This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/blender_interface/BlenderStrokeRenderer.cpp
Dalai Felinto 06420c5fe8 Refactor depsgraph/render logic to serve evaluated depsgraph to engines
User notes
----------
Compositing, rendering of multi-layers in Eevee should be fully working now.

Development notes
-----------------
Up until now we were still using the same depsgraph for rendering and viewport
evaluation. And we had to go out of our ways to be sure the depsgraphs were
updated.

Now we iterate over the (to be rendered) view layers and create a depsgraph to
each one, fully evaluated and call the render engines (Cycles, Eevee, ...) with
this viewlayer/depsgraph/evaluation context.

At this time we are not handling data persistency, Depsgraph is created from
scratch prior to rendering each frame.  So I got rid of most of the partial
update calls we had during the render pipeline.

Cycles: Brecht Van Lommel did a patch to tackle some of the required Cycles
changes but this commit mark these changes as TODOs. Basically Cycles needs to
render one layer at a time.

Reviewers: sergey, brecht

Differential Revision: https://developer.blender.org/D3073
2018-02-27 18:25:54 -03:00

977 lines
32 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/freestyle/intern/blender_interface/BlenderStrokeRenderer.cpp
* \ingroup freestyle
*/
#include "BlenderStrokeRenderer.h"
#include "../application/AppConfig.h"
#include "../stroke/Canvas.h"
extern "C" {
#include "MEM_guardedalloc.h"
#include "RNA_access.h"
#include "RNA_types.h"
#include "DNA_camera_types.h"
#include "DNA_listBase.h"
#include "DNA_linestyle_types.h"
#include "DNA_material_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_screen_types.h"
#include "DNA_scene_types.h"
#include "BKE_collection.h"
#include "BKE_customdata.h"
#include "BKE_idprop.h"
#include "BKE_global.h"
#include "BKE_library.h" /* free_libblock */
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_node.h"
#include "BKE_object.h"
#include "BKE_scene.h"
#include "BLI_ghash.h"
#include "BLI_listbase.h"
#include "BLI_math_color.h"
#include "BLI_math_vector.h"
#include "BLI_utildefines.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_build.h"
#include "RE_pipeline.h"
#include "render_types.h"
}
#include <limits.h>
namespace Freestyle {
const char *BlenderStrokeRenderer::uvNames[] = {"along_stroke", "along_stroke_tips"};
BlenderStrokeRenderer::BlenderStrokeRenderer(Render *re, int render_count) : StrokeRenderer()
{
freestyle_bmain = re->freestyle_bmain;
freestyle_depsgraph = DEG_graph_new();
// for stroke mesh generation
_width = re->winx;
_height = re->winy;
old_scene = re->scene;
char name[MAX_ID_NAME - 2];
BLI_snprintf(name, sizeof(name), "FRS%d_%s", render_count, re->scene->id.name + 2);
freestyle_scene = BKE_scene_add(freestyle_bmain, name);
freestyle_scene->r.cfra = old_scene->r.cfra;
freestyle_scene->r.mode = old_scene->r.mode &
~(R_EDGE_FRS | R_SHADOW | R_SSS | R_PANORAMA | R_ENVMAP | R_MBLUR | R_BORDER);
freestyle_scene->r.xsch = re->rectx; // old_scene->r.xsch
freestyle_scene->r.ysch = re->recty; // old_scene->r.ysch
freestyle_scene->r.xasp = 1.0f; // old_scene->r.xasp;
freestyle_scene->r.yasp = 1.0f; // old_scene->r.yasp;
freestyle_scene->r.tilex = old_scene->r.tilex;
freestyle_scene->r.tiley = old_scene->r.tiley;
freestyle_scene->r.size = 100; // old_scene->r.size
//freestyle_scene->r.maximsize = old_scene->r.maximsize; /* DEPRECATED */
freestyle_scene->r.ocres = old_scene->r.ocres;
freestyle_scene->r.color_mgt_flag = 0; // old_scene->r.color_mgt_flag;
freestyle_scene->r.scemode = old_scene->r.scemode & ~(R_SINGLE_LAYER | R_NO_FRAME_UPDATE | R_MULTIVIEW);
freestyle_scene->r.flag = old_scene->r.flag;
freestyle_scene->r.threads = old_scene->r.threads;
freestyle_scene->r.border.xmin = old_scene->r.border.xmin;
freestyle_scene->r.border.ymin = old_scene->r.border.ymin;
freestyle_scene->r.border.xmax = old_scene->r.border.xmax;
freestyle_scene->r.border.ymax = old_scene->r.border.ymax;
