext1;
|
|
|
|
if( (cu->flag & (CU_FRONT|CU_BACK))==0) {
|
|
dl= MEM_dupallocN(dl);
|
|
dl->verts= MEM_dupallocN(dl->verts);
|
|
BLI_addtail(disp, dl);
|
|
|
|
fp= dl->verts;
|
|
fp[1]= -fp[1];
|
|
fp[2]= -fp[2];
|
|
fp[4]= -fp[4];
|
|
fp[5]= -fp[5];
|
|
}
|
|
}
|
|
|
|
/* part 3, front */
|
|
if((cu->flag & CU_FRONT) || !(cu->flag & CU_BACK)) {
|
|
dnr= nr= 2+ cu->bevresol;
|
|
if( (cu->flag & (CU_FRONT|CU_BACK))==0)
|
|
nr= 3+ 2*cu->bevresol;
|
|
|
|
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p3");
|
|
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p3");
|
|
BLI_addtail(disp, dl);
|
|
dl->type= DL_SEGM;
|
|
dl->flag= DL_FRONT_CURVE;
|
|
dl->parts= 1;
|
|
dl->nr= nr;
|
|
|
|
/* half a circle */
|
|
fp= dl->verts;
|
|
angle= 0.0;
|
|
dangle= (0.5*M_PI/(dnr-1));
|
|
|
|
for(a=0; a<nr; a++) {
|
|
fp[0]= 0.0;
|
|
fp[1]= (float)(cosf(angle)*(cu->ext2));
|
|
fp[2]= (float)(sinf(angle)*(cu->ext2)) + cu->ext1;
|
|
angle+= dangle;
|
|
fp+= 3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec)
|
|
{
|
|
/* return:
|
|
-1: colliniar
|
|
0: no intersection of segments
|
|
1: exact intersection of segments
|
|
2: cross-intersection of segments
|
|
*/
|
|
float deler;
|
|
|
|
deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]);
|
|
if(deler==0.0f) return -1;
|
|
|
|
*labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]);
|
|
*labda= -(*labda/deler);
|
|
|
|
deler= v3[coy]-v4[coy];
|
|
if(deler==0) {
|
|
deler=v3[cox]-v4[cox];
|
|
*mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler;
|
|
} else {
|
|
*mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler;
|
|
}
|
|
vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox];
|
|
vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy];
|
|
|
|
if(*labda>=0.0f && *labda<=1.0f && *mu>=0.0f && *mu<=1.0f) {
|
|
if(*labda==0.0f || *labda==1.0f || *mu==0.0f || *mu==1.0f) return 1;
|
|
return 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static short bevelinside(BevList *bl1,BevList *bl2)
|
|
{
|
|
/* is bl2 INSIDE bl1 ? with left-right method and "labda's" */
|
|
/* returns '1' if correct hole */
|
|
BevPoint *bevp, *prevbevp;
|
|
float min,max,vec[3],hvec1[3],hvec2[3],lab,mu;
|
|
int nr, links=0,rechts=0,mode;
|
|
|
|
/* take first vertex of possible hole */
|
|
|
|
bevp= (BevPoint *)(bl2+1);
|
|
hvec1[0]= bevp->vec[0];
|
|
hvec1[1]= bevp->vec[1];
|
|
hvec1[2]= 0.0;
|
|
copy_v3_v3(hvec2,hvec1);
|
|
hvec2[0]+=1000;
|
|
|
|
/* test it with all edges of potential surounding poly */
|
|
/* count number of transitions left-right */
|
|
|
|
bevp= (BevPoint *)(bl1+1);
|
|
nr= bl1->nr;
|
|
prevbevp= bevp+(nr-1);
|
|
|
|
while(nr--) {
|
|
min= prevbevp->vec[1];
|
|
max= bevp->vec[1];
|
|
if(max<min) {
|
|
min= max;
|
|
max= prevbevp->vec[1];
|
|
}
|
|
if(min!=max) {
|
|
if(min<=hvec1[1] && max>=hvec1[1]) {
|
|
/* there's a transition, calc intersection point */
|
|
mode= cu_isectLL(prevbevp->vec, bevp->vec, hvec1, hvec2, 0, 1, &lab, &mu, vec);
|
|
/* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
|
|
only allow for one situation: we choose lab= 1.0
|
|
*/
|
|
if(mode >= 0 && lab != 0.0f) {
|
|
if(vec[0]<hvec1[0]) links++;
|
|
else rechts++;
|
|
}
|
|
}
|
|
}
|
|
prevbevp= bevp;
|
|
bevp++;
|
|
}
|
|
|
|
if( (links & 1) && (rechts & 1) ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
struct bevelsort {
|
|
float left;
|
|
BevList *bl;
|
|
int dir;
|
|
};
|
|
|
|
static int vergxcobev(const void *a1, const void *a2)
|
|
{
|
|
const struct bevelsort *x1=a1,*x2=a2;
|
|
|
|
if( x1->left > x2->left ) return 1;
|
|
else if( x1->left < x2->left) return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* this function cannot be replaced with atan2, but why? */
|
|
|
|
static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
|
|
{
|
|
float t01, t02, x3, y3;
|
|
|
|
t01= (float)sqrt(x1*x1+y1*y1);
|
|
t02= (float)sqrt(x2*x2+y2*y2);
|
|
if(t01==0.0f) t01= 1.0f;
|
|
if(t02==0.0f) t02= 1.0f;
|
|
|
|
x1/=t01;
|
|
y1/=t01;
|
|
x2/=t02;
|
|
y2/=t02;
|
|
|
|
t02= x1*x2+y1*y2;
|
|
if(fabs(t02)>=1.0) t02= .5*M_PI;
|
|
else t02= (saacos(t02))/2.0f;
|
|
|
|
t02= (float)sin(t02);
|
|
if(t02==0.0f) t02= 1.0f;
|
|
|
|
x3= x1-x2;
|
|
y3= y1-y2;
|
|
if(x3==0 && y3==0) {
|
|
x3= y1;
|
|
y3= -x1;
|
|
} else {
|
|
t01= (float)sqrt(x3*x3+y3*y3);
|
|
x3/=t01;
|
|
y3/=t01;
|
|
}
|
|
|
|
*sina= -y3/t02;
|
|
*cosa= x3/t02;
|
|
|
|
}
|
|
|
|
static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *tilt_array, float *radius_array, float *weight_array, int resolu, int stride)
|
|
{
|
|
BezTriple *pprev, *next, *last;
|
|
float fac, dfac, t[4];
|
|
int a;
|
|
|
|
if(tilt_array==NULL && radius_array==NULL)
|
|
return;
|
|
|
|
last= nu->bezt+(nu->pntsu-1);
|
|
|
|
/* returns a point */
|
|
if(prevbezt==nu->bezt) {
|
|
if(nu->flagu & CU_NURB_CYCLIC) pprev= last;
|
|
else pprev= prevbezt;
|
|
}
|
|
else pprev= prevbezt-1;
|
|
|
|
/* next point */
|
|
if(bezt==last) {
|
|
if(nu->flagu & CU_NURB_CYCLIC) next= nu->bezt;
|
|
else next= bezt;
|
|
}
|
|
else next= bezt+1;
|
|
|
|
fac= 0.0;
|
|
dfac= 1.0f/(float)resolu;
|
|
|
|
for(a=0; a<resolu; a++, fac+= dfac) {
|
|
if (tilt_array) {
|
|
if (nu->tilt_interp==KEY_CU_EASE) { /* May as well support for tilt also 2.47 ease interp */
|
|
*tilt_array = prevbezt->alfa + (bezt->alfa - prevbezt->alfa)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
|
|
} else {
|
|
key_curve_position_weights(fac, t, nu->tilt_interp);
|
|
*tilt_array= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa;
|
|
}
|
|
|
|
tilt_array = (float *)(((char *)tilt_array) + stride);
|
|
}
|
|
|
|
if (radius_array) {
|
|
if (nu->radius_interp==KEY_CU_EASE) {
|
|
/* Support 2.47 ease interp
|
|
* Note! - this only takes the 2 points into account,
|
|
* giving much more localized results to changes in radius, sometimes you want that */
|
|
*radius_array = prevbezt->radius + (bezt->radius - prevbezt->radius)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
