This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/curve.c
Campbell Barton 9b2df014d2 fix [#29459] Crash making a linked object group local
was an error with make-local refactor & path updating.
2011-11-30 00:32:13 +00:00

3332 lines
74 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/curve.c
* \ingroup bke
*/
#include <math.h> // floor
#include <string.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_bpath.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_ghash.h"
#include "DNA_curve_types.h"
#include "DNA_material_types.h"
/* for dereferencing pointers */
#include "DNA_key_types.h"
#include "DNA_scene_types.h"
#include "DNA_vfont_types.h"
#include "DNA_object_types.h"
#include "BKE_animsys.h"
#include "BKE_anim.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_font.h"
#include "BKE_global.h"
#include "BKE_key.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_material.h"
/* globals */
/* local */
static int cu_isectLL(float *v1, float *v2, float *v3, float *v4,
short cox, short coy,
float *labda, float *mu, float *vec);
void unlink_curve(Curve *cu)
{
int a;
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]) cu->mat[a]->id.us--;
cu->mat[a]= NULL;
}
if(cu->vfont) cu->vfont->id.us--;
cu->vfont= NULL;
if(cu->vfontb) cu->vfontb->id.us--;
cu->vfontb= NULL;
if(cu->vfonti) cu->vfonti->id.us--;
cu->vfonti= NULL;
if(cu->vfontbi) cu->vfontbi->id.us--;
cu->vfontbi= NULL;
if(cu->key) cu->key->id.us--;
cu->key= NULL;
}
/* frees editcurve entirely */
void BKE_free_editfont(Curve *cu)
{
if(cu->editfont) {
EditFont *ef= cu->editfont;
if(ef->oldstr) MEM_freeN(ef->oldstr);
if(ef->oldstrinfo) MEM_freeN(ef->oldstrinfo);
if(ef->textbuf) MEM_freeN(ef->textbuf);
if(ef->textbufinfo) MEM_freeN(ef->textbufinfo);
if(ef->copybuf) MEM_freeN(ef->copybuf);
if(ef->copybufinfo) MEM_freeN(ef->copybufinfo);
MEM_freeN(ef);
cu->editfont= NULL;
}
}
void free_curve_editNurb_keyIndex(EditNurb *editnurb)
{
if (!editnurb->keyindex) {
return;
}
BLI_ghash_free(editnurb->keyindex, NULL, (GHashValFreeFP)MEM_freeN);
editnurb->keyindex= NULL;
}
void free_curve_editNurb (Curve *cu)
{
if(cu->editnurb) {
freeNurblist(&cu->editnurb->nurbs);
free_curve_editNurb_keyIndex(cu->editnurb);
MEM_freeN(cu->editnurb);
cu->editnurb= NULL;
}
}
/* don't free curve itself */
void free_curve(Curve *cu)
{
freeNurblist(&cu->nurb);
BLI_freelistN(&cu->bev);
freedisplist(&cu->disp);
BKE_free_editfont(cu);
free_curve_editNurb(cu);
unlink_curve(cu);
BKE_free_animdata((ID *)cu);
if(cu->mat) MEM_freeN(cu->mat);
if(cu->str) MEM_freeN(cu->str);
if(cu->strinfo) MEM_freeN(cu->strinfo);
if(cu->bb) MEM_freeN(cu->bb);
if(cu->path) free_path(cu->path);
if(cu->tb) MEM_freeN(cu->tb);
}
Curve *add_curve(const char *name, int type)
{
Curve *cu;
cu= alloc_libblock(&G.main->curve, ID_CU, name);
cu->size[0]= cu->size[1]= cu->size[2]= 1.0;
cu->flag= CU_FRONT|CU_BACK|CU_DEFORM_BOUNDS_OFF|CU_PATH_RADIUS;
cu->pathlen= 100;
cu->resolu= cu->resolv= (type == OB_SURF) ? 4 : 12;
cu->width= 1.0;
cu->wordspace = 1.0;
cu->spacing= cu->linedist= 1.0;
cu->fsize= 1.0;
cu->ulheight = 0.05;
cu->texflag= CU_AUTOSPACE;
cu->smallcaps_scale= 0.75f;
cu->twist_mode= CU_TWIST_MINIMUM; // XXX: this one seems to be the best one in most cases, at least for curve deform...
cu->type= type;
cu->bb= unit_boundbox();
if(type==OB_FONT) {
cu->vfont= cu->vfontb= cu->vfonti= cu->vfontbi= get_builtin_font();
cu->vfont->id.us+=4;
cu->str= MEM_mallocN(12, "str");
BLI_strncpy(cu->str, "Text", 12);
cu->len= cu->pos= 4;
cu->strinfo= MEM_callocN(12*sizeof(CharInfo), "strinfo new");
cu->totbox= cu->actbox= 1;
cu->tb= MEM_callocN(MAXTEXTBOX*sizeof(TextBox), "textbox");
cu->tb[0].w = cu->tb[0].h = 0.0;
}
return cu;
}
Curve *copy_curve(Curve *cu)
{
Curve *cun;
int a;
cun= copy_libblock(&cu->id);
cun->nurb.first= cun->nurb.last= NULL;
duplicateNurblist( &(cun->nurb), &(cu->nurb));
cun->mat= MEM_dupallocN(cu->mat);
for(a=0; a<cun->totcol; a++) {
id_us_plus((ID *)cun->mat[a]);
}
cun->str= MEM_dupallocN(cu->str);
cun->strinfo= MEM_dupallocN(cu->strinfo);
cun->tb= MEM_dupallocN(cu->tb);
cun->bb= MEM_dupallocN(cu->bb);
cun->key= copy_key(cu->key);
if(cun->key) cun->key->from= (ID *)cun;
cun->disp.first= cun->disp.last= NULL;
cun->bev.first= cun->bev.last= NULL;
cun->path= NULL;
cun->editnurb= NULL;
cun->editfont= NULL;
cun->selboxes= NULL;
#if 0 // XXX old animation system
/* single user ipo too */
if(cun->ipo) cun->ipo= copy_ipo(cun->ipo);
#endif // XXX old animation system
id_us_plus((ID *)cun->vfont);
id_us_plus((ID *)cun->vfontb);
id_us_plus((ID *)cun->vfonti);
id_us_plus((ID *)cun->vfontbi);
return cun;
}
static void extern_local_curve(Curve *cu)
{
id_lib_extern((ID *)cu->vfont);
id_lib_extern((ID *)cu->vfontb);
id_lib_extern((ID *)cu->vfonti);
id_lib_extern((ID *)cu->vfontbi);
if(cu->mat) {
extern_local_matarar(cu->mat, cu->totcol);
}
}
void make_local_curve(Curve *cu)
{
Main *bmain= G.main;
Object *ob;
int is_local= FALSE, is_lib= FALSE;
/* - when there are only lib users: don't do
* - when there are only local users: set flag
* - mixed: do a copy
*/
if(cu->id.lib==NULL) return;
if(cu->id.us==1) {
id_clear_lib_data(bmain, &cu->id);
extern_local_curve(cu);
return;
}
for(ob= bmain->object.first; ob && ELEM(0, is_lib, is_local); ob= ob->id.next) {
if(ob->data == cu) {
if(ob->id.lib) is_lib= TRUE;
else is_local= TRUE;
}
}
if(is_local && is_lib == FALSE) {
id_clear_lib_data(bmain, &cu->id);
extern_local_curve(cu);
}
else if(is_local && is_lib) {
Curve *cu_new= copy_curve(cu);
cu_new->id.us= 0;
BKE_id_lib_local_paths(bmain, cu->id.lib, &cu_new->id);
for(ob= bmain->object.first; ob; ob= ob->id.next) {
if(ob->data==cu) {
if(ob->id.lib==NULL) {
ob->data= cu_new;
cu_new->id.us++;
cu->id.us--;
}
}
}
}
}
/* Get list of nurbs from editnurbs structure */
ListBase *curve_editnurbs(Curve *cu)
{
if (cu->editnurb) {
return &cu->editnurb->nurbs;
}
return NULL;
}
short curve_type(Curve *cu)
{
Nurb *nu;
int type= cu->type;
if(cu->vfont) {
return OB_FONT;
}
if(!cu->type) {
type= OB_CURVE;
for (nu= cu->nurb.first; nu; nu= nu->next) {
if(nu->pntsv>1) {
type= OB_SURF;
}
}
}
return type;
}
void update_curve_dimension(Curve *cu)
{
ListBase *nurbs= BKE_curve_nurbs(cu);
Nurb *nu= nurbs->first;
if(cu->flag&CU_3D) {
for( ; nu; nu= nu->next) {
nu->flag &= ~CU_2D;
}
}
else {
for( ; nu; nu= nu->next) {
nu->flag |= CU_2D;
test2DNurb(nu);
/* since the handles are moved they need to be auto-located again */
if(nu->type == CU_BEZIER)
calchandlesNurb(nu);
}
}
}
void test_curve_type(Object *ob)
{
ob->type= curve_type(ob->data);
if(ob->type==OB_CURVE)
update_curve_dimension((Curve *)ob->data);
}
void tex_space_curve(Curve *cu)
{
DispList *dl;
BoundBox *bb;
float *fp, min[3], max[3];
int tot, doit= 0;
if(cu->bb==NULL) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
bb= cu->bb;
INIT_MINMAX(min, max);
dl= cu->disp.first;
while(dl) {
if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr;
else tot= dl->nr*dl->parts;
if(tot) doit= 1;
fp= dl->verts;
while(tot--) {
DO_MINMAX(fp, min, max);
fp += 3;
}
dl= dl->next;
}
if(!doit) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
boundbox_set_from_min_max(bb, min, max);
if(cu->texflag & CU_AUTOSPACE) {
mid_v3_v3v3(cu->loc, min, max);
cu->size[0]= (max[0]-min[0])/2.0f;
cu->size[1]= (max[1]-min[1])/2.0f;
cu->size[2]= (max[2]-min[2])/2.0f;
cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0f;
if(cu->size[0]==0.0f) cu->size[0]= 1.0f;
else if(cu->size[0]>0.0f && cu->size[0]<0.00001f) cu->size[0]= 0.00001f;
else if(cu->size[0]<0.0f && cu->size[0]> -0.00001f) cu->size[0]= -0.00001f;
if(cu->size[1]==0.0f) cu->size[1]= 1.0f;
else if(cu->size[1]>0.0f && cu->size[1]<0.00001f) cu->size[1]= 0.00001f;
else if(cu->size[1]<0.0f && cu->size[1]> -0.00001f) cu->size[1]= -0.00001f;
if(cu->size[2]==0.0f) cu->size[2]= 1.0f;
else if(cu->size[2]>0.0f && cu->size[2]<0.00001f) cu->size[2]= 0.00001f;
else if(cu->size[2]<0.0f && cu->size[2]> -0.00001f) cu->size[2]= -0.00001f;
}
}
int count_curveverts(ListBase *nurb)