strcpy(freestyle_scene->r.pic, old_scene->r.pic);
freestyle_scene->r.safety.xmin = old_scene->r.safety.xmin;
freestyle_scene->r.safety.ymin = old_scene->r.safety.ymin;
freestyle_scene->r.safety.xmax = old_scene->r.safety.xmax;
freestyle_scene->r.safety.ymax = old_scene->r.safety.ymax;
freestyle_scene->r.osa = old_scene->r.osa;
freestyle_scene->r.filtertype = old_scene->r.filtertype;
freestyle_scene->r.gauss = old_scene->r.gauss;
freestyle_scene->r.dither_intensity = old_scene->r.dither_intensity;
BKE_viewrender_copy(&freestyle_scene->view_render, &old_scene->view_render);
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "Stroke rendering engine : " << freestyle_scene->view_render.engine_id << endl;
}
freestyle_scene->r.im_format.planes = R_IMF_PLANES_RGBA;
freestyle_scene->r.im_format.imtype = R_IMF_IMTYPE_PNG;
// Copy ID properties, including Cycles render properties
if (old_scene->id.properties) {
freestyle_scene->id.properties = IDP_CopyProperty_ex(old_scene->id.properties, 0);
}
if (STREQ(freestyle_scene->view_render.engine_id, RE_engine_id_CYCLES)) {
/* Render with transparent background. */
PointerRNA freestyle_scene_ptr;
RNA_id_pointer_create(&freestyle_scene->id, &freestyle_scene_ptr);
PointerRNA freestyle_cycles_ptr = RNA_pointer_get(&freestyle_scene_ptr, "cycles");
RNA_boolean_set(&freestyle_cycles_ptr, "film_transparent", 1);
}
if (G.debug & G_DEBUG_FREESTYLE) {
printf("%s: %d thread(s)\n", __func__, BKE_render_num_threads(&freestyle_scene->r));
}
BKE_scene_set_background(freestyle_bmain, freestyle_scene);
DEG_graph_id_tag_update(freestyle_bmain, freestyle_depsgraph, &freestyle_scene->id, 0);
// Scene layer.
ViewLayer *view_layer = (ViewLayer *)freestyle_scene->view_layers.first;
view_layer->layflag = SCE_LAY_SOLID | SCE_LAY_ZTRA;
// Camera
Object *object_camera = BKE_object_add(freestyle_bmain, freestyle_scene, view_layer, OB_CAMERA, NULL);
DEG_graph_id_tag_update(freestyle_bmain, freestyle_depsgraph, &object_camera->id, 0);
Camera *camera = (Camera *)object_camera->data;
camera->type = CAM_ORTHO;
camera->ortho_scale = max(re->rectx, re->recty);
camera->clipsta = 0.1f;
camera->clipend = 100.0f;
_z_delta = 0.00001f;
_z = camera->clipsta + _z_delta;
object_camera->loc[0] = re->disprect.xmin + 0.5f * re->rectx;
object_camera->loc[1] = re->disprect.ymin + 0.5f * re->recty;
object_camera->loc[2] = 1.0f;
freestyle_scene->camera = object_camera;
// Reset serial mesh ID (used for BlenderStrokeRenderer::NewMesh())
_mesh_id = 0xffffffff;
// Check if the rendering engine uses new shading nodes
_use_shading_nodes = BKE_scene_use_new_shading_nodes(freestyle_scene);
// Create a bNodeTree-to-Material hash table
if (_use_shading_nodes)
_nodetree_hash = BLI_ghash_ptr_new("BlenderStrokeRenderer::_nodetree_hash");
else
_nodetree_hash = NULL;
// New IDs were added, tag relations for update.
DEG_graph_tag_relations_update(freestyle_depsgraph);
}
BlenderStrokeRenderer::~BlenderStrokeRenderer()
{
// The freestyle_scene object is not released here. Instead,
// the scene is released in free_all_freestyle_renders() in
// source/blender/render/intern/source/pipeline.c, after the
// compositor has finished.
// release objects and data blocks
ViewLayer *view_layer = (ViewLayer *)freestyle_scene->view_layers.first;
for (Base *b = (Base *)view_layer->object_bases.first; b; b = b->next) {
Object *ob = b->object;
void *data = ob->data;
char *name = ob->id.name;
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "removing " << name[0] << name[1] << ":" << (name+2) << endl;
}
#endif
switch (ob->type) {
case OB_MESH:
BKE_libblock_free(freestyle_bmain, ob);
BKE_libblock_free(freestyle_bmain, data);
break;
case OB_CAMERA:
BKE_libblock_free(freestyle_bmain, ob);
BKE_libblock_free(freestyle_bmain, data);
freestyle_scene->camera = NULL;
break;
default:
cerr << "Warning: unexpected object in the scene: " << name[0] << name[1] << ":" << (name + 2) << endl;
}
}
// Make sure we don't have any bases which might reference freed objects.