|
|
} else {
|
|
|
|
/* reuse interpolation from tilt if we can */
|
|
if (tilt_array==NULL || nu->tilt_interp != nu->radius_interp) {
|
|
key_curve_position_weights(fac, t, nu->radius_interp);
|
|
}
|
|
*radius_array= t[0]*pprev->radius + t[1]*prevbezt->radius + t[2]*bezt->radius + t[3]*next->radius;
|
|
}
|
|
|
|
radius_array = (float *)(((char *)radius_array) + stride);
|
|
}
|
|
|
|
if(weight_array) {
|
|
/* basic interpolation for now, could copy tilt interp too */
|
|
*weight_array = prevbezt->weight + (bezt->weight - prevbezt->weight)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
|
|
|
|
weight_array = (float *)(((char *)weight_array) + stride);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* make_bevel_list_3D_* funcs, at a minimum these must
|
|
* fill in the bezp->quat and bezp->dir values */
|
|
|
|
/* correct non-cyclic cases by copying direction and rotation
|
|
* values onto the first & last end-points */
|
|
static void bevel_list_cyclic_fix_3D(BevList *bl)
|
|
{
|
|
BevPoint *bevp, *bevp1;
|
|
|
|
bevp= (BevPoint *)(bl+1);
|
|
bevp1= bevp+1;
|
|
copy_qt_qt(bevp->quat, bevp1->quat);
|
|
copy_v3_v3(bevp->dir, bevp1->dir);
|
|
copy_v3_v3(bevp->tan, bevp1->tan);
|
|
bevp= (BevPoint *)(bl+1);
|
|
bevp+= (bl->nr-1);
|
|
bevp1= bevp-1;
|
|
copy_qt_qt(bevp->quat, bevp1->quat);
|
|
copy_v3_v3(bevp->dir, bevp1->dir);
|
|
copy_v3_v3(bevp->tan, bevp1->tan);
|
|
}
|
|
/* utility for make_bevel_list_3D_* funcs */
|
|
static void bevel_list_calc_bisect(BevList *bl)
|
|
{
|
|
BevPoint *bevp2, *bevp1, *bevp0;
|
|
int nr;
|
|
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+(bl->nr-1);
|
|
bevp0= bevp1-1;
|
|
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
/* totally simple */
|
|
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
|
|
|
|
bevp0= bevp1;
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
}
|
|
}
|
|
static void bevel_list_flip_tangents(BevList *bl)
|
|
{
|
|
BevPoint *bevp2, *bevp1, *bevp0;
|
|
int nr;
|
|
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+(bl->nr-1);
|
|
bevp0= bevp1-1;
|
|
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
if(RAD2DEGF(angle_v2v2(bevp0->tan, bevp1->tan)) > 90.0f)
|
|
negate_v3(bevp1->tan);
|
|
|
|
bevp0= bevp1;
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
}
|
|
}
|
|
/* apply user tilt */
|
|
static void bevel_list_apply_tilt(BevList *bl)
|
|
{
|
|
BevPoint *bevp2, *bevp1;
|
|
int nr;
|
|
float q[4];
|
|
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+(bl->nr-1);
|
|
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
|
|
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
|
|
normalize_qt(bevp1->quat);
|
|
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
}
|
|
}
|
|
/* smooth quats, this function should be optimized, it can get slow with many iterations. */
|
|
static void bevel_list_smooth(BevList *bl, int smooth_iter)
|
|
{
|
|
BevPoint *bevp2, *bevp1, *bevp0;
|
|
int nr;
|
|
|
|
float q[4];
|
|
float bevp0_quat[4];
|
|
int a;
|
|
|
|
for(a=0; a < smooth_iter; a++) {
|
|
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+(bl->nr-1);
|
|
bevp0= bevp1-1;
|
|
|
|
nr= bl->nr;
|
|
|
|
if(bl->poly== -1) { /* check its not cyclic */
|
|
/* skip the first point */
|
|
/* bevp0= bevp1; */
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
nr--;
|
|
|
|
bevp0= bevp1;
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
nr--;
|
|
|
|
}
|
|
|
|
copy_qt_qt(bevp0_quat, bevp0->quat);
|
|
|
|
while(nr--) {
|
|
/* interpolate quats */
|
|
float zaxis[3] = {0,0,1}, cross[3], q2[4];
|
|
interp_qt_qtqt(q, bevp0_quat, bevp2->quat, 0.5);
|
|
normalize_qt(q);
|
|
|
|
mul_qt_v3(q, zaxis);
|
|
cross_v3_v3v3(cross, zaxis, bevp1->dir);
|
|
axis_angle_to_quat(q2, cross, angle_normalized_v3v3(zaxis, bevp1->dir));
|
|
normalize_qt(q2);
|
|
|
|
copy_qt_qt(bevp0_quat, bevp1->quat);
|
|
mul_qt_qtqt(q, q2, q);
|
|
interp_qt_qtqt(bevp1->quat, bevp1->quat, q, 0.5);
|
|
normalize_qt(bevp1->quat);
|
|
|
|
|
|
/* bevp0= bevp1; */ /* UNUSED */
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void make_bevel_list_3D_zup(BevList *bl)
|
|
{
|
|
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
|
|
int nr;
|
|
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+(bl->nr-1);
|
|
bevp0= bevp1-1;
|
|
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
/* totally simple */
|
|
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
|
|
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
|
|
|
|
bevp0= bevp1;
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
}
|
|
}
|
|
|
|
static void make_bevel_list_3D_minimum_twist(BevList *bl)
|
|
{
|
|
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
|
|
int nr;
|
|
float q[4];
|
|
|
|
bevel_list_calc_bisect(bl);
|
|
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+(bl->nr-1);
|
|
bevp0= bevp1-1;
|
|
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
|
|
if(nr+4 > bl->nr) { /* first time and second time, otherwise first point adjusts last */
|
|
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
|
|
}
|
|
else {
|
|
float angle= angle_normalized_v3v3(bevp0->dir, bevp1->dir);
|
|
|
|
if(angle > 0.0f) { /* otherwise we can keep as is */
|
|
float cross_tmp[3];
|
|
cross_v3_v3v3(cross_tmp, bevp0->dir, bevp1->dir);
|
|
axis_angle_to_quat(q, cross_tmp, angle);
|
|
mul_qt_qtqt(bevp1->quat, q, bevp0->quat);
|
|
}
|
|
else {
|
|
copy_qt_qt(bevp1->quat, bevp0->quat);
|
|
}
|
|
}
|
|
|
|
bevp0= bevp1;
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
}
|
|
|
|
if(bl->poly != -1) { /* check for cyclic */
|
|
|
|
/* Need to correct for the start/end points not matching
|
|
* do this by calculating the tilt angle difference, then apply
|
|
* the rotation gradually over the entire curve
|
|
*
|
|
* note that the split is between last and second last, rather than first/last as youd expect.
