The issue is caused by stale data on the Mesh Node which is not cleared during synchronizing since the socket API refactor so that we can detect changes. However, synchronization only updates the sockets of the Mesh, so other properties were left with outdated values. This caused an underflow when computing attribute size for undisplaced coordinates as it was using the current number of vertices minus the previous count of subdivision vertices, which at this point should be 0. Added a simple method to clear non socket data. Also modified Mesh.add_undisplaced to always use an ATTR_PRIM_GEOMETRY as the data is not subdivided yet and it avoids any further issues regarding computing attribute sizes.
1208 lines
41 KiB
C++
1208 lines
41 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "render/camera.h"
|
|
#include "render/colorspace.h"
|
|
#include "render/mesh.h"
|
|
#include "render/object.h"
|
|
#include "render/scene.h"
|
|
|
|
#include "blender/blender_session.h"
|
|
#include "blender/blender_sync.h"
|
|
#include "blender/blender_util.h"
|
|
|
|
#include "subd/subd_patch.h"
|
|
#include "subd/subd_split.h"
|
|
|
|
#include "util/util_algorithm.h"
|
|
#include "util/util_disjoint_set.h"
|
|
#include "util/util_foreach.h"
|
|
#include "util/util_hash.h"
|
|
#include "util/util_logging.h"
|
|
#include "util/util_math.h"
|
|
|
|
#include "mikktspace.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Tangent Space */
|
|
|
|
struct MikkUserData {
|
|
MikkUserData(const BL::Mesh &b_mesh,
|
|
const char *layer_name,
|
|
const Mesh *mesh,
|
|
float3 *tangent,
|
|
float *tangent_sign)
|
|
: mesh(mesh), texface(NULL), orco(NULL), tangent(tangent), tangent_sign(tangent_sign)
|
|
{
|
|
const AttributeSet &attributes = (mesh->get_num_subd_faces()) ? mesh->subd_attributes :
|
|
mesh->attributes;
|
|
|
|
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
|
|
vertex_normal = attr_vN->data_float3();
|
|
|
|
if (layer_name == NULL) {
|
|
Attribute *attr_orco = attributes.find(ATTR_STD_GENERATED);
|
|
|
|
if (attr_orco) {
|
|
orco = attr_orco->data_float3();
|
|
mesh_texture_space(*(BL::Mesh *)&b_mesh, orco_loc, orco_size);
|
|
}
|
|
}
|
|
else {
|
|
Attribute *attr_uv = attributes.find(ustring(layer_name));
|
|
if (attr_uv != NULL) {
|
|
texface = attr_uv->data_float2();
|
|
}
|
|
}
|
|
}
|
|
|
|
const Mesh *mesh;
|
|
int num_faces;
|
|
|
|
float3 *vertex_normal;
|
|
float2 *texface;
|
|
float3 *orco;
|
|
float3 orco_loc, orco_size;
|
|
|
|
float3 *tangent;
|
|
float *tangent_sign;
|
|
};
|
|
|
|
static int mikk_get_num_faces(const SMikkTSpaceContext *context)
|
|
{
|
|
const MikkUserData *userdata = (const MikkUserData *)context->m_pUserData;
|
|
if (userdata->mesh->get_num_subd_faces()) {
|
|
return userdata->mesh->get_num_subd_faces();
|
|
}
|
|
else {
|
|
return userdata->mesh->num_triangles();
|
|
}
|
|
}
|
|
|
|
static int mikk_get_num_verts_of_face(const SMikkTSpaceContext *context, const int face_num)
|
|
{
|
|
const MikkUserData *userdata = (const MikkUserData *)context->m_pUserData;
|
|
if (userdata->mesh->get_num_subd_faces()) {
|
|
const Mesh *mesh = userdata->mesh;
|
|
return mesh->get_subd_num_corners()[face_num];
|
|
}
|
|
else {
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
static int mikk_vertex_index(const Mesh *mesh, const int face_num, const int vert_num)
|
|
{
|
|
if (mesh->get_num_subd_faces()) {
|
|
const Mesh::SubdFace &face = mesh->get_subd_face(face_num);
|
|
return mesh->get_subd_face_corners()[face.start_corner + vert_num];
|
|
}
|
|
else {
|
|
return mesh->get_triangles()[face_num * 3 + vert_num];
|
|
}
|
|
}
|
|
|
|
static int mikk_corner_index(const Mesh *mesh, const int face_num, const int vert_num)
|
|
{
|
|
if (mesh->get_num_subd_faces()) {
|
|
const Mesh::SubdFace &face = mesh->get_subd_face(face_num);
|
|
return face.start_corner + vert_num;
|
|
}
|
|
else {
|
|
return face_num * 3 + vert_num;
|
|
}
|
|
}
|
|
|
|
static void mikk_get_position(const SMikkTSpaceContext *context,
|
|
float P[3],
|
|
const int face_num,
|
|
const int vert_num)
|
|
{
|
|
const MikkUserData *userdata = (const MikkUserData *)context->m_pUserData;
|
|
const Mesh *mesh = userdata->mesh;
|
|
const int vertex_index = mikk_vertex_index(mesh, face_num, vert_num);
|
|
const float3 vP = mesh->get_verts()[vertex_index];
|
|
P[0] = vP.x;
|
|
P[1] = vP.y;
|
|
P[2] = vP.z;
|
|
}
|
|
|
|
static void mikk_get_texture_coordinate(const SMikkTSpaceContext *context,