FOREACH_SCENE_COLLECTION(freestyle_scene, sc)
{
BLI_freelistN(&sc->objects);
}
FOREACH_SCENE_COLLECTION_END
BLI_freelistN(&view_layer->object_bases);
// release materials
Link *lnk = (Link *)freestyle_bmain->mat.first;
while (lnk)
{
Material *ma = (Material*)lnk;
// We want to retain the linestyle mtexs, so let's detach them first
for (int a = 0; a < MAX_MTEX; a++) {
if (ma->mtex[a]) {
ma->mtex[a] = NULL;
}
else {
break; // Textures are ordered, no empty slots between two textures
}
}
lnk = lnk->next;
BKE_libblock_free(freestyle_bmain, ma);
}
if (_use_shading_nodes)
BLI_ghash_free(_nodetree_hash, NULL, NULL);
DEG_graph_free(freestyle_depsgraph);
FreeStrokeGroups();
}
float BlenderStrokeRenderer::get_stroke_vertex_z(void) const
{
float z = _z;
BlenderStrokeRenderer *self = const_cast<BlenderStrokeRenderer *>(this);
if (!(_z < _z_delta * 100000.0f))
self->_z_delta *= 10.0f;
self->_z += _z_delta;
return -z;
}
unsigned int BlenderStrokeRenderer::get_stroke_mesh_id(void) const
{
unsigned mesh_id = _mesh_id;
BlenderStrokeRenderer *self = const_cast<BlenderStrokeRenderer *>(this);
self->_mesh_id--;
return mesh_id;
}
Material* BlenderStrokeRenderer::GetStrokeShader(Main *bmain, bNodeTree *iNodeTree, bool do_id_user)
{
Material *ma = BKE_material_add(bmain, "stroke_shader");
bNodeTree *ntree;
bNode *output_linestyle = NULL;
bNodeSocket *fromsock, *tosock;
PointerRNA fromptr, toptr;
NodeShaderAttribute *storage;
id_us_min(&ma->id);
if (iNodeTree) {
// make a copy of linestyle->nodetree
ntree = ntreeCopyTree_ex(iNodeTree, bmain, do_id_user);
// find the active Output Line Style node
for (bNode *node = (bNode *)ntree->nodes.first; node; node = node->next) {
if (node->type == SH_NODE_OUTPUT_LINESTYLE && (node->flag & NODE_DO_OUTPUT)) {
output_linestyle = node;
break;
}
}
}
else {
ntree = ntreeAddTree(NULL, "stroke_shader", "ShaderNodeTree");
}
ma->nodetree = ntree;
ma->use_nodes = 1;
bNode *input_attr_color = nodeAddStaticNode(NULL, ntree, SH_NODE_ATTRIBUTE);
input_attr_color->locx = 0.0f;
input_attr_color->locy = -200.0f;
storage = (NodeShaderAttribute *)input_attr_color->storage;
BLI_strncpy(storage->name, "Color", sizeof(storage->name));
bNode *mix_rgb_color = nodeAddStaticNode(NULL, ntree, SH_NODE_MIX_RGB);
mix_rgb_color->custom1 = MA_RAMP_BLEND; // Mix
mix_rgb_color->locx = 200.0f;
mix_rgb_color->locy = -200.0f;
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_color->inputs, 0); // Fac
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
RNA_float_set(&toptr, "default_value", 0.0f);
bNode *input_attr_alpha = nodeAddStaticNode(NULL, ntree, SH_NODE_ATTRIBUTE);
input_attr_alpha->locx = 400.0f;
input_attr_alpha->locy = 300.0f;
storage = (NodeShaderAttribute *)input_attr_alpha->storage;
BLI_strncpy(storage->name, "Alpha", sizeof(storage->name));
bNode *mix_rgb_alpha = nodeAddStaticNode(NULL, ntree, SH_NODE_MIX_RGB);
mix_rgb_alpha->custom1 = MA_RAMP_BLEND; // Mix
mix_rgb_alpha->locx = 600.0f;
mix_rgb_alpha->locy = 300.0f;
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_alpha->inputs, 0); // Fac
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
RNA_float_set(&toptr, "default_value", 0.0f);
bNode *shader_emission = nodeAddStaticNode(NULL, ntree, SH_NODE_EMISSION);
shader_emission->locx = 400.0f;
shader_emission->locy = -200.0f;
bNode *input_light_path = nodeAddStaticNode(NULL, ntree, SH_NODE_LIGHT_PATH);
input_light_path->locx = 400.0f;
input_light_path->locy = 100.0f;
bNode *mix_shader_color = nodeAddStaticNode(NULL, ntree, SH_NODE_MIX_SHADER);
mix_shader_color->locx = 600.0f;
mix_shader_color->locy = -100.0f;
bNode *shader_transparent = nodeAddStaticNode(NULL, ntree, SH_NODE_BSDF_TRANSPARENT);
shader_transparent->locx = 600.0f;
shader_transparent->locy = 100.0f;
bNode *mix_shader_alpha = nodeAddStaticNode(NULL, ntree, SH_NODE_MIX_SHADER);
mix_shader_alpha->locx = 800.0f;
mix_shader_alpha->locy = 100.0f;
bNode *output_material = nodeAddStaticNode(NULL, ntree, SH_NODE_OUTPUT_MATERIAL);
output_material->locx = 1000.0f;
output_material->locy = 100.0f;
fromsock = (bNodeSocket *)BLI_findlink(&input_attr_color->outputs, 0); // Color
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_color->inputs, 1); // Color1
nodeAddLink(ntree, input_attr_color, fromsock, mix_rgb_color, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&mix_rgb_color->outputs, 0); // Color
tosock = (bNodeSocket *)BLI_findlink(&shader_emission->inputs, 0); // Color