|
|
*
|
|
* real order is like this
|
|
* 0,1,2,3,4 --> 1,2,3,4,0
|
|
*
|
|
* this is why we compare last with second last
|
|
* */
|
|
float vec_1[3]= {0,1,0}, vec_2[3]= {0,1,0}, angle, ang_fac, cross_tmp[3];
|
|
|
|
BevPoint *bevp_first;
|
|
BevPoint *bevp_last;
|
|
|
|
|
|
bevp_first= (BevPoint *)(bl+1);
|
|
bevp_first+= bl->nr-1;
|
|
bevp_last = bevp_first;
|
|
bevp_last--;
|
|
|
|
/* quats and vec's are normalized, should not need to re-normalize */
|
|
mul_qt_v3(bevp_first->quat, vec_1);
|
|
mul_qt_v3(bevp_last->quat, vec_2);
|
|
normalize_v3(vec_1);
|
|
normalize_v3(vec_2);
|
|
|
|
/* align the vector, can avoid this and it looks 98% OK but
|
|
* better to align the angle quat roll's before comparing */
|
|
{
|
|
cross_v3_v3v3(cross_tmp, bevp_last->dir, bevp_first->dir);
|
|
angle = angle_normalized_v3v3(bevp_first->dir, bevp_last->dir);
|
|
axis_angle_to_quat(q, cross_tmp, angle);
|
|
mul_qt_v3(q, vec_2);
|
|
}
|
|
|
|
angle= angle_normalized_v3v3(vec_1, vec_2);
|
|
|
|
/* flip rotation if needs be */
|
|
cross_v3_v3v3(cross_tmp, vec_1, vec_2);
|
|
normalize_v3(cross_tmp);
|
|
if(angle_normalized_v3v3(bevp_first->dir, cross_tmp) < DEG2RADF(90.0f))
|
|
angle = -angle;
|
|
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+(bl->nr-1);
|
|
bevp0= bevp1-1;
|
|
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
ang_fac= angle * (1.0f-((float)nr/bl->nr)); /* also works */
|
|
|
|
axis_angle_to_quat(q, bevp1->dir, ang_fac);
|
|
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
|
|
|
|
bevp0= bevp1;
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void make_bevel_list_3D_tangent(BevList *bl)
|
|
{
|
|
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
|
|
int nr;
|
|
|
|
float bevp0_tan[3], cross_tmp[3];
|
|
|
|
bevel_list_calc_bisect(bl);
|
|
if(bl->poly== -1) /* check its not cyclic */
|
|
bevel_list_cyclic_fix_3D(bl); // XXX - run this now so tangents will be right before doing the flipping
|
|
bevel_list_flip_tangents(bl);
|
|
|
|
/* correct the tangents */
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+(bl->nr-1);
|
|
bevp0= bevp1-1;
|
|
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
|
|
cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
|
|
cross_v3_v3v3(bevp1->tan, cross_tmp, bevp1->dir);
|
|
normalize_v3(bevp1->tan);
|
|
|
|
bevp0= bevp1;
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
}
|
|
|
|
|
|
/* now for the real twist calc */
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+(bl->nr-1);
|
|
bevp0= bevp1-1;
|
|
|
|
copy_v3_v3(bevp0_tan, bevp0->tan);
|
|
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
|
|
/* make perpendicular, modify tan in place, is ok */
|
|
float cross_tmp[3];
|
|
float zero[3] = {0,0,0};
|
|
|
|
cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
|
|
normalize_v3(cross_tmp);
|
|
tri_to_quat( bevp1->quat,zero, cross_tmp, bevp1->tan); /* XXX - could be faster */
|
|
|
|
/* bevp0= bevp1; */ /* UNUSED */
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
}
|
|
}
|
|
|
|
static void make_bevel_list_3D(BevList *bl, int smooth_iter, int twist_mode)
|
|
{
|
|
switch(twist_mode) {
|
|
case CU_TWIST_TANGENT:
|
|
make_bevel_list_3D_tangent(bl);
|
|
break;
|
|
case CU_TWIST_MINIMUM:
|
|
make_bevel_list_3D_minimum_twist(bl);
|
|
break;
|
|
default: /* CU_TWIST_Z_UP default, pre 2.49c */
|
|
make_bevel_list_3D_zup(bl);
|
|
}
|
|
|
|
if(bl->poly== -1) /* check its not cyclic */
|
|
bevel_list_cyclic_fix_3D(bl);
|
|
|
|
if(smooth_iter)
|
|
bevel_list_smooth(bl, smooth_iter);
|
|
|
|
bevel_list_apply_tilt(bl);
|
|
}
|
|
|
|
|
|
|
|
/* only for 2 points */
|
|
static void make_bevel_list_segment_3D(BevList *bl)
|
|
{
|
|
float q[4];
|
|
|
|
BevPoint *bevp2= (BevPoint *)(bl+1);
|
|
BevPoint *bevp1= bevp2+1;
|
|
|
|
/* simple quat/dir */
|
|
sub_v3_v3v3(bevp1->dir, bevp1->vec, bevp2->vec);
|
|
normalize_v3(bevp1->dir);
|
|
|
|
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
|
|
|
|
axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
|
|
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
|
|
normalize_qt(bevp1->quat);
|
|
copy_v3_v3(bevp2->dir, bevp1->dir);
|
|
copy_qt_qt(bevp2->quat, bevp1->quat);
|
|
}
|
|
|
|
|
|
|
|
void makeBevelList(Object *ob)
|
|
{
|
|
/*
|
|
- convert all curves to polys, with indication of resol and flags for double-vertices
|
|
- possibly; do a smart vertice removal (in case Nurb)
|
|
- separate in individual blicks with BoundBox
|
|
- AutoHole detection
|
|
*/
|
|
Curve *cu;
|
|
Nurb *nu;
|
|
BezTriple *bezt, *prevbezt;
|
|
BPoint *bp;
|
|
BevList *bl, *blnew, *blnext;
|
|
BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
|
|
float min, inp, x1, x2, y1, y2;
|
|
struct bevelsort *sortdata, *sd, *sd1;
|
|
int a, b, nr, poly, resolu = 0, len = 0;
|
|
int do_tilt, do_radius, do_weight;
|
|
|
|
/* this function needs an object, because of tflag and upflag */
|
|
cu= ob->data;
|
|
|
|
/* do we need to calculate the radius for each point? */
|
|
/* do_radius = (cu->bevobj || cu->taperobj || (cu->flag & CU_FRONT) || (cu->flag & CU_BACK)) ? 0 : 1; */
|
|
|
|
/* STEP 1: MAKE POLYS */
|
|
|
|
BLI_freelistN(&(cu->bev));
|
|
if(cu->editnurb && ob->type!=OB_FONT) {
|
|
ListBase *nurbs= curve_editnurbs(cu);
|
|
nu= nurbs->first;
|
|
} else nu= cu->nurb.first;
|
|
|
|
while(nu) {
|
|
|
|
/* check if we will calculate tilt data */
|
|
do_tilt = CU_DO_TILT(cu, nu);
|
|
do_radius = CU_DO_RADIUS(cu, nu); /* normal display uses the radius, better just to calculate them */
|
|
do_weight = 1;
|
|
|
|
/* check we are a single point? also check we are not a surface and that the orderu is sane,
|
|
* enforced in the UI but can go wrong possibly */
|
|
if(!check_valid_nurb_u(nu)) {
|
|
bl= MEM_callocN(sizeof(BevList)+1*sizeof(BevPoint), "makeBevelList1");
|
|
BLI_addtail(&(cu->bev), bl);
|
|
bl->nr= 0;
|
|
} else {
|
|
if(G.rendering && cu->resolu_ren!=0)
|
|
resolu= cu->resolu_ren;
|
|
else
|
|
resolu= nu->resolu;
|
|
|
|
if(nu->type == CU_POLY) {
|
|
len= nu->pntsu;
|
|
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList2");
|
|
BLI_addtail(&(cu->bev), bl);
|
|
|
|
if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0;
|
|
else bl->poly= -1;
|
|
bl->nr= len;
|
|
bl->dupe_nr= 0;
|
|
bevp= (BevPoint *)(bl+1);
|
|
bp= nu->bp;
|
|
|
|
while(len--) {
|
|
copy_v3_v3(bevp->vec, bp->vec);
|
|
bevp->alfa= bp->alfa;
|
|
bevp->radius= bp->radius;
|
|
bevp->weight= bp->weight;
|
|
bevp->split_tag= TRUE;
|
|
bevp++;
|
|
bp++;
|
|
}
|
|
}
|
|
else if(nu->type == CU_BEZIER) {
|
|
|
|
len= resolu*(nu->pntsu+ (nu->flagu & CU_NURB_CYCLIC) -1)+1; /* in case last point is not cyclic */
|
|
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelBPoints");
|
|
BLI_addtail(&(cu->bev), bl);
|
|
|
|
if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0;
|
|
else bl->poly= -1;
|
|
bevp= (BevPoint *)(bl+1);
|
|
|
|
a= nu->pntsu-1;
|
|