|
|
float uv[2],
|
|
const int face_num,
|
|
const int vert_num)
|
|
{
|
|
const MikkUserData *userdata = (const MikkUserData *)context->m_pUserData;
|
|
const Mesh *mesh = userdata->mesh;
|
|
if (userdata->texface != NULL) {
|
|
const int corner_index = mikk_corner_index(mesh, face_num, vert_num);
|
|
float2 tfuv = userdata->texface[corner_index];
|
|
uv[0] = tfuv.x;
|
|
uv[1] = tfuv.y;
|
|
}
|
|
else if (userdata->orco != NULL) {
|
|
const int vertex_index = mikk_vertex_index(mesh, face_num, vert_num);
|
|
const float3 orco_loc = userdata->orco_loc;
|
|
const float3 orco_size = userdata->orco_size;
|
|
const float3 orco = (userdata->orco[vertex_index] + orco_loc) / orco_size;
|
|
|
|
const float2 tmp = map_to_sphere(orco);
|
|
uv[0] = tmp.x;
|
|
uv[1] = tmp.y;
|
|
}
|
|
else {
|
|
uv[0] = 0.0f;
|
|
uv[1] = 0.0f;
|
|
}
|
|
}
|
|
|
|
static void mikk_get_normal(const SMikkTSpaceContext *context,
|
|
float N[3],
|
|
const int face_num,
|
|
const int vert_num)
|
|
{
|
|
const MikkUserData *userdata = (const MikkUserData *)context->m_pUserData;
|
|
const Mesh *mesh = userdata->mesh;
|
|
float3 vN;
|
|
if (mesh->get_num_subd_faces()) {
|
|
const Mesh::SubdFace &face = mesh->get_subd_face(face_num);
|
|
if (face.smooth) {
|
|
const int vertex_index = mikk_vertex_index(mesh, face_num, vert_num);
|
|
vN = userdata->vertex_normal[vertex_index];
|
|
}
|
|
else {
|
|
vN = face.normal(mesh);
|
|
}
|
|
}
|
|
else {
|
|
if (mesh->get_smooth()[face_num]) {
|
|
const int vertex_index = mikk_vertex_index(mesh, face_num, vert_num);
|
|
vN = userdata->vertex_normal[vertex_index];
|
|
}
|
|
else {
|
|
const Mesh::Triangle tri = mesh->get_triangle(face_num);
|
|
vN = tri.compute_normal(&mesh->get_verts()[0]);
|
|
}
|
|
}
|
|
N[0] = vN.x;
|
|
N[1] = vN.y;
|
|
N[2] = vN.z;
|
|
}
|
|
|
|
static void mikk_set_tangent_space(const SMikkTSpaceContext *context,
|
|
const float T[],
|
|
const float sign,
|
|
const int face_num,
|
|
const int vert_num)
|
|
{
|
|
MikkUserData *userdata = (MikkUserData *)context->m_pUserData;
|
|
const Mesh *mesh = userdata->mesh;
|
|
const int corner_index = mikk_corner_index(mesh, face_num, vert_num);
|
|
userdata->tangent[corner_index] = make_float3(T[0], T[1], T[2]);
|
|
if (userdata->tangent_sign != NULL) {
|
|
userdata->tangent_sign[corner_index] = sign;
|
|
}
|
|
}
|
|
|
|
static void mikk_compute_tangents(
|
|
const BL::Mesh &b_mesh, const char *layer_name, Mesh *mesh, bool need_sign, bool active_render)
|
|
{
|
|
/* Create tangent attributes. */
|
|
AttributeSet &attributes = (mesh->get_num_subd_faces()) ? mesh->subd_attributes :
|
|
mesh->attributes;
|
|
Attribute *attr;
|
|
ustring name;
|
|
if (layer_name != NULL) {
|
|
name = ustring((string(layer_name) + ".tangent").c_str());
|
|
}
|
|
else {
|
|
name = ustring("orco.tangent");
|
|
}
|
|
if (active_render) {
|
|
attr = attributes.add(ATTR_STD_UV_TANGENT, name);
|
|
}
|
|
else {
|
|
attr = attributes.add(name, TypeDesc::TypeVector, ATTR_ELEMENT_CORNER);
|
|
}
|
|
float3 *tangent = attr->data_float3();
|
|
/* Create bitangent sign attribute. */
|
|
float *tangent_sign = NULL;
|
|
if (need_sign) {
|
|
Attribute *attr_sign;
|
|
ustring name_sign;
|
|
if (layer_name != NULL) {
|
|
name_sign = ustring((string(layer_name) + ".tangent_sign").c_str());
|
|
}
|
|
else {
|
|
name_sign = ustring("orco.tangent_sign");
|
|
}
|
|
|
|
if (active_render) {
|
|
attr_sign = attributes.add(ATTR_STD_UV_TANGENT_SIGN, name_sign);
|
|
}
|
|
else {
|
|
attr_sign = attributes.add(name_sign, TypeDesc::TypeFloat, ATTR_ELEMENT_CORNER);
|
|
}
|
|
tangent_sign = attr_sign->data_float();
|
|
}
|
|
/* Setup userdata. */
|
|
MikkUserData userdata(b_mesh, layer_name, mesh, tangent, tangent_sign);
|
|
/* Setup interface. */
|
|
SMikkTSpaceInterface sm_interface;
|
|
memset(&sm_interface, 0, sizeof(sm_interface));
|
|
sm_interface.m_getNumFaces = mikk_get_num_faces;
|
|
sm_interface.m_getNumVerticesOfFace = mikk_get_num_verts_of_face;
|
|
sm_interface.m_getPosition = mikk_get_position;
|
|
sm_interface.m_getTexCoord = mikk_get_texture_coordinate;
|
|
sm_interface.m_getNormal = mikk_get_normal;
|
|
sm_interface.m_setTSpaceBasic = mikk_set_tangent_space;
|
|
/* Setup context. */
|
|
SMikkTSpaceContext context;
|
|
memset(&context, 0, sizeof(context));
|
|
context.m_pUserData = &userdata;
|
|
context.m_pInterface = &sm_interface;
|
|
/* Compute tangents. */
|
|
genTangSpaceDefault(&context);
|
|
}