{
Nurb *nu;
int tot=0;
nu= nurb->first;
while(nu) {
if(nu->bezt) tot+= 3*nu->pntsu;
else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
nu= nu->next;
}
return tot;
}
int count_curveverts_without_handles(ListBase *nurb)
{
Nurb *nu;
int tot=0;
nu= nurb->first;
while(nu) {
if(nu->bezt) tot+= nu->pntsu;
else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
nu= nu->next;
}
return tot;
}
/* **************** NURBS ROUTINES ******************** */
void freeNurb(Nurb *nu)
{
if(nu==NULL) return;
if(nu->bezt) MEM_freeN(nu->bezt);
nu->bezt= NULL;
if(nu->bp) MEM_freeN(nu->bp);
nu->bp= NULL;
if(nu->knotsu) MEM_freeN(nu->knotsu);
nu->knotsu= NULL;
if(nu->knotsv) MEM_freeN(nu->knotsv);
nu->knotsv= NULL;
/* if(nu->trim.first) freeNurblist(&(nu->trim)); */
MEM_freeN(nu);
}
void freeNurblist(ListBase *lb)
{
Nurb *nu, *next;
if(lb==NULL) return;
nu= lb->first;
while(nu) {
next= nu->next;
freeNurb(nu);
nu= next;
}
lb->first= lb->last= NULL;
}
Nurb *duplicateNurb(Nurb *nu)
{
Nurb *newnu;
int len;
newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb");
if(newnu==NULL) return NULL;
memcpy(newnu, nu, sizeof(Nurb));
if(nu->bezt) {
newnu->bezt=
(BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2");
memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple));
}
else {
len= nu->pntsu*nu->pntsv;
newnu->bp=
(BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3");
memcpy(newnu->bp, nu->bp, len*sizeof(BPoint));
newnu->knotsu= newnu->knotsv= NULL;
if(nu->knotsu) {
len= KNOTSU(nu);
if(len) {
newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4");
memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len);
}
}
if(nu->pntsv>1 && nu->knotsv) {
len= KNOTSV(nu);
if(len) {
newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5");
memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len);
}
}
}
return newnu;
}
void duplicateNurblist(ListBase *lb1, ListBase *lb2)
{
Nurb *nu, *nun;
freeNurblist(lb1);
nu= lb2->first;
while(nu) {
nun= duplicateNurb(nu);
BLI_addtail(lb1, nun);
nu= nu->next;
}
}
void test2DNurb(Nurb *nu)
{
BezTriple *bezt;
BPoint *bp;
int a;
if((nu->flag & CU_2D)==0)
return;
if(nu->type == CU_BEZIER) {
a= nu->pntsu;
bezt= nu->bezt;
while(a--) {
bezt->vec[0][2]= 0.0;
bezt->vec[1][2]= 0.0;
bezt->vec[2][2]= 0.0;
bezt++;
}
}
else {
a= nu->pntsu*nu->pntsv;
bp= nu->bp;
while(a--) {
bp->vec[2]= 0.0;
bp++;
}
}
}
void minmaxNurb(Nurb *nu, float *min, float *max)
{
BezTriple *bezt;
BPoint *bp;
int a;
if(nu->type == CU_BEZIER) {
a= nu->pntsu;
bezt= nu->bezt;
while(a--) {
DO_MINMAX(bezt->vec[0], min, max);
DO_MINMAX(bezt->vec[1], min, max);
DO_MINMAX(bezt->vec[2], min, max);
bezt++;
}
}
else {
a= nu->pntsu*nu->pntsv;
bp= nu->bp;
while(a--) {
DO_MINMAX(bp->vec, min, max);
bp++;
}
}
}
/* be sure to call makeknots after this */
void addNurbPoints(Nurb *nu, int number)
{
BPoint *tmp= nu->bp;
int i;
nu->bp= (BPoint *)MEM_mallocN((nu->pntsu + number) * sizeof(BPoint), "rna_Curve_spline_points_add");
if(tmp) {
memmove(nu->bp, tmp, nu->pntsu * sizeof(BPoint));
MEM_freeN(tmp);
}
memset(nu->bp + nu->pntsu, 0, number * sizeof(BPoint));
for(i=0, tmp= nu->bp + nu->pntsu; i < number; i++, tmp++) {
tmp->radius= 1.0f;
}
nu->pntsu += number;
}
void addNurbPointsBezier(Nurb *nu, int number)
{
BezTriple *tmp= nu->bezt;
int i;
nu->bezt= (BezTriple *)MEM_mallocN((nu->pntsu + number) * sizeof(BezTriple), "rna_Curve_spline_points_add");
if(tmp) {
memmove(nu->bezt, tmp, nu->pntsu * sizeof(BezTriple));
MEM_freeN(tmp);
}
memset(nu->bezt + nu->pntsu, 0, number * sizeof(BezTriple));
for(i=0, tmp= nu->bezt + nu->pntsu; i < number; i++, tmp++) {
tmp->radius= 1.0f;
}
nu->pntsu += number;
}
/* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */
static void calcknots(float *knots, const short pnts, const short order, const short flag)
{
/* knots: number of pnts NOT corrected for cyclic */
const int pnts_order= pnts + order;
float k;
int a;
switch(flag & (CU_NURB_ENDPOINT|CU_NURB_BEZIER)) {
case CU_NURB_ENDPOINT:
k= 0.0;
for(a=1; a <= pnts_order; a++) {
knots[a-1]= k;
if(a >= order && a <= pnts) k+= 1.0f;
}
break;
case CU_NURB_BEZIER:
/* Warning, the order MUST be 2 or 4,
* if this is not enforced, the displist will be corrupt */
if(order==4) {
k= 0.34;
for(a=0; a < pnts_order; a++) {
knots[a]= floorf(k);
k+= (1.0f/3.0f);
}
}
else if(order==3) {
k= 0.6f;
for(a=0; a < pnts_order; a++) {
if(a >= order && a <= pnts) k+= 0.5f;
knots[a]= floorf(k);
}
}
else {
printf("bez nurb curve order is not 3 or 4, should never happen\n");
}
break;
default:
for(a=0; a < pnts_order; a++) {
knots[a]= (float)a;
}
break;
}
}
static void makecyclicknots(float *knots, short pnts, short order)
/* pnts, order: number of pnts NOT corrected for cyclic */
{
int a, b, order2, c;
if(knots==NULL) return;
order2=order-1;
/* do first long rows (order -1), remove identical knots at endpoints */
if(order>2) {
b= pnts+order2;
for(a=1; a<order2; a++) {
if(knots[b]!= knots[b-a]) break;
}
if(a==order2) knots[pnts+order-2]+= 1.0f;
}
b= order;
c=pnts + order + order2;
for(a=pnts+order2; a<c; a++) {
knots[a]= knots[a-1]+ (knots[b]-knots[b-1]);
b--;
}
}
static void makeknots(Nurb *nu, short uv)
{
if(nu->type == CU_NURBS) {
if(uv == 1) {
if(nu->knotsu) MEM_freeN(nu->knotsu);
if(check_valid_nurb_u(nu)) {
nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots");
if(nu->flagu & CU_NURB_CYCLIC) {
calcknots(nu->knotsu, nu->pntsu, nu->orderu, 0); /* cyclic should be uniform */
makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
} else {
calcknots(nu->knotsu, nu->pntsu, nu->orderu, nu->flagu);
}
}
else nu->knotsu= NULL;
} else if(uv == 2) {
if(nu->knotsv) MEM_freeN(nu->knotsv);
if(check_valid_nurb_v(nu)) {
nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots");
if(nu->flagv & CU_NURB_CYCLIC) {
calcknots(nu->knotsv, nu->pntsv, nu->orderv, 0); /* cyclic should be uniform */
makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
} else {
calcknots(nu->knotsv, nu->pntsv, nu->orderv, nu->flagv);
}
}
else nu->knotsv= NULL;
}
}
}
void nurbs_knot_calc_u(Nurb *nu)
{
makeknots(nu, 1);
}
void nurbs_knot_calc_v(Nurb *nu)
{
makeknots(nu, 2);
}
static void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
{
float d, e;
int i, i1 = 0, i2 = 0 ,j, orderpluspnts, opp2, o2;
orderpluspnts= order+pnts;
opp2 = orderpluspnts-1;
/* this is for float inaccuracy */
if(t < knots[0]) t= knots[0];
else if(t > knots[opp2]) t= knots[opp2];
/* this part is order '1' */
o2 = order + 1;
for(i=0;i<opp2;i++) {
if(knots[i]!=knots[i+1] && t>= knots[i] && t<=knots[i+1]) {
basis[i]= 1.0;
i1= i-o2;
if(i1<0) i1= 0;
i2= i;
i++;
while(i<opp2) {
basis[i]= 0.0;
i++;
}
break;
}
else basis[i]= 0.0;
}
basis[i]= 0.0;
/* this is order 2,3,... */
for(j=2; j<=order; j++) {
if(i2+j>= orderpluspnts) i2= opp2-j;
for(i= i1; i<=i2; i++) {
if(basis[i]!=0.0f)
d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]);
else
d= 0.0f;
if(basis[i+1] != 0.0f)
e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]);
else
e= 0.0;
basis[i]= d+e;
}
}
*start= 1000;
*end= 0;
for(i=i1; i<=i2; i++) {
if(basis[i] > 0.0f) {
*end= i;
if(*start==1000) *start= i;
}
}
}
void makeNurbfaces(Nurb *nu, float *coord_array, int rowstride, int resolu, int resolv)
/* coord_array has to be 3*4*resolu*resolv in size, and zero-ed */
{
BPoint *bp;
float *basisu, *basis, *basisv, *sum, *fp, *in;
float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
int i, j, iofs, jofs, cycl, len, curu, curv;
int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
int totu = nu->pntsu*resolu, totv = nu->pntsv*resolv;
if(nu->knotsu==NULL || nu->knotsv==NULL) return;
if(nu->orderu>nu->pntsu) return;
if(nu->orderv>nu->pntsv) return;
if(coord_array==NULL) return;
/* allocate and initialize */
len = totu * totv;
if(len==0) return;
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1");
len= totu*totv;
if(len==0) {
MEM_freeN(sum);
return;
}
bp= nu->bp;
i= nu->pntsu*nu->pntsv;
ratcomp=0;
while(i--) {
if(bp->vec[3] != 1.0f) {
ratcomp= 1;
break;
}
bp++;
}