nodeAddLink(ntree, mix_rgb_color, fromsock, shader_emission, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&shader_emission->outputs, 0); // Emission
tosock = (bNodeSocket *)BLI_findlink(&mix_shader_color->inputs, 2); // Shader (second)
nodeAddLink(ntree, shader_emission, fromsock, mix_shader_color, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&input_light_path->outputs, 0); // In Camera Ray
tosock = (bNodeSocket *)BLI_findlink(&mix_shader_color->inputs, 0); // Fac
nodeAddLink(ntree, input_light_path, fromsock, mix_shader_color, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&mix_rgb_alpha->outputs, 0); // Color
tosock = (bNodeSocket *)BLI_findlink(&mix_shader_alpha->inputs, 0); // Fac
nodeAddLink(ntree, mix_rgb_alpha, fromsock, mix_shader_alpha, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&input_attr_alpha->outputs, 0); // Color
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_alpha->inputs, 1); // Color1
nodeAddLink(ntree, input_attr_alpha, fromsock, mix_rgb_alpha, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&shader_transparent->outputs, 0); // BSDF
tosock = (bNodeSocket *)BLI_findlink(&mix_shader_alpha->inputs, 1); // Shader (first)
nodeAddLink(ntree, shader_transparent, fromsock, mix_shader_alpha, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&mix_shader_color->outputs, 0); // Shader
tosock = (bNodeSocket *)BLI_findlink(&mix_shader_alpha->inputs, 2); // Shader (second)
nodeAddLink(ntree, mix_shader_color, fromsock, mix_shader_alpha, tosock);
fromsock = (bNodeSocket *)BLI_findlink(&mix_shader_alpha->outputs, 0); // Shader
tosock = (bNodeSocket *)BLI_findlink(&output_material->inputs, 0); // Surface
nodeAddLink(ntree, mix_shader_alpha, fromsock, output_material, tosock);
if (output_linestyle) {
bNodeSocket *outsock;
bNodeLink *link;
mix_rgb_color->custom1 = output_linestyle->custom1; // blend_type
mix_rgb_color->custom2 = output_linestyle->custom2; // use_clamp
outsock = (bNodeSocket *)BLI_findlink(&output_linestyle->inputs, 0); // Color
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_color->inputs, 2); // Color2
link = (bNodeLink *)BLI_findptr(&ntree->links, outsock, offsetof(bNodeLink, tosock));
if (link) {
nodeAddLink(ntree, link->fromnode, link->fromsock, mix_rgb_color, tosock);
}
else {
float color[4];
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, outsock, &fromptr);
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
RNA_float_get_array(&fromptr, "default_value", color);
RNA_float_set_array(&toptr, "default_value", color);
}
outsock = (bNodeSocket *)BLI_findlink(&output_linestyle->inputs, 1); // Color Fac
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_color->inputs, 0); // Fac
link = (bNodeLink *)BLI_findptr(&ntree->links, outsock, offsetof(bNodeLink, tosock));
if (link) {
nodeAddLink(ntree, link->fromnode, link->fromsock, mix_rgb_color, tosock);
}
else {
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, outsock, &fromptr);
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
RNA_float_set(&toptr, "default_value", RNA_float_get(&fromptr, "default_value"));
}
outsock = (bNodeSocket *)BLI_findlink(&output_linestyle->inputs, 2); // Alpha
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_alpha->inputs, 2); // Color2
link = (bNodeLink *)BLI_findptr(&ntree->links, outsock, offsetof(bNodeLink, tosock));
if (link) {
nodeAddLink(ntree, link->fromnode, link->fromsock, mix_rgb_alpha, tosock);
}
else {
float color[4];
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, outsock, &fromptr);
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
color[0] = color[1] = color[2] = RNA_float_get(&fromptr, "default_value");
color[3] = 1.0f;
RNA_float_set_array(&toptr, "default_value", color);
}
outsock = (bNodeSocket *)BLI_findlink(&output_linestyle->inputs, 3); // Alpha Fac
tosock = (bNodeSocket *)BLI_findlink(&mix_rgb_alpha->inputs, 0); // Fac
link = (bNodeLink *)BLI_findptr(&ntree->links, outsock, offsetof(bNodeLink, tosock));
if (link) {
nodeAddLink(ntree, link->fromnode, link->fromsock, mix_rgb_alpha, tosock);
}
else {
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, outsock, &fromptr);
RNA_pointer_create((ID *)ntree, &RNA_NodeSocket, tosock, &toptr);
RNA_float_set(&toptr, "default_value", RNA_float_get(&fromptr, "default_value"));
}
for (bNode *node = (bNode *)ntree->nodes.first; node; node = node->next) {
if (node->type == SH_NODE_UVALONGSTROKE) {