|
|
|
|
/* Create sculpt vertex color attributes. */
|
|
static void attr_create_sculpt_vertex_color(Scene *scene,
|
|
Mesh *mesh,
|
|
BL::Mesh &b_mesh,
|
|
bool subdivision)
|
|
{
|
|
BL::Mesh::sculpt_vertex_colors_iterator l;
|
|
|
|
for (b_mesh.sculpt_vertex_colors.begin(l); l != b_mesh.sculpt_vertex_colors.end(); ++l) {
|
|
const bool active_render = l->active_render();
|
|
AttributeStandard vcol_std = (active_render) ? ATTR_STD_VERTEX_COLOR : ATTR_STD_NONE;
|
|
ustring vcol_name = ustring(l->name().c_str());
|
|
|
|
const bool need_vcol = mesh->need_attribute(scene, vcol_name) ||
|
|
mesh->need_attribute(scene, vcol_std);
|
|
|
|
if (!need_vcol) {
|
|
continue;
|
|
}
|
|
|
|
AttributeSet &attributes = (subdivision) ? mesh->subd_attributes : mesh->attributes;
|
|
Attribute *vcol_attr = attributes.add(vcol_name, TypeRGBA, ATTR_ELEMENT_VERTEX);
|
|
vcol_attr->std = vcol_std;
|
|
|
|
float4 *cdata = vcol_attr->data_float4();
|
|
int numverts = b_mesh.vertices.length();
|
|
|
|
for (int i = 0; i < numverts; i++) {
|
|
*(cdata++) = get_float4(l->data[i].color());
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Create vertex color attributes. */
|
|
static void attr_create_vertex_color(Scene *scene, Mesh *mesh, BL::Mesh &b_mesh, bool subdivision)
|
|
{
|
|
BL::Mesh::vertex_colors_iterator l;
|
|
|
|
for (b_mesh.vertex_colors.begin(l); l != b_mesh.vertex_colors.end(); ++l) {
|
|
const bool active_render = l->active_render();
|
|
AttributeStandard vcol_std = (active_render) ? ATTR_STD_VERTEX_COLOR : ATTR_STD_NONE;
|
|
ustring vcol_name = ustring(l->name().c_str());
|
|
|
|
const bool need_vcol = mesh->need_attribute(scene, vcol_name) ||
|
|
mesh->need_attribute(scene, vcol_std);
|
|
|
|
if (!need_vcol) {
|
|
continue;
|
|
}
|
|
|
|
Attribute *vcol_attr = NULL;
|
|
|
|
if (subdivision) {
|
|
if (active_render) {
|
|
vcol_attr = mesh->subd_attributes.add(vcol_std, vcol_name);
|
|
}
|
|
else {
|
|
vcol_attr = mesh->subd_attributes.add(vcol_name, TypeRGBA, ATTR_ELEMENT_CORNER_BYTE);
|
|
}
|
|
|
|
BL::Mesh::polygons_iterator p;
|
|
uchar4 *cdata = vcol_attr->data_uchar4();
|
|
|
|
for (b_mesh.polygons.begin(p); p != b_mesh.polygons.end(); ++p) {
|
|
int n = p->loop_total();
|
|
for (int i = 0; i < n; i++) {
|
|
float4 color = get_float4(l->data[p->loop_start() + i].color());
|
|
/* Compress/encode vertex color using the sRGB curve. */
|
|
*(cdata++) = color_float4_to_uchar4(color);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (active_render) {
|
|
vcol_attr = mesh->attributes.add(vcol_std, vcol_name);
|
|
}
|
|
else {
|
|
vcol_attr = mesh->attributes.add(vcol_name, TypeRGBA, ATTR_ELEMENT_CORNER_BYTE);
|
|
}
|
|
|
|
BL::Mesh::loop_triangles_iterator t;
|
|
uchar4 *cdata = vcol_attr->data_uchar4();
|
|
|
|
for (b_mesh.loop_triangles.begin(t); t != b_mesh.loop_triangles.end(); ++t) {
|
|
int3 li = get_int3(t->loops());
|
|
float4 c1 = get_float4(l->data[li[0]].color());
|
|
float4 c2 = get_float4(l->data[li[1]].color());
|
|
float4 c3 = get_float4(l->data[li[2]].color());
|
|
|
|
/* Compress/encode vertex color using the sRGB curve. */
|
|
cdata[0] = color_float4_to_uchar4(c1);
|
|
cdata[1] = color_float4_to_uchar4(c2);
|
|
cdata[2] = color_float4_to_uchar4(c3);
|
|
|
|
cdata += 3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Create uv map attributes. */
|
|
static void attr_create_uv_map(Scene *scene, Mesh *mesh, BL::Mesh &b_mesh)
|
|
{
|
|
if (b_mesh.uv_layers.length() != 0) {
|
|
BL::Mesh::uv_layers_iterator l;
|
|
|
|
for (b_mesh.uv_layers.begin(l); l != b_mesh.uv_layers.end(); ++l) {
|
|
const bool active_render = l->active_render();
|
|
AttributeStandard uv_std = (active_render) ? ATTR_STD_UV : ATTR_STD_NONE;
|
|
ustring uv_name = ustring(l->name().c_str());
|
|
AttributeStandard tangent_std = (active_render) ? ATTR_STD_UV_TANGENT : ATTR_STD_NONE;
|
|
ustring tangent_name = ustring((string(l->name().c_str()) + ".tangent").c_str());
|
|
|
|
/* Denotes whether UV map was requested directly. */
|
|
const bool need_uv = mesh->need_attribute(scene, uv_name) ||
|
|
mesh->need_attribute(scene, uv_std);
|
|
/* Denotes whether tangent was requested directly. */
|
|
const bool need_tangent = mesh->need_attribute(scene, tangent_name) ||
|
|
(active_render && mesh->need_attribute(scene, tangent_std));
|
|
|
|
/* UV map */
|
|
/* NOTE: We create temporary UV layer if its needed for tangent but
|
|
* wasn't requested by other nodes in shaders.