fp= nu->knotsu;
ustart= fp[nu->orderu-1];
if(nu->flagu & CU_NURB_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1];
else uend= fp[nu->pntsu];
ustep= (uend-ustart)/((nu->flagu & CU_NURB_CYCLIC) ? totu : totu - 1);
basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3");
fp= nu->knotsv;
vstart= fp[nu->orderv-1];
if(nu->flagv & CU_NURB_CYCLIC) vend= fp[nu->pntsv+nu->orderv-1];
else vend= fp[nu->pntsv];
vstep= (vend-vstart)/((nu->flagv & CU_NURB_CYCLIC) ? totv : totv - 1);
len= KNOTSV(nu);
basisv= (float *)MEM_mallocN(sizeof(float)*len*totv, "makeNurbfaces3");
jstart= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces4");
jend= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces5");
/* precalculation of basisv and jstart,jend */
if(nu->flagv & CU_NURB_CYCLIC) cycl= nu->orderv-1;
else cycl= 0;
v= vstart;
basis= basisv;
curv= totv;
while(curv--) {
basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+curv, jend+curv);
basis+= KNOTSV(nu);
v+= vstep;
}
if(nu->flagu & CU_NURB_CYCLIC) cycl= nu->orderu-1;
else cycl= 0;
in= coord_array;
u= ustart;
curu= totu;
while(curu--) {
basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
basis= basisv;
curv= totv;
while(curv--) {
jsta= jstart[curv];
jen= jend[curv];
/* calculate sum */
sumdiv= 0.0;
fp= sum;
for(j= jsta; j<=jen; j++) {
if(j>=nu->pntsv) jofs= (j - nu->pntsv);
else jofs= j;
bp= nu->bp+ nu->pntsu*jofs+istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>= nu->pntsu) {
iofs= i- nu->pntsu;
bp= nu->bp+ nu->pntsu*jofs+iofs;
}
else bp++;
if(ratcomp) {
*fp= basisu[i]*basis[j]*bp->vec[3];
sumdiv+= *fp;
}
else *fp= basisu[i]*basis[j];
}
}
if(ratcomp) {
fp= sum;
for(j= jsta; j<=jen; j++) {
for(i= istart; i<=iend; i++, fp++) {
*fp/= sumdiv;
}
}
}
/* one! (1.0) real point now */
fp= sum;
for(j= jsta; j<=jen; j++) {
if(j>=nu->pntsv) jofs= (j - nu->pntsv);
else jofs= j;
bp= nu->bp+ nu->pntsu*jofs+istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>= nu->pntsu) {
iofs= i- nu->pntsu;
bp= nu->bp+ nu->pntsu*jofs+iofs;
}
else bp++;
if(*fp != 0.0f) {
in[0]+= (*fp) * bp->vec[0];
in[1]+= (*fp) * bp->vec[1];
in[2]+= (*fp) * bp->vec[2];
}
}
}
in+=3;
basis+= KNOTSV(nu);
}
u+= ustep;
if (rowstride!=0) in = (float*) (((unsigned char*) in) + (rowstride - 3*totv*sizeof(*in)));
}
/* free */
MEM_freeN(sum);
MEM_freeN(basisu);
MEM_freeN(basisv);
MEM_freeN(jstart);
MEM_freeN(jend);
}
void makeNurbcurve(Nurb *nu, float *coord_array, float *tilt_array, float *radius_array, float *weight_array, int resolu, int stride)
/* coord_array has to be 3*4*pntsu*resolu in size and zero-ed
* tilt_array and radius_array will be written to if valid */
{
BPoint *bp;
float u, ustart, uend, ustep, sumdiv;
float *basisu, *sum, *fp;
float *coord_fp= coord_array, *tilt_fp= tilt_array, *radius_fp= radius_array, *weight_fp= weight_array;
int i, len, istart, iend, cycl;
if(nu->knotsu==NULL) return;
if(nu->orderu>nu->pntsu) return;
if(coord_array==NULL) return;
/* allocate and initialize */
len= nu->pntsu;
if(len==0) return;
sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");
resolu= (resolu*SEGMENTSU(nu));
if(resolu==0) {
MEM_freeN(sum);
return;
}
fp= nu->knotsu;
ustart= fp[nu->orderu-1];
if(nu->flagu & CU_NURB_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1];
else uend= fp[nu->pntsu];
ustep= (uend-ustart)/(resolu - ((nu->flagu & CU_NURB_CYCLIC) ? 0 : 1));
basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3");
if(nu->flagu & CU_NURB_CYCLIC) cycl= nu->orderu-1;
else cycl= 0;
u= ustart;
while(resolu--) {
basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
/* calc sum */
sumdiv= 0.0;
fp= sum;
bp= nu->bp+ istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
else bp++;
*fp= basisu[i]*bp->vec[3];
sumdiv+= *fp;
}
if(sumdiv != 0.0f) if(sumdiv < 0.999f || sumdiv > 1.001f) {
/* is normalizing needed? */
fp= sum;
for(i= istart; i<=iend; i++, fp++) {
*fp/= sumdiv;
}
}
/* one! (1.0) real point */
fp= sum;
bp= nu->bp+ istart-1;
for(i= istart; i<=iend; i++, fp++) {
if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
else bp++;
if(*fp != 0.0f) {
coord_fp[0]+= (*fp) * bp->vec[0];
coord_fp[1]+= (*fp) * bp->vec[1];
coord_fp[2]+= (*fp) * bp->vec[2];
if (tilt_fp)
(*tilt_fp) += (*fp) * bp->alfa;
if (radius_fp)
(*radius_fp) += (*fp) * bp->radius;
if (weight_fp)
(*weight_fp) += (*fp) * bp->weight;
}
}
coord_fp = (float *)(((char *)coord_fp) + stride);
if (tilt_fp) tilt_fp = (float *)(((char *)tilt_fp) + stride);
if (radius_fp) radius_fp = (float *)(((char *)radius_fp) + stride);
if (weight_fp) weight_fp = (float *)(((char *)weight_fp) + stride);
u+= ustep;
}
/* free */
MEM_freeN(sum);
MEM_freeN(basisu);
}
/* forward differencing method for bezier curve */
void forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride)
{
float rt0,rt1,rt2,rt3,f;
int a;
f= (float)it;
rt0= q0;
rt1= 3.0f*(q1-q0)/f;
f*= f;
rt2= 3.0f*(q0-2.0f*q1+q2)/f;
f*= it;
rt3= (q3-q0+3.0f*(q1-q2))/f;
q0= rt0;
q1= rt1+rt2+rt3;
q2= 2*rt2+6*rt3;
q3= 6*rt3;
for(a=0; a<=it; a++) {
*p= q0;
p = (float *)(((char *)p)+stride);
q0+= q1;
q1+= q2;
q2+= q3;
}
}
static void forward_diff_bezier_cotangent(float *p0, float *p1, float *p2, float *p3, float *p, int it, int stride)
{
/* note that these are not purpendicular to the curve
* they need to be rotated for this,
*
* This could also be optimized like forward_diff_bezier */
int a;
for(a=0; a<=it; a++) {
float t = (float)a / (float)it;
int i;
for(i=0; i<3; i++) {
p[i]= (-6*t + 6)*p0[i] + (18*t - 12)*p1[i] + (-18*t + 6)*p2[i] + (6*t)*p3[i];
}
normalize_v3(p);
p = (float *)(((char *)p)+stride);
}
}
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
float *make_orco_surf(Object *ob)
{
/* Note: this function is used in convertblender only atm, so
* suppose nonzero curve's render resolution should always be used */
Curve *cu= ob->data;
Nurb *nu;
int a, b, tot=0;
int sizeu, sizev;
int resolu, resolv;
float *fp, *coord_array;
/* first calculate the size of the datablock */
nu= cu->nurb.first;
while(nu) {
/* as we want to avoid the seam in a cyclic nurbs
texture wrapping, reserve extra orco data space to save these extra needed
vertex based UV coordinates for the meridian vertices.
Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
the renderface/vert construction.
See also convertblender.c: init_render_surf()
*/
resolu= cu->resolu_ren ? cu->resolu_ren : nu->resolu;
resolv= cu->resolv_ren ? cu->resolv_ren : nu->resolv;
sizeu = nu->pntsu*resolu;
sizev = nu->pntsv*resolv;
if (nu->flagu & CU_NURB_CYCLIC) sizeu++;
if (nu->flagv & CU_NURB_CYCLIC) sizev++;
if(nu->pntsv>1) tot+= sizeu * sizev;
nu= nu->next;
}
/* makeNurbfaces wants zeros */
fp= coord_array= MEM_callocN(3*sizeof(float)*tot, "make_orco");
nu= cu->nurb.first;
while(nu) {
resolu= cu->resolu_ren ? cu->resolu_ren : nu->resolu;
resolv= cu->resolv_ren ? cu->resolv_ren : nu->resolv;
if(nu->pntsv>1) {
sizeu = nu->pntsu*resolu;
sizev = nu->pntsv*resolv;
if (nu->flagu & CU_NURB_CYCLIC) sizeu++;
if (nu->flagv & CU_NURB_CYCLIC) sizev++;
if(cu->flag & CU_UV_ORCO) {
for(b=0; b< sizeu; b++) {
for(a=0; a< sizev; a++) {
if(sizev <2) fp[0]= 0.0f;
else fp[0]= -1.0f + 2.0f*((float)a)/(sizev - 1);
if(sizeu <2) fp[1]= 0.0f;
else fp[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1);
fp[2]= 0.0;
fp+= 3;
}
}
}
else {
float *_tdata= MEM_callocN((nu->pntsu*resolu) * (nu->pntsv*resolv) *3*sizeof(float), "temp data");
float *tdata= _tdata;
makeNurbfaces(nu, tdata, 0, resolu, resolv);
for(b=0; b<sizeu; b++) {
int use_b= b;
if (b==sizeu-1 && (nu->flagu & CU_NURB_CYCLIC))
use_b= 0;
for(a=0; a<sizev; a++) {
int use_a= a;
if (a==sizev-1 && (nu->flagv & CU_NURB_CYCLIC))
use_a= 0;
tdata = _tdata + 3 * (use_b * (nu->pntsv*resolv) + use_a);
fp[0]= (tdata[0]-cu->loc[0])/cu->size[0];
fp[1]= (tdata[1]-cu->loc[1])/cu->size[1];
fp[2]= (tdata[2]-cu->loc[2])/cu->size[2];
fp+= 3;
}
}
MEM_freeN(_tdata);
}
}
nu= nu->next;
}
return coord_array;
}
/* NOTE: This routine is tied to the order of vertex
* built by displist and as passed to the renderer.