bezt= nu->bezt;
|
|
if(nu->flagu & CU_NURB_CYCLIC) {
|
|
a++;
|
|
prevbezt= nu->bezt+(nu->pntsu-1);
|
|
}
|
|
else {
|
|
prevbezt= bezt;
|
|
bezt++;
|
|
}
|
|
|
|
while(a--) {
|
|
if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) {
|
|
|
|
copy_v3_v3(bevp->vec, prevbezt->vec[1]);
|
|
bevp->alfa= prevbezt->alfa;
|
|
bevp->radius= prevbezt->radius;
|
|
bevp->weight= prevbezt->weight;
|
|
bevp->split_tag= TRUE;
|
|
bevp->dupe_tag= FALSE;
|
|
bevp++;
|
|
bl->nr++;
|
|
bl->dupe_nr= 1;
|
|
}
|
|
else {
|
|
/* always do all three, to prevent data hanging around */
|
|
int j;
|
|
|
|
/* BevPoint must stay aligned to 4 so sizeof(BevPoint)/sizeof(float) works */
|
|
for(j=0; j<3; j++) {
|
|
forward_diff_bezier( prevbezt->vec[1][j], prevbezt->vec[2][j],
|
|
bezt->vec[0][j], bezt->vec[1][j],
|
|
&(bevp->vec[j]), resolu, sizeof(BevPoint));
|
|
}
|
|
|
|
/* if both arrays are NULL do nothiong */
|
|
alfa_bezpart( prevbezt, bezt, nu,
|
|
do_tilt ? &bevp->alfa : NULL,
|
|
do_radius ? &bevp->radius : NULL,
|
|
do_weight ? &bevp->weight : NULL,
|
|
resolu, sizeof(BevPoint));
|
|
|
|
|
|
if(cu->twist_mode==CU_TWIST_TANGENT) {
|
|
forward_diff_bezier_cotangent(
|
|
prevbezt->vec[1], prevbezt->vec[2],
|
|
bezt->vec[0], bezt->vec[1],
|
|
bevp->tan, resolu, sizeof(BevPoint));
|
|
}
|
|
|
|
/* indicate with handlecodes double points */
|
|
if(prevbezt->h1==prevbezt->h2) {
|
|
if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->split_tag= TRUE;
|
|
}
|
|
else {
|
|
if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->split_tag= TRUE;
|
|
else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->split_tag= TRUE;
|
|
}
|
|
bl->nr+= resolu;
|
|
bevp+= resolu;
|
|
}
|
|
prevbezt= bezt;
|
|
bezt++;
|
|
}
|
|
|
|
if((nu->flagu & CU_NURB_CYCLIC)==0) { /* not cyclic: endpoint */
|
|
copy_v3_v3(bevp->vec, prevbezt->vec[1]);
|
|
bevp->alfa= prevbezt->alfa;
|
|
bevp->radius= prevbezt->radius;
|
|
bevp->weight= prevbezt->weight;
|
|
bl->nr++;
|
|
}
|
|
}
|
|
else if(nu->type == CU_NURBS) {
|
|
if(nu->pntsv==1) {
|
|
len= (resolu*SEGMENTSU(nu));
|
|
|
|
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3");
|
|
BLI_addtail(&(cu->bev), bl);
|
|
bl->nr= len;
|
|
bl->dupe_nr= 0;
|
|
if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0;
|
|
else bl->poly= -1;
|
|
bevp= (BevPoint *)(bl+1);
|
|
|
|
makeNurbcurve( nu, &bevp->vec[0],
|
|
do_tilt ? &bevp->alfa : NULL,
|
|
do_radius ? &bevp->radius : NULL,
|
|
do_weight ? &bevp->weight : NULL,
|
|
resolu, sizeof(BevPoint));
|
|
}
|
|
}
|
|
}
|
|
nu= nu->next;
|
|
}
|
|
|
|
/* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
|
|
bl= cu->bev.first;
|
|
while(bl) {
|
|
if (bl->nr) { /* null bevel items come from single points */
|
|
nr= bl->nr;
|
|
bevp1= (BevPoint *)(bl+1);
|
|
bevp0= bevp1+(nr-1);
|
|
nr--;
|
|
while(nr--) {
|
|
if( fabs(bevp0->vec[0]-bevp1->vec[0])<0.00001 ) {
|
|
if( fabs(bevp0->vec[1]-bevp1->vec[1])<0.00001 ) {
|
|
if( fabs(bevp0->vec[2]-bevp1->vec[2])<0.00001 ) {
|
|
bevp0->dupe_tag= TRUE;
|
|
bl->dupe_nr++;
|
|
}
|
|
}
|
|
}
|
|
bevp0= bevp1;
|
|
bevp1++;
|
|
}
|
|
}
|
|
bl= bl->next;
|
|
}
|
|
bl= cu->bev.first;
|
|
while(bl) {
|
|
blnext= bl->next;
|
|
if(bl->nr && bl->dupe_nr) {
|
|
nr= bl->nr- bl->dupe_nr+1; /* +1 because vectorbezier sets flag too */
|
|
blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList4");
|
|
memcpy(blnew, bl, sizeof(BevList));
|
|
blnew->nr= 0;
|
|
BLI_remlink(&(cu->bev), bl);
|
|
BLI_insertlinkbefore(&(cu->bev),blnext,blnew); /* to make sure bevlijst is tuned with nurblist */
|
|
bevp0= (BevPoint *)(bl+1);
|
|
bevp1= (BevPoint *)(blnew+1);
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
if(bevp0->dupe_tag==0) {
|
|
memcpy(bevp1, bevp0, sizeof(BevPoint));
|
|
bevp1++;
|
|
blnew->nr++;
|
|
}
|
|
bevp0++;
|
|
}
|
|
MEM_freeN(bl);
|
|
blnew->dupe_nr= 0;
|
|
}
|
|
bl= blnext;
|
|
}
|
|
|
|
/* STEP 3: POLYS COUNT AND AUTOHOLE */
|
|
bl= cu->bev.first;
|
|
poly= 0;
|
|
while(bl) {
|
|
if(bl->nr && bl->poly>=0) {
|
|
poly++;
|
|
bl->poly= poly;
|
|
bl->hole= 0;
|
|
}
|
|
bl= bl->next;
|
|
}
|
|
|
|
|
|
/* find extreme left points, also test (turning) direction */
|
|
if(poly>0) {
|
|
sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5");
|
|
bl= cu->bev.first;
|
|
while(bl) {
|
|
if(bl->poly>0) {
|
|
|
|
min= 300000.0;
|
|
bevp= (BevPoint *)(bl+1);
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
if(min>bevp->vec[0]) {
|
|
min= bevp->vec[0];
|
|
bevp1= bevp;
|
|
}
|
|
bevp++;
|
|
}
|
|
sd->bl= bl;
|
|
sd->left= min;
|
|
|
|
bevp= (BevPoint *)(bl+1);
|
|
if(bevp1== bevp) bevp0= bevp+ (bl->nr-1);
|
|
else bevp0= bevp1-1;
|
|
bevp= bevp+ (bl->nr-1);
|
|
if(bevp1== bevp) bevp2= (BevPoint *)(bl+1);
|
|
else bevp2= bevp1+1;
|
|
|
|
inp= (bevp1->vec[0]- bevp0->vec[0]) * (bevp0->vec[1]- bevp2->vec[1]) + (bevp0->vec[1]- bevp1->vec[1]) * (bevp0->vec[0]- bevp2->vec[0]);
|
|
|
|
if(inp > 0.0f) sd->dir= 1;
|
|
else sd->dir= 0;
|
|
|
|
sd++;
|
|
}
|
|
|
|
bl= bl->next;
|
|
}
|
|
qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev);
|
|
|
|
sd= sortdata+1;
|
|
for(a=1; a<poly; a++, sd++) {
|
|
bl= sd->bl; /* is bl a hole? */
|
|
sd1= sortdata+ (a-1);
|
|
for(b=a-1; b>=0; b--, sd1--) { /* all polys to the left */
|
|
if(bevelinside(sd1->bl, bl)) {
|
|
bl->hole= 1- sd1->bl->hole;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* turning direction */
|
|
if((cu->flag & CU_3D)==0) {
|
|
sd= sortdata;
|
|
for(a=0; a<poly; a++, sd++) {
|
|
if(sd->bl->hole==sd->dir) {
|
|
bl= sd->bl;
|
|
bevp1= (BevPoint *)(bl+1);
|
|
bevp2= bevp1+ (bl->nr-1);
|
|
nr= bl->nr/2;
|
|
while(nr--) {
|
|
SWAP(BevPoint, *bevp1, *bevp2);
|
|
bevp1++;
|
|
bevp2--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
MEM_freeN(sortdata);
|
|
}
|
|
|
|
/* STEP 4: 2D-COSINES or 3D ORIENTATION */
|
|
if((cu->flag & CU_3D)==0) {
|
|
/* note: bevp->dir and bevp->quat are not needed for beveling but are
|
|
* used when making a path from a 2D curve, therefor they need to be set - Campbell */
|
|
bl= cu->bev.first;
|
|
while(bl) {
|
|
|
|
if(bl->nr < 2) {
|
|
/* do nothing */
|
|
}
|
|
else if(bl->nr==2) { /* 2 pnt, treat separate */
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+1;
|
|
|
|
x1= bevp1->vec[0]- bevp2->vec[0];
|
|
y1= bevp1->vec[1]- bevp2->vec[1];
|
|
|
|
calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
|
|
bevp2->sina= bevp1->sina;
|
|
bevp2->cosa= bevp1->cosa;
|
|
|
|
/* fill in dir & quat */
|
|
make_bevel_list_segment_3D(bl);
|
|
}
|
|
else {
|
|
bevp2= (BevPoint *)(bl+1);
|
|
bevp1= bevp2+(bl->nr-1);
|
|
bevp0= bevp1-1;
|
|
|
|
nr= bl->nr;
|
|
while(nr--) {
|
|
x1= bevp1->vec[0]- bevp0->vec[0];
|
|
x2= bevp1->vec[0]- bevp2->vec[0];
|
|
y1= bevp1->vec[1]- bevp0->vec[1];
|
|
y2= bevp1->vec[1]- bevp2->vec[1];
|
|
|
|
calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
|
|
|
|
/* from: make_bevel_list_3D_zup, could call but avoid a second loop.