|
|
*/
|
|
Attribute *uv_attr = NULL;
|
|
if (need_uv || need_tangent) {
|
|
if (active_render) {
|
|
uv_attr = mesh->attributes.add(uv_std, uv_name);
|
|
}
|
|
else {
|
|
uv_attr = mesh->attributes.add(uv_name, TypeFloat2, ATTR_ELEMENT_CORNER);
|
|
}
|
|
|
|
BL::Mesh::loop_triangles_iterator t;
|
|
float2 *fdata = uv_attr->data_float2();
|
|
|
|
for (b_mesh.loop_triangles.begin(t); t != b_mesh.loop_triangles.end(); ++t) {
|
|
int3 li = get_int3(t->loops());
|
|
fdata[0] = get_float2(l->data[li[0]].uv());
|
|
fdata[1] = get_float2(l->data[li[1]].uv());
|
|
fdata[2] = get_float2(l->data[li[2]].uv());
|
|
fdata += 3;
|
|
}
|
|
}
|
|
|
|
/* UV tangent */
|
|
if (need_tangent) {
|
|
AttributeStandard sign_std = (active_render) ? ATTR_STD_UV_TANGENT_SIGN : ATTR_STD_NONE;
|
|
ustring sign_name = ustring((string(l->name().c_str()) + ".tangent_sign").c_str());
|
|
bool need_sign = (mesh->need_attribute(scene, sign_name) ||
|
|
mesh->need_attribute(scene, sign_std));
|
|
mikk_compute_tangents(b_mesh, l->name().c_str(), mesh, need_sign, active_render);
|
|
}
|
|
/* Remove temporarily created UV attribute. */
|
|
if (!need_uv && uv_attr != NULL) {
|
|
mesh->attributes.remove(uv_attr);
|
|
}
|
|
}
|
|
}
|
|
else if (mesh->need_attribute(scene, ATTR_STD_UV_TANGENT)) {
|
|
bool need_sign = mesh->need_attribute(scene, ATTR_STD_UV_TANGENT_SIGN);
|
|
mikk_compute_tangents(b_mesh, NULL, mesh, need_sign, true);
|
|
if (!mesh->need_attribute(scene, ATTR_STD_GENERATED)) {
|
|
mesh->attributes.remove(ATTR_STD_GENERATED);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void attr_create_subd_uv_map(Scene *scene, Mesh *mesh, BL::Mesh &b_mesh, bool subdivide_uvs)
|
|
{
|
|
if (b_mesh.uv_layers.length() != 0) {
|
|
BL::Mesh::uv_layers_iterator l;
|
|
int i = 0;
|
|
|
|
for (b_mesh.uv_layers.begin(l); l != b_mesh.uv_layers.end(); ++l, ++i) {
|
|
bool active_render = l->active_render();
|
|
AttributeStandard uv_std = (active_render) ? ATTR_STD_UV : ATTR_STD_NONE;
|
|
ustring uv_name = ustring(l->name().c_str());
|
|
AttributeStandard tangent_std = (active_render) ? ATTR_STD_UV_TANGENT : ATTR_STD_NONE;
|
|
ustring tangent_name = ustring((string(l->name().c_str()) + ".tangent").c_str());
|
|
|
|
/* Denotes whether UV map was requested directly. */
|
|
const bool need_uv = mesh->need_attribute(scene, uv_name) ||
|
|
mesh->need_attribute(scene, uv_std);
|
|
/* Denotes whether tangent was requested directly. */
|
|
const bool need_tangent = mesh->need_attribute(scene, tangent_name) ||
|
|
(active_render && mesh->need_attribute(scene, tangent_std));
|
|
|
|
Attribute *uv_attr = NULL;
|
|
|
|
/* UV map */
|
|
if (need_uv || need_tangent) {
|
|
if (active_render)
|
|
uv_attr = mesh->subd_attributes.add(uv_std, uv_name);
|
|
else
|
|
uv_attr = mesh->subd_attributes.add(uv_name, TypeFloat2, ATTR_ELEMENT_CORNER);
|
|
|
|
if (subdivide_uvs) {
|
|
uv_attr->flags |= ATTR_SUBDIVIDED;
|
|
}
|
|
|
|
BL::Mesh::polygons_iterator p;
|
|
float2 *fdata = uv_attr->data_float2();
|
|
|
|
for (b_mesh.polygons.begin(p); p != b_mesh.polygons.end(); ++p) {
|
|
int n = p->loop_total();
|
|
for (int j = 0; j < n; j++) {
|
|
*(fdata++) = get_float2(l->data[p->loop_start() + j].uv());
|
|
}
|
|
}
|
|
}
|
|
|
|
/* UV tangent */
|
|
if (need_tangent) {
|
|
AttributeStandard sign_std = (active_render) ? ATTR_STD_UV_TANGENT_SIGN : ATTR_STD_NONE;
|
|
ustring sign_name = ustring((string(l->name().c_str()) + ".tangent_sign").c_str());
|
|
bool need_sign = (mesh->need_attribute(scene, sign_name) ||
|
|
mesh->need_attribute(scene, sign_std));
|
|
mikk_compute_tangents(b_mesh, l->name().c_str(), mesh, need_sign, active_render);
|
|
}
|
|
/* Remove temporarily created UV attribute. */
|
|
if (!need_uv && uv_attr != NULL) {
|
|
mesh->subd_attributes.remove(uv_attr);
|
|
}
|
|
}
|
|
}
|
|
else if (mesh->need_attribute(scene, ATTR_STD_UV_TANGENT)) {
|
|
bool need_sign = mesh->need_attribute(scene, ATTR_STD_UV_TANGENT_SIGN);
|
|
mikk_compute_tangents(b_mesh, NULL, mesh, need_sign, true);
|
|
if (!mesh->need_attribute(scene, ATTR_STD_GENERATED)) {
|
|
mesh->subd_attributes.remove(ATTR_STD_GENERATED);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Create vertex pointiness attributes. */
|
|
|
|
/* Compare vertices by sum of their coordinates. */
|
|
class VertexAverageComparator {
|
|
public:
|
|
VertexAverageComparator(const array<float3> &verts) : verts_(verts)
|
|
{
|
|
}
|
|
|
|
bool operator()(const int &vert_idx_a, const int &vert_idx_b)
|
|
{
|
|
const float3 &vert_a = verts_[vert_idx_a];
|
|
const float3 &vert_b = verts_[vert_idx_b];
|
|
if (vert_a == vert_b) {
|
|
/* Special case for doubles, so we ensure ordering. */
|
|
return vert_idx_a > vert_idx_b;
|
|
}
|
|
const float x1 = vert_a.x + vert_a.y + vert_a.z;
|
|
const float x2 = vert_b.x + vert_b.y + vert_b.z;
|
|
return x1 < x2;
|
|
}
|
|
|
|
protected:
|
|
const array<float3> &verts_;
|
|
};
|
|
|
|
static void attr_create_pointiness(Scene *scene, Mesh *mesh, BL::Mesh &b_mesh, bool subdivision)
|
|
{
|
|
if (!mesh->need_attribute(scene, ATTR_STD_POINTINESS)) {
|
|
return;
|
|
}
|
|
const int num_verts = b_mesh.vertices.length();
|
|
if (num_verts == 0) {
|
|
return;
|
|
}
|
|
/* STEP 1: Find out duplicated vertices and point duplicates to a single
|
|
* original vertex.
|
|
*/
|
|
vector<int> sorted_vert_indeices(num_verts);
|
|
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
|
|
sorted_vert_indeices[vert_index] = vert_index;
|
|
}
|
|
VertexAverageComparator compare(mesh->get_verts());
|
|
sort(sorted_vert_indeices.begin(), sorted_vert_indeices.end(), compare);
|
|
/* This array stores index of the original vertex for the given vertex
|
|
* index.