*/
float *make_orco_curve(Scene *scene, Object *ob)
{
Curve *cu = ob->data;
DispList *dl;
int u, v, numVerts;
float *fp, *coord_array;
ListBase disp = {NULL, NULL};
makeDispListCurveTypes_forOrco(scene, ob, &disp);
numVerts = 0;
for (dl=disp.first; dl; dl=dl->next) {
if (dl->type==DL_INDEX3) {
numVerts += dl->nr;
} else if (dl->type==DL_SURF) {
/* convertblender.c uses the Surface code for creating renderfaces when cyclic U only (closed circle beveling) */
if (dl->flag & DL_CYCL_U) {
if (dl->flag & DL_CYCL_V)
numVerts += (dl->parts+1)*(dl->nr+1);
else
numVerts += dl->parts*(dl->nr+1);
}
else
numVerts += dl->parts*dl->nr;
}
}
fp= coord_array= MEM_mallocN(3*sizeof(float)*numVerts, "cu_orco");
for (dl=disp.first; dl; dl=dl->next) {
if (dl->type==DL_INDEX3) {
for (u=0; u<dl->nr; u++, fp+=3) {
if (cu->flag & CU_UV_ORCO) {
fp[0]= 2.0f*u/(dl->nr-1) - 1.0f;
fp[1]= 0.0;
fp[2]= 0.0;
} else {
copy_v3_v3(fp, &dl->verts[u*3]);
fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
}
}
} else if (dl->type==DL_SURF) {
int sizeu= dl->nr, sizev= dl->parts;
/* exception as handled in convertblender.c too */
if (dl->flag & DL_CYCL_U) {
sizeu++;
if (dl->flag & DL_CYCL_V)
sizev++;
}
for (u=0; u<sizev; u++) {
for (v=0; v<sizeu; v++,fp+=3) {
if (cu->flag & CU_UV_ORCO) {
fp[0]= 2.0f*u/(sizev - 1) - 1.0f;
fp[1]= 2.0f*v/(sizeu - 1) - 1.0f;
fp[2]= 0.0;
} else {
float *vert;
int realv= v % dl->nr;
int realu= u % dl->parts;
vert= dl->verts + 3*(dl->nr*realu + realv);
copy_v3_v3(fp, vert);
fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
}
}
}
}
}
freedisplist(&disp);
return coord_array;
}
/* ***************** BEVEL ****************** */
void makebevelcurve(Scene *scene, Object *ob, ListBase *disp, int forRender)
{
DispList *dl, *dlnew;
Curve *bevcu, *cu;
float *fp, facx, facy, angle, dangle;
int nr, a;
cu= ob->data;
disp->first = disp->last = NULL;
/* if a font object is being edited, then do nothing */
// XXX if( ob == obedit && ob->type == OB_FONT ) return;
if(cu->bevobj) {
if (cu->bevobj->type!=OB_CURVE) return;
bevcu= cu->bevobj->data;
if(bevcu->ext1==0.0f && bevcu->ext2==0.0f) {
ListBase bevdisp= {NULL, NULL};
facx= cu->bevobj->size[0];
facy= cu->bevobj->size[1];
if (forRender) {
makeDispListCurveTypes_forRender(scene, cu->bevobj, &bevdisp, NULL, 0);
dl= bevdisp.first;
} else {
dl= cu->bevobj->disp.first;
if(dl==NULL) {
makeDispListCurveTypes(scene, cu->bevobj, 0);
dl= cu->bevobj->disp.first;
}
}
while(dl) {
if ELEM(dl->type, DL_POLY, DL_SEGM) {
dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1");
*dlnew= *dl;
dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1");
memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr);
if(dlnew->type==DL_SEGM) dlnew->flag |= (DL_FRONT_CURVE|DL_BACK_CURVE);
BLI_addtail(disp, dlnew);
fp= dlnew->verts;
nr= dlnew->parts*dlnew->nr;
while(nr--) {
fp[2]= fp[1]*facy;
fp[1]= -fp[0]*facx;
fp[0]= 0.0;
fp+= 3;
}
}
dl= dl->next;
}
freedisplist(&bevdisp);
}
}
else if(cu->ext1==0.0f && cu->ext2==0.0f) {
;
}
else if(cu->ext2==0.0f) {
dl= MEM_callocN(sizeof(DispList), "makebevelcurve2");
dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->flag= DL_FRONT_CURVE|DL_BACK_CURVE;
dl->nr= 2;
fp= dl->verts;
fp[0]= fp[1]= 0.0;
fp[2]= -cu->ext1;
fp[3]= fp[4]= 0.0;
fp[5]= cu->ext1;
}
else if( (cu->flag & (CU_FRONT|CU_BACK))==0 && cu->ext1==0.0f) { // we make a full round bevel in that case
nr= 4+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
BLI_addtail(disp, dl);
dl->type= DL_POLY;
dl->parts= 1;
dl->flag= DL_BACK_CURVE;
dl->nr= nr;
/* a circle */
fp= dl->verts;
dangle= (2.0f*(float)M_PI/(nr));
angle= -(nr-1)*dangle;
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (cosf(angle)*(cu->ext2));
fp[2]= (sinf(angle)*(cu->ext2)) - cu->ext1;
angle+= dangle;
fp+= 3;
}
}
else {
short dnr;
/* bevel now in three parts, for proper vertex normals */
/* part 1, back */
if((cu->flag & CU_BACK) || !(cu->flag & CU_FRONT)) {
dnr= nr= 2+ cu->bevresol;
if( (cu->flag & (CU_FRONT|CU_BACK))==0)
nr= 3+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->flag= DL_BACK_CURVE;
dl->nr= nr;
/* half a circle */
fp= dl->verts;
dangle= (0.5*M_PI/(dnr-1));
angle= -(nr-1)*dangle;
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (float)(cosf(angle)*(cu->ext2));
fp[2]= (float)(sinf(angle)*(cu->ext2)) - cu->ext1;
angle+= dangle;
fp+= 3;
}
}
/* part 2, sidefaces */
if(cu->ext1!=0.0f) {
nr= 2;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p2");
dl->verts= MEM_callocN(nr*3*sizeof(float), "makebevelcurve p2");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->parts= 1;
dl->nr= nr;
fp= dl->verts;
fp[1]= cu->ext2;
fp[2]= -cu->ext1;
fp[4]= cu->ext2;
fp[5]= cu->ext1;
if( (cu->flag & (CU_FRONT|CU_BACK))==0) {
dl= MEM_dupallocN(dl);
dl->verts= MEM_dupallocN(dl->verts);
BLI_addtail(disp, dl);
fp= dl->verts;
fp[1]= -fp[1];
fp[2]= -fp[2];
fp[4]= -fp[4];
fp[5]= -fp[5];
}
}
/* part 3, front */
if((cu->flag & CU_FRONT) || !(cu->flag & CU_BACK)) {
dnr= nr= 2+ cu->bevresol;
if( (cu->flag & (CU_FRONT|CU_BACK))==0)
nr= 3+ 2*cu->bevresol;
dl= MEM_callocN(sizeof(DispList), "makebevelcurve p3");
dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p3");
BLI_addtail(disp, dl);
dl->type= DL_SEGM;
dl->flag= DL_FRONT_CURVE;
dl->parts= 1;
dl->nr= nr;
/* half a circle */
fp= dl->verts;
angle= 0.0;
dangle= (0.5*M_PI/(dnr-1));
for(a=0; a<nr; a++) {
fp[0]= 0.0;
fp[1]= (float)(cosf(angle)*(cu->ext2));
fp[2]= (float)(sinf(angle)*(cu->ext2)) + cu->ext1;
angle+= dangle;
fp+= 3;
}
}
}
}
static int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec)
{
/* return:
-1: colliniar
0: no intersection of segments
1: exact intersection of segments
2: cross-intersection of segments
*/
float deler;
deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]);
if(deler==0.0f) return -1;
*labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]);
*labda= -(*labda/deler);
deler= v3[coy]-v4[coy];
if(deler==0) {
deler=v3[cox]-v4[cox];
*mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler;
} else {
*mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler;
}
vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox];
vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy];
if(*labda>=0.0f && *labda<=1.0f && *mu>=0.0f && *mu<=1.0f) {
if(*labda==0.0f || *labda==1.0f || *mu==0.0f || *mu==1.0f) return 1;
return 2;
}
return 0;
}
static short bevelinside(BevList *bl1,BevList *bl2)
{
/* is bl2 INSIDE bl1 ? with left-right method and "labda's" */
/* returns '1' if correct hole */
BevPoint *bevp, *prevbevp;
float min,max,vec[3],hvec1[3],hvec2[3],lab,mu;
int nr, links=0,rechts=0,mode;
/* take first vertex of possible hole */
bevp= (BevPoint *)(bl2+1);
hvec1[0]= bevp->vec[0];
hvec1[1]= bevp->vec[1];
hvec1[2]= 0.0;
copy_v3_v3(hvec2,hvec1);
hvec2[0]+=1000;
/* test it with all edges of potential surounding poly */
/* count number of transitions left-right */
bevp= (BevPoint *)(bl1+1);
nr= bl1->nr;
prevbevp= bevp+(nr-1);
while(nr--) {
min= prevbevp->vec[1];
max= bevp->vec[1];
if(max<min) {
min= max;
max= prevbevp->vec[1];
}
if(min!=max) {
if(min<=hvec1[1] && max>=hvec1[1]) {
/* there's a transition, calc intersection point */
mode= cu_isectLL(prevbevp->vec, bevp->vec, hvec1, hvec2, 0, 1, &lab, &mu, vec);
/* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
only allow for one situation: we choose lab= 1.0
*/
if(mode >= 0 && lab != 0.0f) {
if(vec[0]<hvec1[0]) links++;
else rechts++;
}
}
}
prevbevp= bevp;
bevp++;
}
if( (links & 1) && (rechts & 1) ) return 1;
return 0;
}
struct bevelsort {
float left;
BevList *bl;
int dir;
};
static int vergxcobev(const void *a1, const void *a2)
{
const struct bevelsort *x1=a1,*x2=a2;
if( x1->left > x2->left ) return 1;
else if( x1->left < x2->left) return -1;
return 0;
}
/* this function cannot be replaced with atan2, but why? */
static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
{
float t01, t02, x3, y3;
t01= (float)sqrt(x1*x1+y1*y1);
t02= (float)sqrt(x2*x2+y2*y2);
if(t01==0.0f) t01= 1.0f;
if(t02==0.0f) t02= 1.0f;
x1/=t01;
y1/=t01;
x2/=t02;
y2/=t02;
t02= x1*x2+y1*y2;
if(fabs(t02)>=1.0) t02= .5*M_PI;
else t02= (saacos(t02))/2.0f;
t02= (float)sin(t02);
if(t02==0.0f) t02= 1.0f;
x3= x1-x2;
y3= y1-y2;
if(x3==0 && y3==0) {
x3= y1;
y3= -x1;
} else {
t01= (float)sqrt(x3*x3+y3*y3);
x3/=t01;
y3/=t01;
}
*sina= -y3/t02;
*cosa= x3/t02;
}
static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *tilt_array, float *radius_array, float *weight_array, int resolu, int stride)