|
|
* no need for tricky tilt calculation as with 3D curves */
|
|
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
|
|
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
|
|
/* done with inline make_bevel_list_3D_zup */
|
|
|
|
bevp0= bevp1;
|
|
bevp1= bevp2;
|
|
bevp2++;
|
|
}
|
|
|
|
/* correct non-cyclic cases */
|
|
if(bl->poly== -1) {
|
|
bevp= (BevPoint *)(bl+1);
|
|
bevp1= bevp+1;
|
|
bevp->sina= bevp1->sina;
|
|
bevp->cosa= bevp1->cosa;
|
|
bevp= (BevPoint *)(bl+1);
|
|
bevp+= (bl->nr-1);
|
|
bevp1= bevp-1;
|
|
bevp->sina= bevp1->sina;
|
|
bevp->cosa= bevp1->cosa;
|
|
|
|
/* correct for the dir/quat, see above why its needed */
|
|
bevel_list_cyclic_fix_3D(bl);
|
|
}
|
|
}
|
|
bl= bl->next;
|
|
}
|
|
}
|
|
else { /* 3D Curves */
|
|
bl= cu->bev.first;
|
|
while(bl) {
|
|
|
|
if(bl->nr < 2) {
|
|
/* do nothing */
|
|
}
|
|
else if(bl->nr==2) { /* 2 pnt, treat separate */
|
|
make_bevel_list_segment_3D(bl);
|
|
}
|
|
else {
|
|
make_bevel_list_3D(bl, (int)(resolu*cu->twist_smooth), cu->twist_mode);
|
|
}
|
|
bl= bl->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ****************** HANDLES ************** */
|
|
|
|
/*
|
|
* handlecodes:
|
|
* 0: nothing, 1:auto, 2:vector, 3:aligned
|
|
*/
|
|
|
|
/* mode: is not zero when FCurve, is 2 when forced horizontal for autohandles */
|
|
void calchandleNurb(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode)
|
|
{
|
|
float *p1,*p2,*p3, pt[3];
|
|
float dvec_a[3], dvec_b[3];
|
|
float len, len_a, len_b;
|
|
const float eps= 1e-5;
|
|
|
|
if(bezt->h1==0 && bezt->h2==0) {
|
|
return;
|
|
}
|
|
|
|
p2= bezt->vec[1];
|
|
|
|
if(prev==NULL) {
|
|
p3= next->vec[1];
|
|
pt[0]= 2.0f*p2[0] - p3[0];
|
|
pt[1]= 2.0f*p2[1] - p3[1];
|
|
pt[2]= 2.0f*p2[2] - p3[2];
|
|
p1= pt;
|
|
}
|
|
else {
|
|
p1= prev->vec[1];
|
|
}
|
|
|
|
if(next==NULL) {
|
|
pt[0]= 2.0f*p2[0] - p1[0];
|
|
pt[1]= 2.0f*p2[1] - p1[1];
|
|
pt[2]= 2.0f*p2[2] - p1[2];
|
|
p3= pt;
|
|
}
|
|
else {
|
|
p3= next->vec[1];
|
|
}
|
|
|
|
sub_v3_v3v3(dvec_a, p2, p1);
|
|
sub_v3_v3v3(dvec_b, p3, p2);
|
|
|
|
if (mode != 0) {
|
|
len_a= dvec_a[0];
|
|
len_b= dvec_b[0];
|
|
}
|
|
else {
|
|
len_a= len_v3(dvec_a);
|
|
len_b= len_v3(dvec_b);
|
|
}
|
|
|
|
if(len_a==0.0f) len_a=1.0f;
|
|
if(len_b==0.0f) len_b=1.0f;
|
|
|
|
|
|
if(ELEM(bezt->h1,HD_AUTO,HD_AUTO_ANIM) || ELEM(bezt->h2,HD_AUTO,HD_AUTO_ANIM)) { /* auto */
|
|
float tvec[3];
|
|
tvec[0]= dvec_b[0]/len_b + dvec_a[0]/len_a;
|
|
tvec[1]= dvec_b[1]/len_b + dvec_a[1]/len_a;
|
|
tvec[2]= dvec_b[2]/len_b + dvec_a[2]/len_a;
|
|
len= len_v3(tvec) * 2.5614f;
|
|
|
|
if(len!=0.0f) {
|
|
int leftviolate=0, rightviolate=0; /* for mode==2 */
|
|
|
|
if(len_a>5.0f*len_b) len_a= 5.0f*len_b;
|
|
if(len_b>5.0f*len_a) len_b= 5.0f*len_a;
|
|
|
|
if(ELEM(bezt->h1,HD_AUTO,HD_AUTO_ANIM)) {
|
|
len_a/=len;
|
|
madd_v3_v3v3fl(p2-3, p2, tvec, -len_a);
|
|
|
|
if((bezt->h1==HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */
|
|
float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
|
|
float ydiff2= next->vec[1][1] - bezt->vec[1][1];
|
|
if( (ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f) ) {
|
|
bezt->vec[0][1]= bezt->vec[1][1];
|
|
}
|
|
else { /* handles should not be beyond y coord of two others */
|
|
if(ydiff1 <= 0.0f) {
|
|
if(prev->vec[1][1] > bezt->vec[0][1]) {
|
|
bezt->vec[0][1]= prev->vec[1][1];
|
|
leftviolate= 1;
|
|
}
|
|
}
|
|
else {
|
|
if(prev->vec[1][1] < bezt->vec[0][1]) {
|
|
bezt->vec[0][1]= prev->vec[1][1];
|
|
leftviolate= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(ELEM(bezt->h2,HD_AUTO,HD_AUTO_ANIM)) {
|
|
len_b/=len;
|
|
madd_v3_v3v3fl(p2+3, p2, tvec, len_b);
|
|
|
|
if((bezt->h2==HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */
|
|
float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
|
|
float ydiff2= next->vec[1][1] - bezt->vec[1][1];
|
|
if( (ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f) ) {
|
|
bezt->vec[2][1]= bezt->vec[1][1];
|
|
}
|
|
else { /* andles should not be beyond y coord of two others */
|
|
if(ydiff1 <= 0.0f) {
|
|
if(next->vec[1][1] < bezt->vec[2][1]) {
|
|
bezt->vec[2][1]= next->vec[1][1];
|
|
rightviolate= 1;
|
|
}
|
|
}
|
|
else {
|
|
if(next->vec[1][1] > bezt->vec[2][1]) {
|
|
bezt->vec[2][1]= next->vec[1][1];
|
|
rightviolate= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(leftviolate || rightviolate) { /* align left handle */
|
|
float h1[3], h2[3];
|
|
float dot;
|
|
|
|
sub_v3_v3v3(h1, p2-3, p2);
|
|
sub_v3_v3v3(h2, p2, p2+3);
|
|
|
|
len_a= normalize_v3(h1);
|
|
len_b= normalize_v3(h2);
|
|
|
|
dot= dot_v3v3(h1, h2);
|
|
|
|
if(leftviolate) {
|
|
mul_v3_fl(h1, dot * len_b);
|
|
sub_v3_v3v3(p2+3, p2, h1);
|
|
}
|
|
else {
|
|
mul_v3_fl(h2, dot * len_a);
|
|
add_v3_v3v3(p2-3, p2, h2);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if(bezt->h1==HD_VECT) { /* vector */
|
|
madd_v3_v3v3fl(p2-3, p2, dvec_a, -1.0f/3.0f);
|
|
}
|
|
if(bezt->h2==HD_VECT) {
|
|
madd_v3_v3v3fl(p2+3, p2, dvec_b, 1.0f/3.0f);
|
|
}
|
|
|
|
len_b= len_v3v3(p2, p2+3);
|
|
len_a= len_v3v3(p2, p2-3);
|
|
if(len_a==0.0f) len_a= 1.0f;
|
|
if(len_b==0.0f) len_b= 1.0f;
|
|
|
|
if(bezt->f1 & SELECT) { /* order of calculation */
|
|
if(bezt->h2==HD_ALIGN) { /* aligned */
|
|
if(len_a>eps) {
|
|
len= len_b/len_a;
|
|
p2[3]= p2[0]+len*(p2[0] - p2[-3]);
|
|
p2[4]= p2[1]+len*(p2[1] - p2[-2]);