|
|
*/
|
|
vector<int> vert_orig_index(num_verts);
|
|
for (int sorted_vert_index = 0; sorted_vert_index < num_verts; ++sorted_vert_index) {
|
|
const int vert_index = sorted_vert_indeices[sorted_vert_index];
|
|
const float3 &vert_co = mesh->get_verts()[vert_index];
|
|
bool found = false;
|
|
for (int other_sorted_vert_index = sorted_vert_index + 1; other_sorted_vert_index < num_verts;
|
|
++other_sorted_vert_index) {
|
|
const int other_vert_index = sorted_vert_indeices[other_sorted_vert_index];
|
|
const float3 &other_vert_co = mesh->get_verts()[other_vert_index];
|
|
/* We are too far away now, we wouldn't have duplicate. */
|
|
if ((other_vert_co.x + other_vert_co.y + other_vert_co.z) -
|
|
(vert_co.x + vert_co.y + vert_co.z) >
|
|
3 * FLT_EPSILON) {
|
|
break;
|
|
}
|
|
/* Found duplicate. */
|
|
if (len_squared(other_vert_co - vert_co) < FLT_EPSILON) {
|
|
found = true;
|
|
vert_orig_index[vert_index] = other_vert_index;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
vert_orig_index[vert_index] = vert_index;
|
|
}
|
|
}
|
|
/* Make sure we always points to the very first orig vertex. */
|
|
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
|
|
int orig_index = vert_orig_index[vert_index];
|
|
while (orig_index != vert_orig_index[orig_index]) {
|
|
orig_index = vert_orig_index[orig_index];
|
|
}
|
|
vert_orig_index[vert_index] = orig_index;
|
|
}
|
|
sorted_vert_indeices.free_memory();
|
|
/* STEP 2: Calculate vertex normals taking into account their possible
|
|
* duplicates which gets "welded" together.
|
|
*/
|
|
vector<float3> vert_normal(num_verts, make_float3(0.0f, 0.0f, 0.0f));
|
|
/* First we accumulate all vertex normals in the original index. */
|
|
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
|
|
const float3 normal = get_float3(b_mesh.vertices[vert_index].normal());
|
|
const int orig_index = vert_orig_index[vert_index];
|
|
vert_normal[orig_index] += normal;
|
|
}
|
|
/* Then we normalize the accumulated result and flush it to all duplicates
|
|
* as well.
|
|
*/
|
|
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
|
|
const int orig_index = vert_orig_index[vert_index];
|
|
vert_normal[vert_index] = normalize(vert_normal[orig_index]);
|
|
}
|
|
/* STEP 3: Calculate pointiness using single ring neighborhood. */
|
|
vector<int> counter(num_verts, 0);
|
|
vector<float> raw_data(num_verts, 0.0f);
|
|
vector<float3> edge_accum(num_verts, make_float3(0.0f, 0.0f, 0.0f));
|
|
BL::Mesh::edges_iterator e;
|
|
EdgeMap visited_edges;
|
|
int edge_index = 0;
|
|
memset(&counter[0], 0, sizeof(int) * counter.size());
|
|
for (b_mesh.edges.begin(e); e != b_mesh.edges.end(); ++e, ++edge_index) {
|
|
const int v0 = vert_orig_index[b_mesh.edges[edge_index].vertices()[0]],
|
|
v1 = vert_orig_index[b_mesh.edges[edge_index].vertices()[1]];
|
|
if (visited_edges.exists(v0, v1)) {
|
|
continue;
|
|
}
|
|
visited_edges.insert(v0, v1);
|
|
float3 co0 = get_float3(b_mesh.vertices[v0].co()), co1 = get_float3(b_mesh.vertices[v1].co());
|
|
float3 edge = normalize(co1 - co0);
|
|
edge_accum[v0] += edge;
|
|
edge_accum[v1] += -edge;
|
|
++counter[v0];
|
|
++counter[v1];
|
|
}
|
|
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
|
|
const int orig_index = vert_orig_index[vert_index];
|
|
if (orig_index != vert_index) {
|
|
/* Skip duplicates, they'll be overwritten later on. */
|
|
continue;
|
|
}
|
|
if (counter[vert_index] > 0) {
|
|
const float3 normal = vert_normal[vert_index];
|
|
const float angle = safe_acosf(dot(normal, edge_accum[vert_index] / counter[vert_index]));
|
|
raw_data[vert_index] = angle * M_1_PI_F;
|
|
}
|
|
else {
|
|
raw_data[vert_index] = 0.0f;
|
|
}
|
|
}
|
|
/* STEP 3: Blur vertices to approximate 2 ring neighborhood. */
|
|
AttributeSet &attributes = (subdivision) ? mesh->subd_attributes : mesh->attributes;
|
|
Attribute *attr = attributes.add(ATTR_STD_POINTINESS);
|
|
float *data = attr->data_float();
|
|
memcpy(data, &raw_data[0], sizeof(float) * raw_data.size());
|
|
memset(&counter[0], 0, sizeof(int) * counter.size());
|
|
edge_index = 0;
|
|
visited_edges.clear();
|
|
for (b_mesh.edges.begin(e); e != b_mesh.edges.end(); ++e, ++edge_index) {
|
|
const int v0 = vert_orig_index[b_mesh.edges[edge_index].vertices()[0]],
|
|
v1 = vert_orig_index[b_mesh.edges[edge_index].vertices()[1]];
|
|
if (visited_edges.exists(v0, v1)) {
|
|
continue;
|
|
}
|
|
visited_edges.insert(v0, v1);
|
|
data[v0] += raw_data[v1];
|
|
data[v1] += raw_data[v0];
|
|
++counter[v0];
|
|
++counter[v1];
|
|
}
|
|
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
|
|
data[vert_index] /= counter[vert_index] + 1;
|
|
}
|
|
/* STEP 4: Copy attribute to the duplicated vertices. */
|
|
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
|
|
const int orig_index = vert_orig_index[vert_index];
|
|
data[vert_index] = data[orig_index];
|
|
}
|
|
}
|
|
|
|
/* The Random Per Island attribute is a random float associated with each
|
|
* connected component (island) of the mesh. The attribute is computed by
|
|
* first classifying the vertices into different sets using a Disjoint Set
|
|
* data structure. Then the index of the root of each vertex (Which is the
|
|
* representative of the set the vertex belongs to) is hashed and stored.