// UV output of the UV Along Stroke node
bNodeSocket *sock = (bNodeSocket *)BLI_findlink(&node->outputs, 0);
// add new UV Map node
bNode *input_uvmap = nodeAddStaticNode(NULL, ntree, SH_NODE_UVMAP);
input_uvmap->locx = node->locx - 200.0f;
input_uvmap->locy = node->locy;
NodeShaderUVMap *storage = (NodeShaderUVMap *)input_uvmap->storage;
if (node->custom1 & 1) { // use_tips
BLI_strncpy(storage->uv_map, uvNames[1], sizeof(storage->uv_map));
}
else {
BLI_strncpy(storage->uv_map, uvNames[0], sizeof(storage->uv_map));
}
fromsock = (bNodeSocket *)BLI_findlink(&input_uvmap->outputs, 0); // UV
// replace links from the UV Along Stroke node by links from the UV Map node
for (bNodeLink *link = (bNodeLink *)ntree->links.first; link; link = link->next) {
if (link->fromnode == node && link->fromsock == sock) {
nodeAddLink(ntree, input_uvmap, fromsock, link->tonode, link->tosock);
}
}
nodeRemSocketLinks(ntree, sock);
}
}
}
nodeSetActive(ntree, output_material);
ntreeUpdateTree(bmain, ntree);
return ma;
}
void BlenderStrokeRenderer::RenderStrokeRep(StrokeRep *iStrokeRep) const
{
RenderStrokeRepBasic(iStrokeRep);
}
void BlenderStrokeRenderer::RenderStrokeRepBasic(StrokeRep *iStrokeRep) const
{
if (_use_shading_nodes) {
bNodeTree *nt = iStrokeRep->getNodeTree();
Material *ma = (Material *)BLI_ghash_lookup(_nodetree_hash, nt);
if (!ma) {
ma = BlenderStrokeRenderer::GetStrokeShader(freestyle_bmain, nt, false);
BLI_ghash_insert(_nodetree_hash, nt, ma);
}
iStrokeRep->setMaterial(ma);
}
else {
bool has_mat = false;
int a = 0;
// Look for a good existing material
for (Link *lnk = (Link *)freestyle_bmain->mat.first; lnk; lnk = lnk->next) {
Material *ma = (Material*)lnk;
bool texs_are_good = true;
// as soon as textures differ it's not the right one
for (int a = 0; a < MAX_MTEX; a++) {
if (ma->mtex[a] != iStrokeRep->getMTex(a)) {
texs_are_good = false;
break;
}
}
if (texs_are_good) {
iStrokeRep->setMaterial(ma);
has_mat = true;
break; // if textures are good, no need to search anymore
}
}
// If still no material, create one
if (!has_mat) {
Material *ma = BKE_material_add(freestyle_bmain, "stroke_material");
DEG_relations_tag_update(freestyle_bmain);
ma->mode |= MA_VERTEXCOLP;
ma->mode |= MA_TRANSP;
ma->mode |= MA_SHLESS;
ma->vcol_alpha = 1;
id_us_min(&ma->id);
// Textures
while (iStrokeRep->getMTex(a)) {
ma->mtex[a] = (MTex *)iStrokeRep->getMTex(a);
// We'll generate both with tips and without tips
// coordinates, on two different UV layers.
if (ma->mtex[a]->texflag & MTEX_TIPS) {
BLI_strncpy(ma->mtex[a]->uvname, uvNames[1], sizeof(ma->mtex[a]->uvname));
}
else {
BLI_strncpy(ma->mtex[a]->uvname, uvNames[0], sizeof(ma->mtex[a]->uvname));
}
a++;
}
iStrokeRep->setMaterial(ma);
}
}
const vector<Strip*>& strips = iStrokeRep->getStrips();
const bool hasTex = iStrokeRep->hasTex();
int totvert = 0, totedge = 0, totpoly = 0, totloop = 0;
int visible_faces, visible_segments;
for (vector<Strip*>::const_iterator s = strips.begin(), send = strips.end(); s != send; ++s) {
Strip::vertex_container& strip_vertices = (*s)->vertices();
// count visible faces and strip segments
test_strip_visibility(strip_vertices, &visible_faces, &visible_segments);
if (visible_faces == 0)
continue;
totvert += visible_faces + visible_segments * 2;
totedge += visible_faces * 2 + visible_segments;
totpoly += visible_faces;
totloop += visible_faces * 3;
}
BlenderStrokeRenderer *self = const_cast<BlenderStrokeRenderer *>(this); // FIXME
vector<StrokeGroup*> *groups = hasTex ? &self->texturedStrokeGroups : &self->strokeGroups;
StrokeGroup *group;
if (groups->empty() || !(groups->back()->totvert + totvert < MESH_MAX_VERTS &&
groups->back()->totcol + 1 < MAXMAT))
{
group = new StrokeGroup;
groups->push_back(group);
}
else {
group = groups->back();
}
group->strokes.push_back(iStrokeRep);
group->totvert += totvert;
group->totedge += totedge;
group->totpoly += totpoly;
group->totloop += totloop;
group->totcol++;
}
// Check if the triangle is visible (i.e., within the render image boundary)
bool BlenderStrokeRenderer::test_triangle_visibility(StrokeVertexRep *svRep[3]) const
{
int xl, xu, yl, yu;
Vec2r p;
xl = xu = yl = yu = 0;
for (int i = 0; i < 3; i++) {
p = svRep[i]->point2d();
if (p[0] < 0.0)
xl++;
else if (p[0] > _width)
xu++;
if (p[1] < 0.0)
yl++;
else if (p[1] > _height)
yu++;
}
return !(xl == 3 || xu == 3 || yl == 3 || yu == 3);
}
// Check the visibility of faces and strip segments.