{
BezTriple *pprev, *next, *last;
float fac, dfac, t[4];
int a;
if(tilt_array==NULL && radius_array==NULL)
return;
last= nu->bezt+(nu->pntsu-1);
/* returns a point */
if(prevbezt==nu->bezt) {
if(nu->flagu & CU_NURB_CYCLIC) pprev= last;
else pprev= prevbezt;
}
else pprev= prevbezt-1;
/* next point */
if(bezt==last) {
if(nu->flagu & CU_NURB_CYCLIC) next= nu->bezt;
else next= bezt;
}
else next= bezt+1;
fac= 0.0;
dfac= 1.0f/(float)resolu;
for(a=0; a<resolu; a++, fac+= dfac) {
if (tilt_array) {
if (nu->tilt_interp==KEY_CU_EASE) { /* May as well support for tilt also 2.47 ease interp */
*tilt_array = prevbezt->alfa + (bezt->alfa - prevbezt->alfa)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
} else {
key_curve_position_weights(fac, t, nu->tilt_interp);
*tilt_array= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa;
}
tilt_array = (float *)(((char *)tilt_array) + stride);
}
if (radius_array) {
if (nu->radius_interp==KEY_CU_EASE) {
/* Support 2.47 ease interp
* Note! - this only takes the 2 points into account,
* giving much more localized results to changes in radius, sometimes you want that */
*radius_array = prevbezt->radius + (bezt->radius - prevbezt->radius)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
} else {
/* reuse interpolation from tilt if we can */
if (tilt_array==NULL || nu->tilt_interp != nu->radius_interp) {
key_curve_position_weights(fac, t, nu->radius_interp);
}
*radius_array= t[0]*pprev->radius + t[1]*prevbezt->radius + t[2]*bezt->radius + t[3]*next->radius;
}
radius_array = (float *)(((char *)radius_array) + stride);
}
if(weight_array) {
/* basic interpolation for now, could copy tilt interp too */
*weight_array = prevbezt->weight + (bezt->weight - prevbezt->weight)*(3.0f*fac*fac - 2.0f*fac*fac*fac);
weight_array = (float *)(((char *)weight_array) + stride);
}
}
}
/* make_bevel_list_3D_* funcs, at a minimum these must
* fill in the bezp->quat and bezp->dir values */
/* correct non-cyclic cases by copying direction and rotation
* values onto the first & last end-points */
static void bevel_list_cyclic_fix_3D(BevList *bl)
{
BevPoint *bevp, *bevp1;
bevp= (BevPoint *)(bl+1);
bevp1= bevp+1;
copy_qt_qt(bevp->quat, bevp1->quat);
copy_v3_v3(bevp->dir, bevp1->dir);
copy_v3_v3(bevp->tan, bevp1->tan);
bevp= (BevPoint *)(bl+1);
bevp+= (bl->nr-1);
bevp1= bevp-1;
copy_qt_qt(bevp->quat, bevp1->quat);
copy_v3_v3(bevp->dir, bevp1->dir);
copy_v3_v3(bevp->tan, bevp1->tan);
}
/* utility for make_bevel_list_3D_* funcs */
static void bevel_list_calc_bisect(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0;
int nr;
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
/* totally simple */
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
static void bevel_list_flip_tangents(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0;
int nr;
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
if(RAD2DEGF(angle_v2v2(bevp0->tan, bevp1->tan)) > 90.0f)
negate_v3(bevp1->tan);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
/* apply user tilt */
static void bevel_list_apply_tilt(BevList *bl)
{
BevPoint *bevp2, *bevp1;
int nr;
float q[4];
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
nr= bl->nr;
while(nr--) {
axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
normalize_qt(bevp1->quat);
bevp1= bevp2;
bevp2++;
}
}
/* smooth quats, this function should be optimized, it can get slow with many iterations. */
static void bevel_list_smooth(BevList *bl, int smooth_iter)
{
BevPoint *bevp2, *bevp1, *bevp0;
int nr;
float q[4];
float bevp0_quat[4];
int a;
for(a=0; a < smooth_iter; a++) {
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
if(bl->poly== -1) { /* check its not cyclic */
/* skip the first point */
/* bevp0= bevp1; */
bevp1= bevp2;
bevp2++;
nr--;
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
nr--;
}
copy_qt_qt(bevp0_quat, bevp0->quat);
while(nr--) {
/* interpolate quats */
float zaxis[3] = {0,0,1}, cross[3], q2[4];
interp_qt_qtqt(q, bevp0_quat, bevp2->quat, 0.5);
normalize_qt(q);
mul_qt_v3(q, zaxis);
cross_v3_v3v3(cross, zaxis, bevp1->dir);
axis_angle_to_quat(q2, cross, angle_normalized_v3v3(zaxis, bevp1->dir));
normalize_qt(q2);
copy_qt_qt(bevp0_quat, bevp1->quat);
mul_qt_qtqt(q, q2, q);
interp_qt_qtqt(bevp1->quat, bevp1->quat, q, 0.5);
normalize_qt(bevp1->quat);
/* bevp0= bevp1; */ /* UNUSED */
bevp1= bevp2;
bevp2++;
}
}
}
static void make_bevel_list_3D_zup(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
int nr;
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
/* totally simple */
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
static void make_bevel_list_3D_minimum_twist(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
int nr;
float q[4];
bevel_list_calc_bisect(bl);
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
if(nr+4 > bl->nr) { /* first time and second time, otherwise first point adjusts last */
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
}
else {
float angle= angle_normalized_v3v3(bevp0->dir, bevp1->dir);
if(angle > 0.0f) { /* otherwise we can keep as is */
float cross_tmp[3];
cross_v3_v3v3(cross_tmp, bevp0->dir, bevp1->dir);
axis_angle_to_quat(q, cross_tmp, angle);
mul_qt_qtqt(bevp1->quat, q, bevp0->quat);
}
else {
copy_qt_qt(bevp1->quat, bevp0->quat);
}
}
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
if(bl->poly != -1) { /* check for cyclic */
/* Need to correct for the start/end points not matching
* do this by calculating the tilt angle difference, then apply
* the rotation gradually over the entire curve
*
* note that the split is between last and second last, rather than first/last as youd expect.
*
* real order is like this
* 0,1,2,3,4 --> 1,2,3,4,0
*
* this is why we compare last with second last
* */
float vec_1[3]= {0,1,0}, vec_2[3]= {0,1,0}, angle, ang_fac, cross_tmp[3];
BevPoint *bevp_first;
BevPoint *bevp_last;
bevp_first= (BevPoint *)(bl+1);
bevp_first+= bl->nr-1;
bevp_last = bevp_first;
bevp_last--;
/* quats and vec's are normalized, should not need to re-normalize */
mul_qt_v3(bevp_first->quat, vec_1);
mul_qt_v3(bevp_last->quat, vec_2);
normalize_v3(vec_1);
normalize_v3(vec_2);
/* align the vector, can avoid this and it looks 98% OK but
* better to align the angle quat roll's before comparing */
{
cross_v3_v3v3(cross_tmp, bevp_last->dir, bevp_first->dir);
angle = angle_normalized_v3v3(bevp_first->dir, bevp_last->dir);
axis_angle_to_quat(q, cross_tmp, angle);
mul_qt_v3(q, vec_2);
}
angle= angle_normalized_v3v3(vec_1, vec_2);
/* flip rotation if needs be */
cross_v3_v3v3(cross_tmp, vec_1, vec_2);
normalize_v3(cross_tmp);
if(angle_normalized_v3v3(bevp_first->dir, cross_tmp) < DEG2RADF(90.0f))
angle = -angle;
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
ang_fac= angle * (1.0f-((float)nr/bl->nr)); /* also works */
axis_angle_to_quat(q, bevp1->dir, ang_fac);
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
}
}
static void make_bevel_list_3D_tangent(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
int nr;
float bevp0_tan[3], cross_tmp[3];
bevel_list_calc_bisect(bl);
if(bl->poly== -1) /* check its not cyclic */
bevel_list_cyclic_fix_3D(bl); // XXX - run this now so tangents will be right before doing the flipping
bevel_list_flip_tangents(bl);
/* correct the tangents */
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
cross_v3_v3v3(bevp1->tan, cross_tmp, bevp1->dir);
normalize_v3(bevp1->tan);
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
/* now for the real twist calc */
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
copy_v3_v3(bevp0_tan, bevp0->tan);
nr= bl->nr;
while(nr--) {
/* make perpendicular, modify tan in place, is ok */
float cross_tmp[3];
float zero[3] = {0,0,0};
cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
normalize_v3(cross_tmp);
tri_to_quat( bevp1->quat,zero, cross_tmp, bevp1->tan); /* XXX - could be faster */
/* bevp0= bevp1; */ /* UNUSED */
bevp1= bevp2;
bevp2++;
}
}
static void make_bevel_list_3D(BevList *bl, int smooth_iter, int twist_mode)
{
switch(twist_mode) {
case CU_TWIST_TANGENT:
make_bevel_list_3D_tangent(bl);
break;
case CU_TWIST_MINIMUM:
make_bevel_list_3D_minimum_twist(bl);
break;
default: /* CU_TWIST_Z_UP default, pre 2.49c */
make_bevel_list_3D_zup(bl);
}
if(bl->poly== -1) /* check its not cyclic */
bevel_list_cyclic_fix_3D(bl);
if(smooth_iter)
bevel_list_smooth(bl, smooth_iter);
bevel_list_apply_tilt(bl);
}
/* only for 2 points */
static void make_bevel_list_segment_3D(BevList *bl)