|
|
p2[5]= p2[2]+len*(p2[2] - p2[-1]);
|
|
}
|
|
}
|
|
if(bezt->h1==HD_ALIGN) {
|
|
if(len_b>eps) {
|
|
len= len_a/len_b;
|
|
p2[-3]= p2[0]+len*(p2[0] - p2[3]);
|
|
p2[-2]= p2[1]+len*(p2[1] - p2[4]);
|
|
p2[-1]= p2[2]+len*(p2[2] - p2[5]);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if(bezt->h1==HD_ALIGN) {
|
|
if(len_b>eps) {
|
|
len= len_a/len_b;
|
|
p2[-3]= p2[0]+len*(p2[0] - p2[3]);
|
|
p2[-2]= p2[1]+len*(p2[1] - p2[4]);
|
|
p2[-1]= p2[2]+len*(p2[2] - p2[5]);
|
|
}
|
|
}
|
|
if(bezt->h2==HD_ALIGN) { /* aligned */
|
|
if(len_a>eps) {
|
|
len= len_b/len_a;
|
|
p2[3]= p2[0]+len*(p2[0] - p2[-3]);
|
|
p2[4]= p2[1]+len*(p2[1] - p2[-2]);
|
|
p2[5]= p2[2]+len*(p2[2] - p2[-1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void calchandlesNurb(Nurb *nu) /* first, if needed, set handle flags */
|
|
{
|
|
BezTriple *bezt, *prev, *next;
|
|
short a;
|
|
|
|
if(nu->type != CU_BEZIER) return;
|
|
if(nu->pntsu<2) return;
|
|
|
|
a= nu->pntsu;
|
|
bezt= nu->bezt;
|
|
if(nu->flagu & CU_NURB_CYCLIC) prev= bezt+(a-1);
|
|
else prev= NULL;
|
|
next= bezt+1;
|
|
|
|
while(a--) {
|
|
calchandleNurb(bezt, prev, next, 0);
|
|
prev= bezt;
|
|
if(a==1) {
|
|
if(nu->flagu & CU_NURB_CYCLIC) next= nu->bezt;
|
|
else next= NULL;
|
|
}
|
|
else next++;
|
|
|
|
bezt++;
|
|
}
|
|
}
|
|
|
|
|
|
void testhandlesNurb(Nurb *nu)
|
|
{
|
|
/* use when something has changed with handles.
|
|
it treats all BezTriples with the following rules:
|
|
PHASE 1: do types have to be altered?
|
|
Auto handles: become aligned when selection status is NOT(000 || 111)
|
|
Vector handles: become 'nothing' when (one half selected AND other not)
|
|
PHASE 2: recalculate handles
|
|
*/
|
|
BezTriple *bezt;
|
|
short flag, a;
|
|
|
|
if(nu->type != CU_BEZIER) return;
|
|
|
|
bezt= nu->bezt;
|
|
a= nu->pntsu;
|
|
while(a--) {
|
|
flag= 0;
|
|
if(bezt->f1 & SELECT) flag++;
|
|
if(bezt->f2 & SELECT) flag += 2;
|
|
if(bezt->f3 & SELECT) flag += 4;
|
|
|
|
if( !(flag==0 || flag==7) ) {
|
|
if(ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM)) { /* auto */
|
|
bezt->h1= HD_ALIGN;
|
|
}
|
|
if(ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) { /* auto */
|
|
bezt->h2= HD_ALIGN;
|
|
}
|
|
|
|
if(bezt->h1==HD_VECT) { /* vector */
|
|
if(flag < 4) bezt->h1= 0;
|
|
}
|
|
if(bezt->h2==HD_VECT) { /* vector */
|
|
if( flag > 3) bezt->h2= 0;
|
|
}
|
|
}
|
|
bezt++;
|
|
}
|
|
|
|
calchandlesNurb(nu);
|
|
}
|
|
|
|
void autocalchandlesNurb(Nurb *nu, int flag)
|
|
{
|
|
/* checks handle coordinates and calculates type */
|
|
|
|
BezTriple *bezt2, *bezt1, *bezt0;
|
|
int i, align, leftsmall, rightsmall;
|
|
|
|
if(nu==NULL || nu->bezt==NULL) return;
|
|
|
|
bezt2 = nu->bezt;
|
|
bezt1 = bezt2 + (nu->pntsu-1);
|
|
bezt0 = bezt1 - 1;
|
|
i = nu->pntsu;
|
|
|
|
while(i--) {
|
|
|
|
align= leftsmall= rightsmall= 0;
|
|
|
|
/* left handle: */
|
|
if(flag==0 || (bezt1->f1 & flag) ) {
|
|
bezt1->h1= 0;
|
|
/* distance too short: vectorhandle */
|
|
if( len_v3v3( bezt1->vec[1], bezt0->vec[1] ) < 0.0001f) {
|
|
bezt1->h1= HD_VECT;
|
|
leftsmall= 1;
|
|
}
|
|
else {
|
|
/* aligned handle? */
|
|
if(dist_to_line_v2(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001f) {
|
|
align= 1;
|
|
bezt1->h1= HD_ALIGN;
|
|
}
|
|
/* or vector handle? */
|
|
if(dist_to_line_v2(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001f)
|
|
bezt1->h1= HD_VECT;
|
|
|
|
}
|
|
}
|
|
/* right handle: */
|
|
if(flag==0 || (bezt1->f3 & flag) ) {
|
|
bezt1->h2= 0;
|
|
/* distance too short: vectorhandle */
|
|
if( len_v3v3( bezt1->vec[1], bezt2->vec[1] ) < 0.0001f) {
|
|
bezt1->h2= HD_VECT;
|
|
rightsmall= 1;
|
|
}
|
|
else {
|
|
/* aligned handle? */
|
|
if(align) bezt1->h2= HD_ALIGN;
|
|
|
|
/* or vector handle? */
|
|
if(dist_to_line_v2(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001f)
|
|
bezt1->h2= HD_VECT;
|
|
|
|
}
|
|
}
|
|
if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0;
|
|
if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0;
|
|
|
|
/* undesired combination: */
|
|
if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0;
|
|
if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0;
|
|
|
|
bezt0= bezt1;
|
|
bezt1= bezt2;
|
|
bezt2++;
|
|
}
|
|
|
|
calchandlesNurb(nu);
|
|
}
|
|
|
|
void autocalchandlesNurb_all(ListBase *editnurb, int flag)
|
|
{
|
|
Nurb *nu;
|
|
|
|
nu= editnurb->first;
|
|
while(nu) {
|
|
autocalchandlesNurb(nu, flag);
|
|
nu= nu->next;
|
|
}
|
|
}
|
|
|
|
void sethandlesNurb(ListBase *editnurb, short code)
|
|
{
|
|
/* code==1: set autohandle */
|
|
/* code==2: set vectorhandle */
|
|
/* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
|
|
/* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */
|
|
/* code==5: Set align, like 3 but no toggle */
|
|
/* code==6: Clear align, like 3 but no toggle */
|
|
Nurb *nu;
|
|
BezTriple *bezt;
|
|
short a, ok=0;
|
|
|
|
if(code==1 || code==2) {
|
|
nu= editnurb->first;
|
|
while(nu) {
|
|
if(nu->type == CU_BEZIER) {
|
|
bezt= nu->bezt;
|
|
a= nu->pntsu;
|
|
while(a--) {
|
|
if((bezt->f1 & SELECT) || (bezt->f3 & SELECT)) {
|
|
if(bezt->f1 & SELECT) bezt->h1= code;
|
|
if(bezt->f3 & SELECT) bezt->h2= code;
|
|
if(bezt->h1!=bezt->h2) {
|
|
if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE;
|
|
if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE;
|
|
}
|
|
}
|