void BlenderStrokeRenderer::test_strip_visibility(Strip::vertex_container& strip_vertices,
int *visible_faces, int *visible_segments) const
{
const int strip_vertex_count = strip_vertices.size();
Strip::vertex_container::iterator v[3];
StrokeVertexRep *svRep[3];
bool visible;
// iterate over all vertices and count visible faces and strip segments
// (note: a strip segment is a series of visible faces, while two strip
// segments are separated by one or more invisible faces)
v[0] = strip_vertices.begin();
v[1] = v[0] + 1;
v[2] = v[0] + 2;
*visible_faces = *visible_segments = 0;
visible = false;
for (int n = 2; n < strip_vertex_count; n++, v[0]++, v[1]++, v[2]++) {
svRep[0] = *(v[0]);
svRep[1] = *(v[1]);
svRep[2] = *(v[2]);
if (test_triangle_visibility(svRep)) {
(*visible_faces)++;
if (!visible)
(*visible_segments)++;
visible = true;
}
else {
visible = false;
}
}
}
// Release allocated memory for stroke groups
void BlenderStrokeRenderer::FreeStrokeGroups()
{
vector<StrokeGroup*>::const_iterator it, itend;
for (it = strokeGroups.begin(), itend = strokeGroups.end();
it != itend; ++it)
{
delete (*it);
}
for (it = texturedStrokeGroups.begin(), itend = texturedStrokeGroups.end();
it != itend; ++it)
{
delete (*it);
}
}
// Build a scene populated by mesh objects representing stylized strokes
int BlenderStrokeRenderer::GenerateScene()
{
vector<StrokeGroup*>::const_iterator it, itend;
for (it = strokeGroups.begin(), itend = strokeGroups.end();
it != itend; ++it)
{
GenerateStrokeMesh(*it, false);
}
for (it = texturedStrokeGroups.begin(), itend = texturedStrokeGroups.end();
it != itend; ++it)
{
GenerateStrokeMesh(*it, true);
}
return get_stroke_count();
}
// Return the number of strokes
int BlenderStrokeRenderer::get_stroke_count() const
{
return strokeGroups.size() + texturedStrokeGroups.size();
}
// Build a mesh object representing a group of stylized strokes
void BlenderStrokeRenderer::GenerateStrokeMesh(StrokeGroup *group, bool hasTex)
{
#if 0
Object *object_mesh = BKE_object_add(freestyle_bmain, freestyle_scene, (ViewLayer *)freestyle_scene->view_layers.first, OB_MESH);
DEG_relations_tag_update(freestyle_bmain);
#else
Object *object_mesh = NewMesh();
#endif
Mesh *mesh = (Mesh *)object_mesh->data;
mesh->totvert = group->totvert;
mesh->totedge = group->totedge;
mesh->totpoly = group->totpoly;
mesh->totloop = group->totloop;
mesh->totcol = group->totcol;
mesh->mvert = (MVert *)CustomData_add_layer(&mesh->vdata, CD_MVERT, CD_CALLOC, NULL, mesh->totvert);
mesh->medge = (MEdge *)CustomData_add_layer(&mesh->edata, CD_MEDGE, CD_CALLOC, NULL, mesh->totedge);
mesh->mpoly = (MPoly *)CustomData_add_layer(&mesh->pdata, CD_MPOLY, CD_CALLOC, NULL, mesh->totpoly);
mesh->mloop = (MLoop *)CustomData_add_layer(&mesh->ldata, CD_MLOOP, CD_CALLOC, NULL, mesh->totloop);
MVert *vertices = mesh->mvert;
MEdge *edges = mesh->medge;
MPoly *polys = mesh->mpoly;
MLoop *loops = mesh->mloop;
MLoopUV *loopsuv[2] = { NULL };
if (hasTex) {
// First UV layer
CustomData_add_layer_named(&mesh->ldata, CD_MLOOPUV, CD_CALLOC, NULL, mesh->totloop, uvNames[0]);
CustomData_set_layer_active(&mesh->ldata, CD_MLOOPUV, 0);
BKE_mesh_update_customdata_pointers(mesh, true);
loopsuv[0] = mesh->mloopuv;
// Second UV layer
CustomData_add_layer_named(&mesh->ldata, CD_MLOOPUV, CD_CALLOC, NULL, mesh->totloop, uvNames[1]);
CustomData_set_layer_active(&mesh->ldata, CD_MLOOPUV, 1);
BKE_mesh_update_customdata_pointers(mesh, true);