{
float q[4];
BevPoint *bevp2= (BevPoint *)(bl+1);
BevPoint *bevp1= bevp2+1;
/* simple quat/dir */
sub_v3_v3v3(bevp1->dir, bevp1->vec, bevp2->vec);
normalize_v3(bevp1->dir);
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
normalize_qt(bevp1->quat);
copy_v3_v3(bevp2->dir, bevp1->dir);
copy_qt_qt(bevp2->quat, bevp1->quat);
}
void makeBevelList(Object *ob)
{
/*
- convert all curves to polys, with indication of resol and flags for double-vertices
- possibly; do a smart vertice removal (in case Nurb)
- separate in individual blicks with BoundBox
- AutoHole detection
*/
Curve *cu;
Nurb *nu;
BezTriple *bezt, *prevbezt;
BPoint *bp;
BevList *bl, *blnew, *blnext;
BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
float min, inp, x1, x2, y1, y2;
struct bevelsort *sortdata, *sd, *sd1;
int a, b, nr, poly, resolu = 0, len = 0;
int do_tilt, do_radius, do_weight;
/* this function needs an object, because of tflag and upflag */
cu= ob->data;
/* do we need to calculate the radius for each point? */
/* do_radius = (cu->bevobj || cu->taperobj || (cu->flag & CU_FRONT) || (cu->flag & CU_BACK)) ? 0 : 1; */
/* STEP 1: MAKE POLYS */
BLI_freelistN(&(cu->bev));
if(cu->editnurb && ob->type!=OB_FONT) {
ListBase *nurbs= curve_editnurbs(cu);
nu= nurbs->first;
} else nu= cu->nurb.first;
while(nu) {
/* check if we will calculate tilt data */
do_tilt = CU_DO_TILT(cu, nu);
do_radius = CU_DO_RADIUS(cu, nu); /* normal display uses the radius, better just to calculate them */
do_weight = 1;
/* check we are a single point? also check we are not a surface and that the orderu is sane,
* enforced in the UI but can go wrong possibly */
if(!check_valid_nurb_u(nu)) {
bl= MEM_callocN(sizeof(BevList)+1*sizeof(BevPoint), "makeBevelList1");
BLI_addtail(&(cu->bev), bl);
bl->nr= 0;
} else {
if(G.rendering && cu->resolu_ren!=0)
resolu= cu->resolu_ren;
else
resolu= nu->resolu;
if(nu->type == CU_POLY) {
len= nu->pntsu;
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList2");
BLI_addtail(&(cu->bev), bl);
if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0;
else bl->poly= -1;
bl->nr= len;
bl->dupe_nr= 0;
bevp= (BevPoint *)(bl+1);
bp= nu->bp;
while(len--) {
copy_v3_v3(bevp->vec, bp->vec);
bevp->alfa= bp->alfa;
bevp->radius= bp->radius;
bevp->weight= bp->weight;
bevp->split_tag= TRUE;
bevp++;
bp++;
}
}
else if(nu->type == CU_BEZIER) {
len= resolu*(nu->pntsu+ (nu->flagu & CU_NURB_CYCLIC) -1)+1; /* in case last point is not cyclic */
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelBPoints");
BLI_addtail(&(cu->bev), bl);
if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0;
else bl->poly= -1;
bevp= (BevPoint *)(bl+1);
a= nu->pntsu-1;
bezt= nu->bezt;
if(nu->flagu & CU_NURB_CYCLIC) {
a++;
prevbezt= nu->bezt+(nu->pntsu-1);
}
else {
prevbezt= bezt;
bezt++;
}
while(a--) {
if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) {
copy_v3_v3(bevp->vec, prevbezt->vec[1]);
bevp->alfa= prevbezt->alfa;
bevp->radius= prevbezt->radius;
bevp->weight= prevbezt->weight;
bevp->split_tag= TRUE;
bevp->dupe_tag= FALSE;
bevp++;
bl->nr++;
bl->dupe_nr= 1;
}
else {
/* always do all three, to prevent data hanging around */
int j;
/* BevPoint must stay aligned to 4 so sizeof(BevPoint)/sizeof(float) works */
for(j=0; j<3; j++) {
forward_diff_bezier( prevbezt->vec[1][j], prevbezt->vec[2][j],
bezt->vec[0][j], bezt->vec[1][j],
&(bevp->vec[j]), resolu, sizeof(BevPoint));
}
/* if both arrays are NULL do nothiong */
alfa_bezpart( prevbezt, bezt, nu,
do_tilt ? &bevp->alfa : NULL,
do_radius ? &bevp->radius : NULL,
do_weight ? &bevp->weight : NULL,
resolu, sizeof(BevPoint));
if(cu->twist_mode==CU_TWIST_TANGENT) {
forward_diff_bezier_cotangent(
prevbezt->vec[1], prevbezt->vec[2],
bezt->vec[0], bezt->vec[1],
bevp->tan, resolu, sizeof(BevPoint));
}
/* indicate with handlecodes double points */
if(prevbezt->h1==prevbezt->h2) {
if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->split_tag= TRUE;
}
else {
if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->split_tag= TRUE;
else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->split_tag= TRUE;
}
bl->nr+= resolu;
bevp+= resolu;
}
prevbezt= bezt;
bezt++;
}
if((nu->flagu & CU_NURB_CYCLIC)==0) { /* not cyclic: endpoint */
copy_v3_v3(bevp->vec, prevbezt->vec[1]);
bevp->alfa= prevbezt->alfa;
bevp->radius= prevbezt->radius;
bevp->weight= prevbezt->weight;
bl->nr++;
}
}
else if(nu->type == CU_NURBS) {
if(nu->pntsv==1) {
len= (resolu*SEGMENTSU(nu));
bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3");
BLI_addtail(&(cu->bev), bl);
bl->nr= len;
bl->dupe_nr= 0;
if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0;
else bl->poly= -1;
bevp= (BevPoint *)(bl+1);
makeNurbcurve( nu, &bevp->vec[0],
do_tilt ? &bevp->alfa : NULL,
do_radius ? &bevp->radius : NULL,
do_weight ? &bevp->weight : NULL,
resolu, sizeof(BevPoint));
}
}
}
nu= nu->next;
}
/* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
bl= cu->bev.first;
while(bl) {
if (bl->nr) { /* null bevel items come from single points */
nr= bl->nr;
bevp1= (BevPoint *)(bl+1);
bevp0= bevp1+(nr-1);
nr--;
while(nr--) {
if( fabs(bevp0->vec[0]-bevp1->vec[0])<0.00001 ) {
if( fabs(bevp0->vec[1]-bevp1->vec[1])<0.00001 ) {
if( fabs(bevp0->vec[2]-bevp1->vec[2])<0.00001 ) {
bevp0->dupe_tag= TRUE;
bl->dupe_nr++;
}
}
}
bevp0= bevp1;
bevp1++;
}
}
bl= bl->next;
}
bl= cu->bev.first;
while(bl) {
blnext= bl->next;
if(bl->nr && bl->dupe_nr) {
nr= bl->nr- bl->dupe_nr+1; /* +1 because vectorbezier sets flag too */
blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList4");
memcpy(blnew, bl, sizeof(BevList));
blnew->nr= 0;
BLI_remlink(&(cu->bev), bl);
BLI_insertlinkbefore(&(cu->bev),blnext,blnew); /* to make sure bevlijst is tuned with nurblist */
bevp0= (BevPoint *)(bl+1);
bevp1= (BevPoint *)(blnew+1);
nr= bl->nr;
while(nr--) {
if(bevp0->dupe_tag==0) {
memcpy(bevp1, bevp0, sizeof(BevPoint));
bevp1++;
blnew->nr++;
}
bevp0++;
}
MEM_freeN(bl);
blnew->dupe_nr= 0;
}
bl= blnext;
}
/* STEP 3: POLYS COUNT AND AUTOHOLE */
bl= cu->bev.first;
poly= 0;
while(bl) {
if(bl->nr && bl->poly>=0) {
poly++;
bl->poly= poly;
bl->hole= 0;
}
bl= bl->next;
}
/* find extreme left points, also test (turning) direction */
if(poly>0) {
sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5");
bl= cu->bev.first;
while(bl) {
if(bl->poly>0) {
min= 300000.0;
bevp= (BevPoint *)(bl+1);
nr= bl->nr;
while(nr--) {
if(min>bevp->vec[0]) {
min= bevp->vec[0];
bevp1= bevp;
}
bevp++;
}
sd->bl= bl;
sd->left= min;
bevp= (BevPoint *)(bl+1);
if(bevp1== bevp) bevp0= bevp+ (bl->nr-1);
else bevp0= bevp1-1;
bevp= bevp+ (bl->nr-1);
if(bevp1== bevp) bevp2= (BevPoint *)(bl+1);
else bevp2= bevp1+1;
inp= (bevp1->vec[0]- bevp0->vec[0]) * (bevp0->vec[1]- bevp2->vec[1]) + (bevp0->vec[1]- bevp1->vec[1]) * (bevp0->vec[0]- bevp2->vec[0]);
if(inp > 0.0f) sd->dir= 1;
else sd->dir= 0;
sd++;
}
bl= bl->next;
}
qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev);
sd= sortdata+1;
for(a=1; a<poly; a++, sd++) {
bl= sd->bl; /* is bl a hole? */
sd1= sortdata+ (a-1);
for(b=a-1; b>=0; b--, sd1--) { /* all polys to the left */
if(bevelinside(sd1->bl, bl)) {
bl->hole= 1- sd1->bl->hole;
break;
}
}
}
/* turning direction */
if((cu->flag & CU_3D)==0) {
sd= sortdata;
for(a=0; a<poly; a++, sd++) {
if(sd->bl->hole==sd->dir) {
bl= sd->bl;
bevp1= (BevPoint *)(bl+1);
bevp2= bevp1+ (bl->nr-1);
nr= bl->nr/2;
while(nr--) {
SWAP(BevPoint, *bevp1, *bevp2);
bevp1++;
bevp2--;
}
}
}
}
MEM_freeN(sortdata);
}
/* STEP 4: 2D-COSINES or 3D ORIENTATION */
if((cu->flag & CU_3D)==0) {
/* note: bevp->dir and bevp->quat are not needed for beveling but are
* used when making a path from a 2D curve, therefor they need to be set - Campbell */
bl= cu->bev.first;
while(bl) {
if(bl->nr < 2) {
/* do nothing */
}
else if(bl->nr==2) { /* 2 pnt, treat separate */
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+1;
x1= bevp1->vec[0]- bevp2->vec[0];
y1= bevp1->vec[1]- bevp2->vec[1];
calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
bevp2->sina= bevp1->sina;
bevp2->cosa= bevp1->cosa;
/* fill in dir & quat */
make_bevel_list_segment_3D(bl);
}
else {
bevp2= (BevPoint *)(bl+1);
bevp1= bevp2+(bl->nr-1);
bevp0= bevp1-1;
nr= bl->nr;
while(nr--) {
x1= bevp1->vec[0]- bevp0->vec[0];
x2= bevp1->vec[0]- bevp2->vec[0];
y1= bevp1->vec[1]- bevp0->vec[1];
y2= bevp1->vec[1]- bevp2->vec[1];
calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
/* from: make_bevel_list_3D_zup, could call but avoid a second loop.