|
|
*
|
|
* We are using a face attribute to avoid interpolation during rendering,
|
|
* allowing the user to safely hash the output further. Had we used vertex
|
|
* attribute, the interpolation will introduce very slight variations,
|
|
* making the output unsafe to hash. */
|
|
static void attr_create_random_per_island(Scene *scene,
|
|
Mesh *mesh,
|
|
BL::Mesh &b_mesh,
|
|
bool subdivision)
|
|
{
|
|
if (!mesh->need_attribute(scene, ATTR_STD_RANDOM_PER_ISLAND)) {
|
|
return;
|
|
}
|
|
|
|
int number_of_vertices = b_mesh.vertices.length();
|
|
if (number_of_vertices == 0) {
|
|
return;
|
|
}
|
|
|
|
DisjointSet vertices_sets(number_of_vertices);
|
|
|
|
BL::Mesh::edges_iterator e;
|
|
for (b_mesh.edges.begin(e); e != b_mesh.edges.end(); ++e) {
|
|
vertices_sets.join(e->vertices()[0], e->vertices()[1]);
|
|
}
|
|
|
|
AttributeSet &attributes = (subdivision) ? mesh->subd_attributes : mesh->attributes;
|
|
Attribute *attribute = attributes.add(ATTR_STD_RANDOM_PER_ISLAND);
|
|
float *data = attribute->data_float();
|
|
|
|
if (!subdivision) {
|
|
BL::Mesh::loop_triangles_iterator t;
|
|
for (b_mesh.loop_triangles.begin(t); t != b_mesh.loop_triangles.end(); ++t) {
|
|
data[t->index()] = hash_uint_to_float(vertices_sets.find(t->vertices()[0]));
|
|
}
|
|
}
|
|
else {
|
|
BL::Mesh::polygons_iterator p;
|
|
for (b_mesh.polygons.begin(p); p != b_mesh.polygons.end(); ++p) {
|
|
data[p->index()] = hash_uint_to_float(vertices_sets.find(p->vertices()[0]));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Create Mesh */
|
|
|
|
static void create_mesh(Scene *scene,
|
|
Mesh *mesh,
|
|
BL::Mesh &b_mesh,
|
|
const array<Node *> &used_shaders,
|
|
bool subdivision = false,
|
|
bool subdivide_uvs = true)
|
|
{
|
|
/* count vertices and faces */
|
|
int numverts = b_mesh.vertices.length();
|
|
int numfaces = (!subdivision) ? b_mesh.loop_triangles.length() : b_mesh.polygons.length();
|
|
int numtris = 0;
|
|
int numcorners = 0;
|
|
int numngons = 0;
|
|
bool use_loop_normals = b_mesh.use_auto_smooth() &&
|
|
(mesh->get_subdivision_type() != Mesh::SUBDIVISION_CATMULL_CLARK);
|
|
|
|
/* If no faces, create empty mesh. */
|
|
if (numfaces == 0) {
|
|
return;
|
|
}
|
|
|
|
if (!subdivision) {
|
|
numtris = numfaces;
|
|
}
|
|
else {
|
|
BL::Mesh::polygons_iterator p;
|
|
for (b_mesh.polygons.begin(p); p != b_mesh.polygons.end(); ++p) {
|
|
numngons += (p->loop_total() == 4) ? 0 : 1;
|
|
numcorners += p->loop_total();
|
|
}
|
|
}
|
|
|
|
/* allocate memory */
|
|
if (subdivision) {
|
|
mesh->reserve_subd_faces(numfaces, numngons, numcorners);
|
|
}
|
|
|
|
mesh->reserve_mesh(numverts, numtris);
|
|
|
|
/* create vertex coordinates and normals */
|
|
BL::Mesh::vertices_iterator v;
|
|
for (b_mesh.vertices.begin(v); v != b_mesh.vertices.end(); ++v)
|
|
mesh->add_vertex(get_float3(v->co()));
|
|
|
|
AttributeSet &attributes = (subdivision) ? mesh->subd_attributes : mesh->attributes;
|
|
Attribute *attr_N = attributes.add(ATTR_STD_VERTEX_NORMAL);
|
|
float3 *N = attr_N->data_float3();
|
|
|
|
for (b_mesh.vertices.begin(v); v != b_mesh.vertices.end(); ++v, ++N)
|
|
*N = get_float3(v->normal());
|
|
N = attr_N->data_float3();
|
|
|
|
/* create generated coordinates from undeformed coordinates */
|
|
const bool need_default_tangent = (subdivision == false) && (b_mesh.uv_layers.length() == 0) &&
|
|
(mesh->need_attribute(scene, ATTR_STD_UV_TANGENT));
|
|
if (mesh->need_attribute(scene, ATTR_STD_GENERATED) || need_default_tangent) {
|
|
Attribute *attr = attributes.add(ATTR_STD_GENERATED);
|
|
attr->flags |= ATTR_SUBDIVIDED;
|
|
|
|
float3 loc, size;
|
|
mesh_texture_space(b_mesh, loc, size);
|
|
|
|
float3 *generated = attr->data_float3();
|
|
size_t i = 0;
|
|
|
|
for (b_mesh.vertices.begin(v); v != b_mesh.vertices.end(); ++v) {
|
|
generated[i++] = get_float3(v->undeformed_co()) * size - loc;
|
|
}
|
|
}
|
|
|
|
/* create faces */
|
|
if (!subdivision) {
|
|
BL::Mesh::loop_triangles_iterator t;
|
|
|
|
for (b_mesh.loop_triangles.begin(t); t != b_mesh.loop_triangles.end(); ++t) {
|
|
BL::MeshPolygon p = b_mesh.polygons[t->polygon_index()];
|
|
int3 vi = get_int3(t->vertices());
|
|
|
|
int shader = clamp(p.material_index(), 0, used_shaders.size() - 1);
|
|
bool smooth = p.use_smooth() || use_loop_normals;
|
|
|
|
if (use_loop_normals) {
|
|
BL::Array<float, 9> loop_normals = t->split_normals();
|
|
for (int i = 0; i < 3; i++) {
|
|
N[vi[i]] = make_float3(
|
|
loop_normals[i * 3], loop_normals[i * 3 + 1], loop_normals[i * 3 + 2]);
|
|
}
|
|
}
|
|
|
|
/* Create triangles.