loopsuv[1] = mesh->mloopuv;
}
// colors and transparency (the latter represented by grayscale colors)
MLoopCol *colors = (MLoopCol *)CustomData_add_layer_named(&mesh->ldata, CD_MLOOPCOL, CD_CALLOC, NULL, mesh->totloop, "Color");
MLoopCol *transp = (MLoopCol *)CustomData_add_layer_named(&mesh->ldata, CD_MLOOPCOL, CD_CALLOC, NULL, mesh->totloop, "Alpha");
mesh->mloopcol = colors;
mesh->mat = (Material **)MEM_mallocN(sizeof(Material *) * mesh->totcol, "MaterialList");
////////////////////
// Data copy
////////////////////
int vertex_index = 0, edge_index = 0, loop_index = 0, material_index = 0;
int visible_faces, visible_segments;
bool visible;
Strip::vertex_container::iterator v[3];
StrokeVertexRep *svRep[3];
Vec2r p;
for (vector<StrokeRep*>::const_iterator it = group->strokes.begin(), itend = group->strokes.end();
it != itend; ++it)
{
mesh->mat[material_index] = (*it)->getMaterial();
id_us_plus(&mesh->mat[material_index]->id);
vector<Strip*>& strips = (*it)->getStrips();
for (vector<Strip*>::const_iterator s = strips.begin(), send = strips.end(); s != send; ++s) {
Strip::vertex_container& strip_vertices = (*s)->vertices();
int strip_vertex_count = strip_vertices.size();
// count visible faces and strip segments
test_strip_visibility(strip_vertices, &visible_faces, &visible_segments);
if (visible_faces == 0)
continue;
v[0] = strip_vertices.begin();
v[1] = v[0] + 1;
v[2] = v[0] + 2;
visible = false;
// Note: Mesh generation in the following loop assumes stroke strips
// to be triangle strips.
for (int n = 2; n < strip_vertex_count; n++, v[0]++, v[1]++, v[2]++) {
svRep[0] = *(v[0]);
svRep[1] = *(v[1]);
svRep[2] = *(v[2]);
if (!test_triangle_visibility(svRep)) {
visible = false;
}
else {
if (!visible) {
// first vertex
vertices->co[0] = svRep[0]->point2d()[0];
vertices->co[1] = svRep[0]->point2d()[1];
vertices->co[2] = get_stroke_vertex_z();
vertices->no[0] = 0;
vertices->no[1] = 0;
vertices->no[2] = SHRT_MAX;
++vertices;
++vertex_index;
// second vertex
vertices->co[0] = svRep[1]->point2d()[0];
vertices->co[1] = svRep[1]->point2d()[1];
vertices->co[2] = get_stroke_vertex_z();
vertices->no[0] = 0;
vertices->no[1] = 0;
vertices->no[2] = SHRT_MAX;
++vertices;
++vertex_index;
// first edge
edges->v1 = vertex_index - 2;
edges->v2 = vertex_index - 1;
++edges;
++edge_index;
}
visible = true;
// vertex
vertices->co[0] = svRep[2]->point2d()[0];
vertices->co[1] = svRep[2]->point2d()[1];
vertices->co[2] = get_stroke_vertex_z();
vertices->no[0] = 0;
vertices->no[1] = 0;
vertices->no[2] = SHRT_MAX;
++vertices;
++vertex_index;
// edges
edges->v1 = vertex_index - 1;
edges->v2 = vertex_index - 3;
++edges;
++edge_index;
edges->v1 = vertex_index - 1;
edges->v2 = vertex_index - 2;
++edges;
++edge_index;
// poly
polys->loopstart = loop_index;
polys->totloop = 3;
polys->mat_nr = material_index;
++polys;
// Even and odd loops connect triangles vertices differently
bool is_odd = n % 2;
// loops
if (is_odd) {
loops[0].v = vertex_index - 1;
loops[0].e = edge_index - 2;
loops[1].v = vertex_index - 3;
loops[1].e = edge_index - 3;
loops[2].v = vertex_index - 2;
loops[2].e = edge_index - 1;
}
else {
loops[0].v = vertex_index - 1;
loops[0].e = edge_index - 1;
loops[1].v = vertex_index - 2;
loops[1].e = edge_index - 3;
loops[2].v = vertex_index - 3;
loops[2].e = edge_index - 2;
}
loops += 3;
loop_index += 3;
// UV
if (hasTex) {
// First UV layer (loopsuv[0]) has no tips (texCoord(0)).