|
bezt++;
|
|
}
|
|
calchandlesNurb(nu);
|
|
}
|
|
nu= nu->next;
|
|
}
|
|
}
|
|
else {
|
|
/* there is 1 handle not FREE: FREE it all, else make ALIGNED */
|
|
|
|
nu= editnurb->first;
|
|
if (code == 5) {
|
|
ok = HD_ALIGN;
|
|
} else if (code == 6) {
|
|
ok = HD_FREE;
|
|
} else {
|
|
/* Toggle */
|
|
while(nu) {
|
|
if(nu->type == CU_BEZIER) {
|
|
bezt= nu->bezt;
|
|
a= nu->pntsu;
|
|
while(a--) {
|
|
if((bezt->f1 & SELECT) && bezt->h1) ok= 1;
|
|
if((bezt->f3 & SELECT) && bezt->h2) ok= 1;
|
|
if(ok) break;
|
|
bezt++;
|
|
}
|
|
}
|
|
nu= nu->next;
|
|
}
|
|
if(ok) ok= HD_FREE;
|
|
else ok= HD_ALIGN;
|
|
}
|
|
nu= editnurb->first;
|
|
while(nu) {
|
|
if(nu->type == CU_BEZIER) {
|
|
bezt= nu->bezt;
|
|
a= nu->pntsu;
|
|
while(a--) {
|
|
if(bezt->f1 & SELECT) bezt->h1= ok;
|
|
if(bezt->f3 & SELECT) bezt->h2= ok;
|
|
|
|
bezt++;
|
|
}
|
|
calchandlesNurb(nu);
|
|
}
|
|
nu= nu->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void swapdata(void *adr1, void *adr2, int len)
|
|
{
|
|
|
|
if(len<=0) return;
|
|
|
|
if(len<65) {
|
|
char adr[64];
|
|
|
|
memcpy(adr, adr1, len);
|
|
memcpy(adr1, adr2, len);
|
|
memcpy(adr2, adr, len);
|
|
}
|
|
else {
|
|
char *adr;
|
|
|
|
adr= (char *)MEM_mallocN(len, "curve swap");
|
|
memcpy(adr, adr1, len);
|
|
memcpy(adr1, adr2, len);
|
|
memcpy(adr2, adr, len);
|
|
MEM_freeN(adr);
|
|
}
|
|
}
|
|
|
|
void switchdirectionNurb(Nurb *nu)
|
|
{
|
|
BezTriple *bezt1, *bezt2;
|
|
BPoint *bp1, *bp2;
|
|
float *fp1, *fp2, *tempf;
|
|
int a, b;
|
|
|
|
if(nu->pntsu==1 && nu->pntsv==1) return;
|
|
|
|
if(nu->type == CU_BEZIER) {
|
|
a= nu->pntsu;
|
|
bezt1= nu->bezt;
|
|
bezt2= bezt1+(a-1);
|
|
if(a & 1) a+= 1; /* if odd, also swap middle content */
|
|
a/= 2;
|
|
while(a>0) {
|
|
if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2);
|
|
|
|
swapdata(bezt1->vec[0], bezt1->vec[2], 12);
|
|
if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12);
|
|
|
|
SWAP(char, bezt1->h1, bezt1->h2);
|
|
SWAP(short, bezt1->f1, bezt1->f3);
|
|
|
|
if(bezt1!=bezt2) {
|
|
SWAP(char, bezt2->h1, bezt2->h2);
|
|
SWAP(short, bezt2->f1, bezt2->f3);
|
|
bezt1->alfa= -bezt1->alfa;
|
|
bezt2->alfa= -bezt2->alfa;
|
|
}
|
|
a--;
|
|
bezt1++;
|
|
bezt2--;
|
|
}
|
|
}
|
|
else if(nu->pntsv==1) {
|
|
a= nu->pntsu;
|
|
bp1= nu->bp;
|
|
bp2= bp1+(a-1);
|
|
a/= 2;
|
|
while(bp1!=bp2 && a>0) {
|
|
SWAP(BPoint, *bp1, *bp2);
|
|
a--;
|
|
bp1->alfa= -bp1->alfa;
|
|
bp2->alfa= -bp2->alfa;
|
|
bp1++;
|
|
bp2--;
|
|
}
|
|
if(nu->type == CU_NURBS) {
|
|
/* no knots for too short paths */
|
|
if(nu->knotsu) {
|
|
/* inverse knots */
|
|
a= KNOTSU(nu);
|
|
fp1= nu->knotsu;
|
|
fp2= fp1+(a-1);
|
|
a/= 2;
|
|
while(fp1!=fp2 && a>0) {
|
|
SWAP(float, *fp1, *fp2);
|
|
a--;
|
|
fp1++;
|
|
fp2--;
|
|
}
|
|
/* and make in increasing order again */
|
|
a= KNOTSU(nu);
|
|
fp1= nu->knotsu;
|
|
fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect");
|
|
while(a--) {
|
|
fp2[0]= fabs(fp1[1]-fp1[0]);
|
|
fp1++;
|
|
fp2++;
|
|
}
|
|
|
|
a= KNOTSU(nu)-1;
|
|
fp1= nu->knotsu;
|
|
fp2= tempf;
|
|
fp1[0]= 0.0;
|
|
fp1++;
|
|
while(a--) {
|
|
fp1[0]= fp1[-1]+fp2[0];
|
|
fp1++;
|
|
fp2++;
|
|
}
|
|
MEM_freeN(tempf);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
|
|
for(b=0; b<nu->pntsv; b++) {
|
|
|
|
bp1= nu->bp+b*nu->pntsu;
|
|
a= nu->pntsu;
|
|
bp2= bp1+(a-1);
|
|
a/= 2;
|
|
|
|
while(bp1!=bp2 && a>0) {
|
|
SWAP(BPoint, *bp1, *bp2);
|
|
a--;
|
|
bp1++;
|
|
bp2--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
float (*curve_getVertexCos(Curve *UNUSED(cu), ListBase *lb, int *numVerts_r))[3]
|
|
{
|
|
int i, numVerts = *numVerts_r = count_curveverts(lb);
|
|
float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos");
|
|
Nurb *nu;
|
|
|
|
co = cos[0];
|
|
for (nu=lb->first; nu; nu=nu->next) {
|
|
if (nu->type == CU_BEZIER) {
|
|
BezTriple *bezt = nu->bezt;
|
|
|
|
for (i=0; i<nu->pntsu; i++,bezt++) {
|
|
copy_v3_v3(co, bezt->vec[0]); co+=3;
|
|
copy_v3_v3(co, bezt->vec[1]); co+=3;
|
|
copy_v3_v3(co, bezt->vec[2]); co+=3;
|
|
}
|
|
} else {
|
|
BPoint *bp = nu->bp;
|
|
|
|
for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
|
|
copy_v3_v3(co, bp->vec); co+=3;
|
|
}
|
|
}
|
|
}
|
|
|
|
return cos;
|
|
}
|
|
|
|
void curve_applyVertexCos(Curve *UNUSED(cu), ListBase *lb, float (*vertexCos)[3])
|
|
{
|
|
float *co = vertexCos[0];
|
|
Nurb *nu;
|
|
int i;
|
|
|
|
for (nu=lb->first; nu; nu=nu->next) {
|
|
if (nu->type == CU_BEZIER) {
|
|
BezTriple *bezt = nu->bezt;
|
|
|
|
for (i=0; i<nu->pntsu; i++,bezt++) {
|
|
copy_v3_v3(bezt->vec[0], co); co+=3;
|
|
copy_v3_v3(bezt->vec[1], co); co+=3;
|
|
copy_v3_v3(bezt->vec[2], co); co+=3;
|
|
}
|
|
} else {
|
|
BPoint *bp = nu->bp;
|
|
|
|
for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
|
|
copy_v3_v3(bp->vec, co); co+=3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float (*curve_getKeyVertexCos(Curve *UNUSED(cu), ListBase *lb, float *key))[3]
|
|
{
|
|
int i, numVerts = count_curveverts(lb);
|
|
float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos");
|
|
Nurb *nu;
|
|
|
|
co = cos[0];
|
|
for (nu=lb->first; nu; nu=nu->next) {
|
|
if (nu->type == CU_BEZIER) {
|
|
BezTriple *bezt = nu->bezt;
|
|
|
|
for (i=0; i<nu->pntsu; i++,bezt++) {
|
|
copy_v3_v3(co, key); co+=3; key+=3;
|
|
copy_v3_v3(co, key); co+=3; key+=3;
|
|
copy_v3_v3(co, key); co+=3; key+=3;