|
|
*
|
|
* NOTE: Autosmooth is already taken care about.
|
|
*/
|
|
mesh->add_triangle(vi[0], vi[1], vi[2], shader, smooth);
|
|
}
|
|
}
|
|
else {
|
|
BL::Mesh::polygons_iterator p;
|
|
vector<int> vi;
|
|
|
|
for (b_mesh.polygons.begin(p); p != b_mesh.polygons.end(); ++p) {
|
|
int n = p->loop_total();
|
|
int shader = clamp(p->material_index(), 0, used_shaders.size() - 1);
|
|
bool smooth = p->use_smooth() || use_loop_normals;
|
|
|
|
vi.resize(n);
|
|
for (int i = 0; i < n; i++) {
|
|
/* NOTE: Autosmooth is already taken care about. */
|
|
vi[i] = b_mesh.loops[p->loop_start() + i].vertex_index();
|
|
}
|
|
|
|
/* create subd faces */
|
|
mesh->add_subd_face(&vi[0], n, shader, smooth);
|
|
}
|
|
}
|
|
|
|
/* Create all needed attributes.
|
|
* The calculate functions will check whether they're needed or not.
|
|
*/
|
|
attr_create_pointiness(scene, mesh, b_mesh, subdivision);
|
|
attr_create_vertex_color(scene, mesh, b_mesh, subdivision);
|
|
attr_create_sculpt_vertex_color(scene, mesh, b_mesh, subdivision);
|
|
attr_create_random_per_island(scene, mesh, b_mesh, subdivision);
|
|
|
|
if (subdivision) {
|
|
attr_create_subd_uv_map(scene, mesh, b_mesh, subdivide_uvs);
|
|
}
|
|
else {
|
|
attr_create_uv_map(scene, mesh, b_mesh);
|
|
}
|
|
|
|
/* For volume objects, create a matrix to transform from object space to
|
|
* mesh texture space. this does not work with deformations but that can
|
|
* probably only be done well with a volume grid mapping of coordinates. */
|
|
if (mesh->need_attribute(scene, ATTR_STD_GENERATED_TRANSFORM)) {
|
|
Attribute *attr = mesh->attributes.add(ATTR_STD_GENERATED_TRANSFORM);
|
|
Transform *tfm = attr->data_transform();
|
|
|
|
float3 loc, size;
|
|
mesh_texture_space(b_mesh, loc, size);
|
|
|
|
*tfm = transform_translate(-loc) * transform_scale(size);
|
|
}
|
|
}
|
|
|
|
static void create_subd_mesh(Scene *scene,
|
|
Mesh *mesh,
|
|
BL::Object &b_ob,
|
|
BL::Mesh &b_mesh,
|
|
const array<Node *> &used_shaders,
|
|
float dicing_rate,
|
|
int max_subdivisions)
|
|
{
|
|
BL::SubsurfModifier subsurf_mod(b_ob.modifiers[b_ob.modifiers.length() - 1]);
|
|
bool subdivide_uvs = subsurf_mod.uv_smooth() != BL::SubsurfModifier::uv_smooth_NONE;
|
|
|
|
create_mesh(scene, mesh, b_mesh, used_shaders, true, subdivide_uvs);
|
|
|
|
/* export creases */
|
|
size_t num_creases = 0;
|
|
BL::Mesh::edges_iterator e;
|
|
|
|
for (b_mesh.edges.begin(e); e != b_mesh.edges.end(); ++e) {
|
|
if (e->crease() != 0.0f) {
|
|
num_creases++;
|
|
}
|
|
}
|
|
|
|
mesh->reserve_subd_creases(num_creases);
|
|
|
|
for (b_mesh.edges.begin(e); e != b_mesh.edges.end(); ++e) {
|
|
if (e->crease() != 0.0f) {
|
|
mesh->add_crease(e->vertices()[0], e->vertices()[1], e->crease());
|
|
}
|
|
}
|
|
|
|
/* set subd params */
|
|
PointerRNA cobj = RNA_pointer_get(&b_ob.ptr, "cycles");
|
|
float subd_dicing_rate = max(0.1f, RNA_float_get(&cobj, "dicing_rate") * dicing_rate);
|
|
|
|
mesh->set_subd_dicing_rate(subd_dicing_rate);
|
|
mesh->set_subd_max_level(max_subdivisions);
|
|
mesh->set_subd_objecttoworld(get_transform(b_ob.matrix_world()));
|
|
}
|
|
|
|
/* Sync */
|
|
|
|
static BL::MeshSequenceCacheModifier object_mesh_cache_find(BL::Object &b_ob)
|
|
{
|
|
if (b_ob.modifiers.length() > 0) {
|
|
BL::Modifier b_mod = b_ob.modifiers[b_ob.modifiers.length() - 1];
|
|
|
|
if (b_mod.type() == BL::Modifier::type_MESH_SEQUENCE_CACHE) {
|
|
BL::MeshSequenceCacheModifier mesh_cache = BL::MeshSequenceCacheModifier(b_mod);
|
|
|
|
if (MeshSequenceCacheModifier_has_velocity_get(&mesh_cache.ptr)) {
|
|
return mesh_cache;
|
|
}
|
|
}
|
|
}
|
|
|
|
return BL::MeshSequenceCacheModifier(PointerRNA_NULL);
|
|
}
|
|
|
|
static void sync_mesh_cached_velocities(BL::Object &b_ob, Scene *scene, Mesh *mesh)
|
|
{
|
|
if (scene->need_motion() == Scene::MOTION_NONE)
|
|
return;
|
|
|
|
BL::MeshSequenceCacheModifier b_mesh_cache = object_mesh_cache_find(b_ob);
|
|
|
|
if (!b_mesh_cache) {
|
|
return;
|
|
}
|
|
|
|
if (!MeshSequenceCacheModifier_read_velocity_get(&b_mesh_cache.ptr)) {
|
|
return;
|
|
}
|
|
|
|
const size_t numverts = mesh->get_verts().size();
|
|
|
|
if (b_mesh_cache.vertex_velocities.length() != numverts) {
|
|
return;
|
|
}
|
|
|
|
/* Find or add attribute */
|
|
float3 *P = &mesh->get_verts()[0];
|
|
Attribute *attr_mP = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
|
|
|
if (!attr_mP) {
|
|
attr_mP = mesh->attributes.add(ATTR_STD_MOTION_VERTEX_POSITION);
|
|
}
|
|
|
|
/* Only export previous and next frame, we don't have any in between data. */
|
|
float motion_times[2] = {-1.0f, 1.0f};