// Second UV layer (loopsuv[1]) has tips: (texCoord(1)).
for (int L = 0; L < 2; L++) {
if (is_odd) {
loopsuv[L][0].uv[0] = svRep[2]->texCoord(L).x();
loopsuv[L][0].uv[1] = svRep[2]->texCoord(L).y();
loopsuv[L][1].uv[0] = svRep[0]->texCoord(L).x();
loopsuv[L][1].uv[1] = svRep[0]->texCoord(L).y();
loopsuv[L][2].uv[0] = svRep[1]->texCoord(L).x();
loopsuv[L][2].uv[1] = svRep[1]->texCoord(L).y();
}
else {
loopsuv[L][0].uv[0] = svRep[2]->texCoord(L).x();
loopsuv[L][0].uv[1] = svRep[2]->texCoord(L).y();
loopsuv[L][1].uv[0] = svRep[1]->texCoord(L).x();
loopsuv[L][1].uv[1] = svRep[1]->texCoord(L).y();
loopsuv[L][2].uv[0] = svRep[0]->texCoord(L).x();
loopsuv[L][2].uv[1] = svRep[0]->texCoord(L).y();
}
loopsuv[L] += 3;
}
}
// colors and alpha transparency. vertex colors are in sRGB
// space by convention, so convert from linear
float rgba[3][4];
for (int i = 0; i < 3; i++) {
copy_v3fl_v3db(rgba[i], &svRep[i]->color()[0]);
rgba[i][3] = svRep[i]->alpha();
}
if (is_odd) {
linearrgb_to_srgb_uchar4(&colors[0].r, rgba[2]);
linearrgb_to_srgb_uchar4(&colors[1].r, rgba[0]);
linearrgb_to_srgb_uchar4(&colors[2].r, rgba[1]);
}
else {
linearrgb_to_srgb_uchar4(&colors[0].r, rgba[2]);
linearrgb_to_srgb_uchar4(&colors[1].r, rgba[1]);
linearrgb_to_srgb_uchar4(&colors[2].r, rgba[0]);
}
transp[0].r = transp[0].g = transp[0].b = colors[0].a;
transp[1].r = transp[1].g = transp[1].b = colors[1].a;
transp[2].r = transp[2].g = transp[2].b = colors[2].a;
colors += 3;
transp += 3;
}
} // loop over strip vertices
} // loop over strips
material_index++;
} // loop over strokes
test_object_materials(object_mesh, (ID *)mesh);
#if 0 // XXX
BLI_assert(mesh->totvert == vertex_index);
BLI_assert(mesh->totedge == edge_index);
BLI_assert(mesh->totloop == loop_index);
BLI_assert(mesh->totcol == material_index);
BKE_mesh_validate(mesh, true, true);
#endif
}
// A replacement of BKE_object_add() for better performance.
Object *BlenderStrokeRenderer::NewMesh() const
{
Object *ob;
char name[MAX_ID_NAME];
unsigned int mesh_id = get_stroke_mesh_id();
BLI_snprintf(name, MAX_ID_NAME, "0%08xOB", mesh_id);
ob = BKE_object_add_only_object(freestyle_bmain, OB_MESH, name);
BLI_snprintf(name, MAX_ID_NAME, "0%08xME", mesh_id);
ob->data = BKE_mesh_add(freestyle_bmain, name);
ob->lay = 1;
SceneCollection *sc_master = BKE_collection_master(&freestyle_scene->id);
BKE_collection_object_add(&freestyle_scene->id, sc_master, ob);
DEG_graph_tag_relations_update(freestyle_depsgraph);
DEG_graph_id_tag_update(freestyle_bmain,
freestyle_depsgraph,
&ob->id,
OB_RECALC_OB | OB_RECALC_DATA | OB_RECALC_TIME);
return ob;
}
Render *BlenderStrokeRenderer::RenderScene(Render * /*re*/, bool render)
{
Camera *camera = (Camera *)freestyle_scene->camera->data;
if (camera->clipend < _z)
camera->clipend = _z + _z_delta * 100.0f;
#if 0
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "clipsta " << camera->clipsta << ", clipend " << camera->clipend << endl;
}
#endif
Render *freestyle_render = RE_NewSceneRender(freestyle_scene);
ViewLayer *view_layer = (ViewLayer *)freestyle_scene->view_layers.first;
DEG_graph_relations_update(freestyle_depsgraph, freestyle_bmain, freestyle_scene, view_layer);
RE_RenderFreestyleStrokes(freestyle_render, freestyle_bmain, freestyle_scene,
render && get_stroke_count() > 0);
return freestyle_render;
}
} /* namespace Freestyle */