* no need for tricky tilt calculation as with 3D curves */
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
vec_to_quat( bevp1->quat,bevp1->dir, 5, 1);
/* done with inline make_bevel_list_3D_zup */
bevp0= bevp1;
bevp1= bevp2;
bevp2++;
}
/* correct non-cyclic cases */
if(bl->poly== -1) {
bevp= (BevPoint *)(bl+1);
bevp1= bevp+1;
bevp->sina= bevp1->sina;
bevp->cosa= bevp1->cosa;
bevp= (BevPoint *)(bl+1);
bevp+= (bl->nr-1);
bevp1= bevp-1;
bevp->sina= bevp1->sina;
bevp->cosa= bevp1->cosa;
/* correct for the dir/quat, see above why its needed */
bevel_list_cyclic_fix_3D(bl);
}
}
bl= bl->next;
}
}
else { /* 3D Curves */
bl= cu->bev.first;
while(bl) {
if(bl->nr < 2) {
/* do nothing */
}
else if(bl->nr==2) { /* 2 pnt, treat separate */
make_bevel_list_segment_3D(bl);
}
else {
make_bevel_list_3D(bl, (int)(resolu*cu->twist_smooth), cu->twist_mode);
}
bl= bl->next;
}
}
}
/* ****************** HANDLES ************** */
/*
* handlecodes:
* 0: nothing, 1:auto, 2:vector, 3:aligned
*/
/* mode: is not zero when FCurve, is 2 when forced horizontal for autohandles */
void calchandleNurb(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode)
{
float *p1,*p2,*p3, pt[3];
float dvec_a[3], dvec_b[3];
float len, len_a, len_b;
const float eps= 1e-5;
if(bezt->h1==0 && bezt->h2==0) {
return;
}
p2= bezt->vec[1];
if(prev==NULL) {
p3= next->vec[1];
pt[0]= 2.0f*p2[0] - p3[0];
pt[1]= 2.0f*p2[1] - p3[1];
pt[2]= 2.0f*p2[2] - p3[2];
p1= pt;
}
else {
p1= prev->vec[1];
}
if(next==NULL) {
pt[0]= 2.0f*p2[0] - p1[0];
pt[1]= 2.0f*p2[1] - p1[1];
pt[2]= 2.0f*p2[2] - p1[2];
p3= pt;
}
else {
p3= next->vec[1];
}
sub_v3_v3v3(dvec_a, p2, p1);
sub_v3_v3v3(dvec_b, p3, p2);
if (mode != 0) {
len_a= dvec_a[0];
len_b= dvec_b[0];
}
else {
len_a= len_v3(dvec_a);
len_b= len_v3(dvec_b);
}
if(len_a==0.0f) len_a=1.0f;
if(len_b==0.0f) len_b=1.0f;
if(ELEM(bezt->h1,HD_AUTO,HD_AUTO_ANIM) || ELEM(bezt->h2,HD_AUTO,HD_AUTO_ANIM)) { /* auto */
float tvec[3];
tvec[0]= dvec_b[0]/len_b + dvec_a[0]/len_a;
tvec[1]= dvec_b[1]/len_b + dvec_a[1]/len_a;
tvec[2]= dvec_b[2]/len_b + dvec_a[2]/len_a;
len= len_v3(tvec) * 2.5614f;
if(len!=0.0f) {
int leftviolate=0, rightviolate=0; /* for mode==2 */
if(len_a>5.0f*len_b) len_a= 5.0f*len_b;
if(len_b>5.0f*len_a) len_b= 5.0f*len_a;
if(ELEM(bezt->h1,HD_AUTO,HD_AUTO_ANIM)) {
len_a/=len;
madd_v3_v3v3fl(p2-3, p2, tvec, -len_a);
if((bezt->h1==HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */
float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
float ydiff2= next->vec[1][1] - bezt->vec[1][1];
if( (ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f) ) {
bezt->vec[0][1]= bezt->vec[1][1];
}
else { /* handles should not be beyond y coord of two others */
if(ydiff1 <= 0.0f) {
if(prev->vec[1][1] > bezt->vec[0][1]) {
bezt->vec[0][1]= prev->vec[1][1];
leftviolate= 1;
}
}
else {
if(prev->vec[1][1] < bezt->vec[0][1]) {
bezt->vec[0][1]= prev->vec[1][1];
leftviolate= 1;
}
}
}
}
}
if(ELEM(bezt->h2,HD_AUTO,HD_AUTO_ANIM)) {
len_b/=len;
madd_v3_v3v3fl(p2+3, p2, tvec, len_b);
if((bezt->h2==HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */
float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
float ydiff2= next->vec[1][1] - bezt->vec[1][1];
if( (ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f) ) {
bezt->vec[2][1]= bezt->vec[1][1];
}
else { /* andles should not be beyond y coord of two others */
if(ydiff1 <= 0.0f) {
if(next->vec[1][1] < bezt->vec[2][1]) {
bezt->vec[2][1]= next->vec[1][1];
rightviolate= 1;
}
}
else {
if(next->vec[1][1] > bezt->vec[2][1]) {
bezt->vec[2][1]= next->vec[1][1];
rightviolate= 1;
}
}
}
}
}
if(leftviolate || rightviolate) { /* align left handle */
float h1[3], h2[3];
float dot;
sub_v3_v3v3(h1, p2-3, p2);
sub_v3_v3v3(h2, p2, p2+3);
len_a= normalize_v3(h1);
len_b= normalize_v3(h2);
dot= dot_v3v3(h1, h2);
if(leftviolate) {
mul_v3_fl(h1, dot * len_b);
sub_v3_v3v3(p2+3, p2, h1);
}
else {
mul_v3_fl(h2, dot * len_a);
add_v3_v3v3(p2-3, p2, h2);
}
}
}
}
if(bezt->h1==HD_VECT) { /* vector */
madd_v3_v3v3fl(p2-3, p2, dvec_a, -1.0f/3.0f);
}
if(bezt->h2==HD_VECT) {
madd_v3_v3v3fl(p2+3, p2, dvec_b, 1.0f/3.0f);
}
len_b= len_v3v3(p2, p2+3);
len_a= len_v3v3(p2, p2-3);
if(len_a==0.0f) len_a= 1.0f;
if(len_b==0.0f) len_b= 1.0f;
if(bezt->f1 & SELECT) { /* order of calculation */
if(bezt->h2==HD_ALIGN) { /* aligned */
if(len_a>eps) {
len= len_b/len_a;
p2[3]= p2[0]+len*(p2[0] - p2[-3]);
p2[4]= p2[1]+len*(p2[1] - p2[-2]);
p2[5]= p2[2]+len*(p2[2] - p2[-1]);
}
}
if(bezt->h1==HD_ALIGN) {
if(len_b>eps) {
len= len_a/len_b;
p2[-3]= p2[0]+len*(p2[0] - p2[3]);
p2[-2]= p2[1]+len*(p2[1] - p2[4]);
p2[-1]= p2[2]+len*(p2[2] - p2[5]);
}
}
}
else {
if(bezt->h1==HD_ALIGN) {
if(len_b>eps) {
len= len_a/len_b;
p2[-3]= p2[0]+len*(p2[0] - p2[3]);
p2[-2]= p2[1]+len*(p2[1] - p2[4]);
p2[-1]= p2[2]+len*(p2[2] - p2[5]);
}
}
if(bezt->h2==HD_ALIGN) { /* aligned */
if(len_a>eps) {
len= len_b/len_a;
p2[3]= p2[0]+len*(p2[0] - p2[-3]);
p2[4]= p2[1]+len*(p2[1] - p2[-2]);
p2[5]= p2[2]+len*(p2[2] - p2[-1]);
}
}
}
}
void calchandlesNurb(Nurb *nu) /* first, if needed, set handle flags */
{
BezTriple *bezt, *prev, *next;
short a;
if(nu->type != CU_BEZIER) return;
if(nu->pntsu<2) return;
a= nu->pntsu;
bezt= nu->bezt;
if(nu->flagu & CU_NURB_CYCLIC) prev= bezt+(a-1);
else prev= NULL;
next= bezt+1;
while(a--) {
calchandleNurb(bezt, prev, next, 0);
prev= bezt;
if(a==1) {
if(nu->flagu & CU_NURB_CYCLIC) next= nu->bezt;
else next= NULL;
}
else next++;
bezt++;
}
}
void testhandlesNurb(Nurb *nu)
{
/* use when something has changed with handles.
it treats all BezTriples with the following rules:
PHASE 1: do types have to be altered?
Auto handles: become aligned when selection status is NOT(000 || 111)
Vector handles: become 'nothing' when (one half selected AND other not)
PHASE 2: recalculate handles
*/
BezTriple *bezt;
short flag, a;
if(nu->type != CU_BEZIER) return;
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
flag= 0;
if(bezt->f1 & SELECT) flag++;
if(bezt->f2 & SELECT) flag += 2;
if(bezt->f3 & SELECT) flag += 4;
if( !(flag==0 || flag==7) ) {
if(ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM)) { /* auto */
bezt->h1= HD_ALIGN;
}
if(ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) { /* auto */
bezt->h2= HD_ALIGN;
}
if(bezt->h1==HD_VECT) { /* vector */
if(flag < 4) bezt->h1= 0;
}
if(bezt->h2==HD_VECT) { /* vector */
if( flag > 3) bezt->h2= 0;
}
}
bezt++;
}
calchandlesNurb(nu);
}
void autocalchandlesNurb(Nurb *nu, int flag)
{
/* checks handle coordinates and calculates type */
BezTriple *bezt2, *bezt1, *bezt0;
int i, align, leftsmall, rightsmall;
if(nu==NULL || nu->bezt==NULL) return;
bezt2 = nu->bezt;
bezt1 = bezt2 + (nu->pntsu-1);
bezt0 = bezt1 - 1;
i = nu->pntsu;
while(i--) {
align= leftsmall= rightsmall= 0;
/* left handle: */
if(flag==0 || (bezt1->f1 & flag) ) {
bezt1->h1= 0;
/* distance too short: vectorhandle */
if( len_v3v3( bezt1->vec[1], bezt0->vec[1] ) < 0.0001f) {
bezt1->h1= HD_VECT;
leftsmall= 1;
}
else {
/* aligned handle? */
if(dist_to_line_v2(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001f) {
align= 1;
bezt1->h1= HD_ALIGN;
}
/* or vector handle? */
if(dist_to_line_v2(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001f)
bezt1->h1= HD_VECT;
}
}
/* right handle: */
if(flag==0 || (bezt1->f3 & flag) ) {
bezt1->h2= 0;
/* distance too short: vectorhandle */
if( len_v3v3( bezt1->vec[1], bezt2->vec[1] ) < 0.0001f) {
bezt1->h2= HD_VECT;
rightsmall= 1;
}
else {
/* aligned handle? */
if(align) bezt1->h2= HD_ALIGN;
/* or vector handle? */
if(dist_to_line_v2(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001f)
bezt1->h2= HD_VECT;
}
}
if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0;
if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0;
/* undesired combination: */
if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0;
if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0;
bezt0= bezt1;
bezt1= bezt2;
bezt2++;
}
calchandlesNurb(nu);
}
void autocalchandlesNurb_all(ListBase *editnurb, int flag)
{
Nurb *nu;
nu= editnurb->first;
while(nu) {
autocalchandlesNurb(nu, flag);
nu= nu->next;
}
}
void sethandlesNurb(ListBase *editnurb, short code)
{
/* code==1: set autohandle */
/* code==2: set vectorhandle */
/* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
/* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */
/* code==5: Set align, like 3 but no toggle */
/* code==6: Clear align, like 3 but no toggle */
Nurb *nu;
BezTriple *bezt;
short a, ok=0;
if(code==1 || code==2) {
nu= editnurb->first;
while(nu) {
if(nu->type == CU_BEZIER) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if((bezt->f1 & SELECT) || (bezt->f3 & SELECT)) {
if(bezt->f1 & SELECT) bezt->h1= code;
if(bezt->f3 & SELECT) bezt->h2= code;