|
|
key+=3; /* skip tilt */
|
|
}
|
|
}
|
|
else {
|
|
BPoint *bp = nu->bp;
|
|
|
|
for(i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
|
|
copy_v3_v3(co, key); co+=3; key+=3;
|
|
key++; /* skip tilt */
|
|
}
|
|
}
|
|
}
|
|
|
|
return cos;
|
|
}
|
|
|
|
void curve_applyKeyVertexTilts(Curve *UNUSED(cu), ListBase *lb, float *key)
|
|
{
|
|
Nurb *nu;
|
|
int i;
|
|
|
|
for(nu=lb->first; nu; nu=nu->next) {
|
|
if(nu->type == CU_BEZIER) {
|
|
BezTriple *bezt = nu->bezt;
|
|
|
|
for(i=0; i<nu->pntsu; i++,bezt++) {
|
|
key+=3*3;
|
|
bezt->alfa= *key;
|
|
key+=3;
|
|
}
|
|
}
|
|
else {
|
|
BPoint *bp = nu->bp;
|
|
|
|
for(i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
|
|
key+=3;
|
|
bp->alfa= *key;
|
|
key++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int check_valid_nurb_u( struct Nurb *nu )
|
|
{
|
|
if (nu==NULL) return 0;
|
|
if (nu->pntsu <= 1) return 0;
|
|
if (nu->type != CU_NURBS) return 1; /* not a nurb, lets assume its valid */
|
|
|
|
if (nu->pntsu < nu->orderu) return 0;
|
|
if (((nu->flag & CU_NURB_CYCLIC)==0) && (nu->flagu & CU_NURB_BEZIER)) { /* Bezier U Endpoints */
|
|
if (nu->orderu==4) {
|
|
if (nu->pntsu < 5) return 0; /* bezier with 4 orderu needs 5 points */
|
|
} else if (nu->orderu != 3) return 0; /* order must be 3 or 4 */
|
|
}
|
|
return 1;
|
|
}
|
|
int check_valid_nurb_v( struct Nurb *nu)
|
|
{
|
|
if (nu==NULL) return 0;
|
|
if (nu->pntsv <= 1) return 0;
|
|
if (nu->type != CU_NURBS) return 1; /* not a nurb, lets assume its valid */
|
|
|
|
if (nu->pntsv < nu->orderv) return 0;
|
|
if (((nu->flag & CU_NURB_CYCLIC)==0) && (nu->flagv & CU_NURB_BEZIER)) { /* Bezier V Endpoints */
|
|
if (nu->orderv==4) {
|
|
if (nu->pntsv < 5) return 0; /* bezier with 4 orderu needs 5 points */
|
|
} else if (nu->orderv != 3) return 0; /* order must be 3 or 4 */
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int clamp_nurb_order_u( struct Nurb *nu )
|
|
{
|
|
int change = 0;
|
|
if(nu->pntsu<nu->orderu) {
|
|
nu->orderu= nu->pntsu;
|
|
change= 1;
|
|
}
|
|
if(((nu->flagu & CU_NURB_CYCLIC)==0) && (nu->flagu & CU_NURB_BEZIER)) {
|
|
CLAMP(nu->orderu, 3,4);
|
|
change= 1;
|
|
}
|
|
return change;
|
|
}
|
|
|
|
int clamp_nurb_order_v( struct Nurb *nu)
|
|
{
|
|
int change = 0;
|
|
if(nu->pntsv<nu->orderv) {
|
|
nu->orderv= nu->pntsv;
|
|
change= 1;
|
|
}
|
|
if(((nu->flagv & CU_NURB_CYCLIC)==0) && (nu->flagv & CU_NURB_BEZIER)) {
|
|
CLAMP(nu->orderv, 3,4);
|
|
change= 1;
|
|
}
|
|
return change;
|
|
}
|
|
|
|
/* Get edit nurbs or normal nurbs list */
|
|
ListBase *BKE_curve_nurbs(Curve *cu)
|
|
{
|
|
if (cu->editnurb) {
|
|
return curve_editnurbs(cu);
|
|
}
|
|
|
|
return &cu->nurb;
|
|
}
|
|
|
|
|
|
/* basic vertex data functions */
|
|
int minmax_curve(Curve *cu, float min[3], float max[3])
|
|
{
|
|
ListBase *nurb_lb= BKE_curve_nurbs(cu);
|
|
Nurb *nu;
|
|
|
|
for(nu= nurb_lb->first; nu; nu= nu->next)
|
|
minmaxNurb(nu, min, max);
|
|
|
|
return (nurb_lb->first != NULL);
|
|
}
|
|
|
|
int curve_center_median(Curve *cu, float cent[3])
|
|
{
|
|
ListBase *nurb_lb= BKE_curve_nurbs(cu);
|
|
Nurb *nu;
|
|
int total= 0;
|
|
|
|
zero_v3(cent);
|
|
|
|
for(nu= nurb_lb->first; nu; nu= nu->next) {
|
|
int i;
|
|
|
|
if(nu->type == CU_BEZIER) {
|
|
BezTriple *bezt;
|
|
i= nu->pntsu;
|
|
total += i * 3;
|
|
for(bezt= nu->bezt; i--; bezt++) {
|
|
add_v3_v3(cent, bezt->vec[0]);
|
|
add_v3_v3(cent, bezt->vec[1]);
|
|
add_v3_v3(cent, bezt->vec[2]);
|
|
}
|
|
}
|
|
else {
|
|
BPoint *bp;
|
|
i= nu->pntsu*nu->pntsv;
|
|
total += i;
|
|
for(bp= nu->bp; i--; bp++) {
|
|
add_v3_v3(cent, bp->vec);
|
|
}
|
|
}
|
|
}
|
|
|
|
mul_v3_fl(cent, 1.0f/(float)total);
|
|
|
|
return (total != 0);
|
|
}
|
|
|
|
int curve_center_bounds(Curve *cu, float cent[3])
|
|
{
|
|
float min[3], max[3];
|
|
INIT_MINMAX(min, max);
|
|
if(minmax_curve(cu, min, max)) {
|
|
mid_v3_v3v3(cent, min, max);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void curve_translate(Curve *cu, float offset[3], int do_keys)
|
|
{
|
|
ListBase *nurb_lb= BKE_curve_nurbs(cu);
|
|
Nurb *nu;
|
|
int i;
|
|
|
|
for(nu= nurb_lb->first; nu; nu= nu->next) {
|
|
BezTriple *bezt;
|
|
BPoint *bp;
|
|
|
|
if(nu->type == CU_BEZIER) {
|
|
i= nu->pntsu;
|
|
for(bezt= nu->bezt; i--; bezt++) {
|
|
add_v3_v3(bezt->vec[0], offset);
|
|
add_v3_v3(bezt->vec[1], offset);
|
|
add_v3_v3(bezt->vec[2], offset);
|
|
}
|
|
}
|
|
else {
|
|
i= nu->pntsu*nu->pntsv;
|
|
for(bp= nu->bp; i--; bp++) {
|
|
add_v3_v3(bp->vec, offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (do_keys && cu->key) {
|
|
KeyBlock *kb;
|
|
for (kb=cu->key->block.first; kb; kb=kb->next) {
|
|
float *fp= kb->data;
|
|
for (i= kb->totelem; i--; fp+=3) {
|
|
add_v3_v3(fp, offset);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void curve_delete_material_index(Curve *cu, int index)
|
|
{
|
|
const int curvetype= curve_type(cu);
|
|
|
|
if(curvetype == OB_FONT) {
|
|
struct CharInfo *info= cu->strinfo;
|
|
int i;
|
|
for(i= cu->len-1; i >= 0; i--, info++) {
|
|
if (info->mat_nr && info->mat_nr>=index) {
|
|
info->mat_nr--;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
Nurb *nu;
|
|
|
|
for (nu= cu->nurb.first; nu; nu= nu->next) {
|
|
if(nu->mat_nr && nu->mat_nr>=index) {
|
|
nu->mat_nr--;
|
|
if (curvetype == OB_CURVE) nu->charidx--;
|
|
}
|
|
}
|
|
}
|
|
}
|