if(bezt->h1!=bezt->h2) {
if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE;
if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE;
}
}
bezt++;
}
calchandlesNurb(nu);
}
nu= nu->next;
}
}
else {
/* there is 1 handle not FREE: FREE it all, else make ALIGNED */
nu= editnurb->first;
if (code == 5) {
ok = HD_ALIGN;
} else if (code == 6) {
ok = HD_FREE;
} else {
/* Toggle */
while(nu) {
if(nu->type == CU_BEZIER) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if((bezt->f1 & SELECT) && bezt->h1) ok= 1;
if((bezt->f3 & SELECT) && bezt->h2) ok= 1;
if(ok) break;
bezt++;
}
}
nu= nu->next;
}
if(ok) ok= HD_FREE;
else ok= HD_ALIGN;
}
nu= editnurb->first;
while(nu) {
if(nu->type == CU_BEZIER) {
bezt= nu->bezt;
a= nu->pntsu;
while(a--) {
if(bezt->f1 & SELECT) bezt->h1= ok;
if(bezt->f3 & SELECT) bezt->h2= ok;
bezt++;
}
calchandlesNurb(nu);
}
nu= nu->next;
}
}
}
static void swapdata(void *adr1, void *adr2, int len)
{
if(len<=0) return;
if(len<65) {
char adr[64];
memcpy(adr, adr1, len);
memcpy(adr1, adr2, len);
memcpy(adr2, adr, len);
}
else {
char *adr;
adr= (char *)MEM_mallocN(len, "curve swap");
memcpy(adr, adr1, len);
memcpy(adr1, adr2, len);
memcpy(adr2, adr, len);
MEM_freeN(adr);
}
}
void switchdirectionNurb(Nurb *nu)
{
BezTriple *bezt1, *bezt2;
BPoint *bp1, *bp2;
float *fp1, *fp2, *tempf;
int a, b;
if(nu->pntsu==1 && nu->pntsv==1) return;
if(nu->type == CU_BEZIER) {
a= nu->pntsu;
bezt1= nu->bezt;
bezt2= bezt1+(a-1);
if(a & 1) a+= 1; /* if odd, also swap middle content */
a/= 2;
while(a>0) {
if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2);
swapdata(bezt1->vec[0], bezt1->vec[2], 12);
if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12);
SWAP(char, bezt1->h1, bezt1->h2);
SWAP(short, bezt1->f1, bezt1->f3);
if(bezt1!=bezt2) {
SWAP(char, bezt2->h1, bezt2->h2);
SWAP(short, bezt2->f1, bezt2->f3);
bezt1->alfa= -bezt1->alfa;
bezt2->alfa= -bezt2->alfa;
}
a--;
bezt1++;
bezt2--;
}
}
else if(nu->pntsv==1) {
a= nu->pntsu;
bp1= nu->bp;
bp2= bp1+(a-1);
a/= 2;
while(bp1!=bp2 && a>0) {
SWAP(BPoint, *bp1, *bp2);
a--;
bp1->alfa= -bp1->alfa;
bp2->alfa= -bp2->alfa;
bp1++;
bp2--;
}
if(nu->type == CU_NURBS) {
/* no knots for too short paths */
if(nu->knotsu) {
/* inverse knots */
a= KNOTSU(nu);
fp1= nu->knotsu;
fp2= fp1+(a-1);
a/= 2;
while(fp1!=fp2 && a>0) {
SWAP(float, *fp1, *fp2);
a--;
fp1++;
fp2--;
}
/* and make in increasing order again */
a= KNOTSU(nu);
fp1= nu->knotsu;
fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect");
while(a--) {
fp2[0]= fabs(fp1[1]-fp1[0]);
fp1++;
fp2++;
}
a= KNOTSU(nu)-1;
fp1= nu->knotsu;
fp2= tempf;
fp1[0]= 0.0;
fp1++;
while(a--) {
fp1[0]= fp1[-1]+fp2[0];
fp1++;
fp2++;
}
MEM_freeN(tempf);
}
}
}
else {
for(b=0; b<nu->pntsv; b++) {
bp1= nu->bp+b*nu->pntsu;
a= nu->pntsu;
bp2= bp1+(a-1);
a/= 2;
while(bp1!=bp2 && a>0) {
SWAP(BPoint, *bp1, *bp2);
a--;
bp1++;
bp2--;
}
}
}
}
float (*curve_getVertexCos(Curve *UNUSED(cu), ListBase *lb, int *numVerts_r))[3]
{
int i, numVerts = *numVerts_r = count_curveverts(lb);
float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos");
Nurb *nu;
co = cos[0];
for (nu=lb->first; nu; nu=nu->next) {
if (nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i=0; i<nu->pntsu; i++,bezt++) {
copy_v3_v3(co, bezt->vec[0]); co+=3;
copy_v3_v3(co, bezt->vec[1]); co+=3;
copy_v3_v3(co, bezt->vec[2]); co+=3;
}
} else {
BPoint *bp = nu->bp;
for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
copy_v3_v3(co, bp->vec); co+=3;
}
}
}
return cos;
}
void curve_applyVertexCos(Curve *UNUSED(cu), ListBase *lb, float (*vertexCos)[3])
{
float *co = vertexCos[0];
Nurb *nu;
int i;
for (nu=lb->first; nu; nu=nu->next) {
if (nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i=0; i<nu->pntsu; i++,bezt++) {
copy_v3_v3(bezt->vec[0], co); co+=3;
copy_v3_v3(bezt->vec[1], co); co+=3;
copy_v3_v3(bezt->vec[2], co); co+=3;
}
} else {
BPoint *bp = nu->bp;
for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
copy_v3_v3(bp->vec, co); co+=3;
}
}
}
}
float (*curve_getKeyVertexCos(Curve *UNUSED(cu), ListBase *lb, float *key))[3]
{
int i, numVerts = count_curveverts(lb);
float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos");
Nurb *nu;
co = cos[0];
for (nu=lb->first; nu; nu=nu->next) {
if (nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i=0; i<nu->pntsu; i++,bezt++) {
copy_v3_v3(co, key); co+=3; key+=3;
copy_v3_v3(co, key); co+=3; key+=3;
copy_v3_v3(co, key); co+=3; key+=3;
key+=3; /* skip tilt */
}
}
else {
BPoint *bp = nu->bp;
for(i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
copy_v3_v3(co, key); co+=3; key+=3;
key++; /* skip tilt */
}
}
}
return cos;
}
void curve_applyKeyVertexTilts(Curve *UNUSED(cu), ListBase *lb, float *key)
{
Nurb *nu;
int i;
for(nu=lb->first; nu; nu=nu->next) {
if(nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for(i=0; i<nu->pntsu; i++,bezt++) {
key+=3*3;
bezt->alfa= *key;
key+=3;
}
}
else {
BPoint *bp = nu->bp;
for(i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
key+=3;
bp->alfa= *key;
key++;
}
}
}
}
int check_valid_nurb_u( struct Nurb *nu )
{
if (nu==NULL) return 0;
if (nu->pntsu <= 1) return 0;
if (nu->type != CU_NURBS) return 1; /* not a nurb, lets assume its valid */
if (nu->pntsu < nu->orderu) return 0;
if (((nu->flag & CU_NURB_CYCLIC)==0) && (nu->flagu & CU_NURB_BEZIER)) { /* Bezier U Endpoints */
if (nu->orderu==4) {
if (nu->pntsu < 5) return 0; /* bezier with 4 orderu needs 5 points */
} else if (nu->orderu != 3) return 0; /* order must be 3 or 4 */
}
return 1;
}
int check_valid_nurb_v( struct Nurb *nu)
{
if (nu==NULL) return 0;
if (nu->pntsv <= 1) return 0;
if (nu->type != CU_NURBS) return 1; /* not a nurb, lets assume its valid */
if (nu->pntsv < nu->orderv) return 0;
if (((nu->flag & CU_NURB_CYCLIC)==0) && (nu->flagv & CU_NURB_BEZIER)) { /* Bezier V Endpoints */
if (nu->orderv==4) {
if (nu->pntsv < 5) return 0; /* bezier with 4 orderu needs 5 points */
} else if (nu->orderv != 3) return 0; /* order must be 3 or 4 */
}
return 1;
}
int clamp_nurb_order_u( struct Nurb *nu )
{
int change = 0;
if(nu->pntsu<nu->orderu) {
nu->orderu= nu->pntsu;
change= 1;
}
if(((nu->flagu & CU_NURB_CYCLIC)==0) && (nu->flagu & CU_NURB_BEZIER)) {
CLAMP(nu->orderu, 3,4);
change= 1;
}
return change;
}
int clamp_nurb_order_v( struct Nurb *nu)
{
int change = 0;
if(nu->pntsv<nu->orderv) {
nu->orderv= nu->pntsv;
change= 1;
}
if(((nu->flagv & CU_NURB_CYCLIC)==0) && (nu->flagv & CU_NURB_BEZIER)) {
CLAMP(nu->orderv, 3,4);
change= 1;
}
return change;
}
/* Get edit nurbs or normal nurbs list */
ListBase *BKE_curve_nurbs(Curve *cu)
{
if (cu->editnurb) {
return curve_editnurbs(cu);
}
return &cu->nurb;
}
/* basic vertex data functions */
int minmax_curve(Curve *cu, float min[3], float max[3])
{
ListBase *nurb_lb= BKE_curve_nurbs(cu);
Nurb *nu;
for(nu= nurb_lb->first; nu; nu= nu->next)
minmaxNurb(nu, min, max);
return (nurb_lb->first != NULL);
}
int curve_center_median(Curve *cu, float cent[3])
{
ListBase *nurb_lb= BKE_curve_nurbs(cu);
Nurb *nu;
int total= 0;
zero_v3(cent);
for(nu= nurb_lb->first; nu; nu= nu->next) {
int i;
if(nu->type == CU_BEZIER) {
BezTriple *bezt;
i= nu->pntsu;
total += i * 3;
for(bezt= nu->bezt; i--; bezt++) {
add_v3_v3(cent, bezt->vec[0]);
add_v3_v3(cent, bezt->vec[1]);
add_v3_v3(cent, bezt->vec[2]);
}
}
else {
BPoint *bp;
i= nu->pntsu*nu->pntsv;
total += i;
for(bp= nu->bp; i--; bp++) {
add_v3_v3(cent, bp->vec);
}
}
}
mul_v3_fl(cent, 1.0f/(float)total);
return (total != 0);
}
int curve_center_bounds(Curve *cu, float cent[3])
{
float min[3], max[3];
INIT_MINMAX(min, max);
if(minmax_curve(cu, min, max)) {
mid_v3_v3v3(cent, min, max);
return 1;
}
return 0;
}
void curve_translate(Curve *cu, float offset[3], int do_keys)
{
ListBase *nurb_lb= BKE_curve_nurbs(cu);
Nurb *nu;
int i;
for(nu= nurb_lb->first; nu; nu= nu->next) {
BezTriple *bezt;
BPoint *bp;
if(nu->type == CU_BEZIER) {
i= nu->pntsu;
for(bezt= nu->bezt; i--; bezt++) {
add_v3_v3(bezt->vec[0], offset);
add_v3_v3(bezt->vec[1], offset);
add_v3_v3(bezt->vec[2], offset);
}
}
else {
i= nu->pntsu*nu->pntsv;
for(bp= nu->bp; i--; bp++) {
add_v3_v3(bp->vec, offset);
}
}
}
if (do_keys && cu->key) {
KeyBlock *kb;
for (kb=cu->key->block.first; kb; kb=kb->next) {
float *fp= kb->data;
for (i= kb->totelem; i--; fp+=3) {
add_v3_v3(fp, offset);
}
}
}
}
void curve_delete_material_index(Curve *cu, int index)
{
const int curvetype= curve_type(cu);
if(curvetype == OB_FONT) {
struct CharInfo *info= cu->strinfo;
int i;
for(i= cu->len-1; i >= 0; i--, info++) {
if (info->mat_nr && info->mat_nr>=index) {
info->mat_nr--;
}
}
}
else {
Nurb *nu;
for (nu= cu->nurb.first; nu; nu= nu->next) {
if(nu->mat_nr && nu->mat_nr>=index) {
nu->mat_nr--;
if (curvetype == OB_CURVE) nu->charidx--;
}
}
}
}