|
|
for (int step = 0; step < 2; step++) {
|
|
const float relative_time = motion_times[step] * scene->motion_shutter_time() * 0.5f;
|
|
float3 *mP = attr_mP->data_float3() + step * numverts;
|
|
|
|
BL::MeshSequenceCacheModifier::vertex_velocities_iterator vvi;
|
|
int i = 0;
|
|
|
|
for (b_mesh_cache.vertex_velocities.begin(vvi); vvi != b_mesh_cache.vertex_velocities.end();
|
|
++vvi, ++i) {
|
|
mP[i] = P[i] + get_float3(vvi->velocity()) * relative_time;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sync_mesh_fluid_motion(BL::Object &b_ob, Scene *scene, Mesh *mesh)
|
|
{
|
|
if (scene->need_motion() == Scene::MOTION_NONE)
|
|
return;
|
|
|
|
BL::FluidDomainSettings b_fluid_domain = object_fluid_liquid_domain_find(b_ob);
|
|
|
|
if (!b_fluid_domain)
|
|
return;
|
|
|
|
/* If the mesh has modifiers following the fluid domain we can't export motion. */
|
|
if (b_fluid_domain.mesh_vertices.length() != mesh->get_verts().size())
|
|
return;
|
|
|
|
/* Find or add attribute */
|
|
float3 *P = &mesh->get_verts()[0];
|
|
Attribute *attr_mP = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
|
|
|
if (!attr_mP) {
|
|
attr_mP = mesh->attributes.add(ATTR_STD_MOTION_VERTEX_POSITION);
|
|
}
|
|
|
|
/* Only export previous and next frame, we don't have any in between data. */
|
|
float motion_times[2] = {-1.0f, 1.0f};
|
|
for (int step = 0; step < 2; step++) {
|
|
float relative_time = motion_times[step] * scene->motion_shutter_time() * 0.5f;
|
|
float3 *mP = attr_mP->data_float3() + step * mesh->get_verts().size();
|
|
|
|
BL::FluidDomainSettings::mesh_vertices_iterator svi;
|
|
int i = 0;
|
|
|
|
for (b_fluid_domain.mesh_vertices.begin(svi); svi != b_fluid_domain.mesh_vertices.end();
|
|
++svi, ++i) {
|
|
mP[i] = P[i] + get_float3(svi->velocity()) * relative_time;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BlenderSync::sync_mesh(BL::Depsgraph b_depsgraph, BL::Object b_ob, Mesh *mesh)
|
|
{
|
|
/* make a copy of the shaders as the caller in the main thread still need them for syncing the
|
|
* attributes */
|
|
array<Node *> used_shaders = mesh->get_used_shaders();
|
|
|
|
Mesh new_mesh;
|
|
new_mesh.set_used_shaders(used_shaders);
|
|
|
|
if (view_layer.use_surfaces) {
|
|
/* Adaptive subdivision setup. Not for baking since that requires
|
|
* exact mapping to the Blender mesh. */
|
|
if (!scene->bake_manager->get_baking()) {
|
|
new_mesh.set_subdivision_type(object_subdivision_type(b_ob, preview, experimental));
|
|
}
|
|
|
|
/* For some reason, meshes do not need this... */
|
|
bool need_undeformed = new_mesh.need_attribute(scene, ATTR_STD_GENERATED);
|
|
BL::Mesh b_mesh = object_to_mesh(
|
|
b_data, b_ob, b_depsgraph, need_undeformed, new_mesh.get_subdivision_type());
|
|
|
|
if (b_mesh) {
|
|
/* Sync mesh itself. */
|
|
if (new_mesh.get_subdivision_type() != Mesh::SUBDIVISION_NONE)
|
|
create_subd_mesh(scene,
|
|
&new_mesh,
|
|
b_ob,
|
|
b_mesh,
|
|
new_mesh.get_used_shaders(),
|
|
dicing_rate,
|
|
max_subdivisions);
|
|
else
|
|
create_mesh(scene, &new_mesh, b_mesh, new_mesh.get_used_shaders(), false);
|
|
|
|
free_object_to_mesh(b_data, b_ob, b_mesh);
|
|
}
|
|
}
|
|
|
|
/* cached velocities (e.g. from alembic archive) */
|
|
sync_mesh_cached_velocities(b_ob, scene, &new_mesh);
|
|
|
|
/* mesh fluid motion mantaflow */
|
|
sync_mesh_fluid_motion(b_ob, scene, &new_mesh);
|
|
|
|
/* update original sockets */
|
|
|
|
mesh->clear_non_sockets();
|
|
|
|
for (const SocketType &socket : new_mesh.type->inputs) {
|
|
/* Those sockets are updated in sync_object, so do not modify them. */
|
|
if (socket.name == "use_motion_blur" || socket.name == "motion_steps" ||
|
|
socket.name == "used_shaders") {
|
|
continue;
|
|
}
|
|
mesh->set_value(socket, new_mesh, socket);
|
|
}
|
|
|
|
mesh->attributes.clear();
|
|
foreach (Attribute &attr, new_mesh.attributes.attributes) {
|
|
mesh->attributes.attributes.push_back(std::move(attr));
|
|
}
|
|
|
|
mesh->subd_attributes.clear();
|
|
foreach (Attribute &attr, new_mesh.subd_attributes.attributes) {
|
|
mesh->subd_attributes.attributes.push_back(std::move(attr));
|
|
}
|
|
|
|
mesh->set_num_subd_faces(new_mesh.get_num_subd_faces());
|
|
|
|
/* tag update */
|
|
bool rebuild = (mesh->triangles_is_modified()) || (mesh->subd_num_corners_is_modified()) ||
|
|
(mesh->subd_shader_is_modified()) || (mesh->subd_smooth_is_modified()) ||
|
|
(mesh->subd_ptex_offset_is_modified()) ||
|
|
(mesh->subd_start_corner_is_modified()) ||
|
|
(mesh->subd_face_corners_is_modified());
|
|
|
|
mesh->tag_update(scene, rebuild);
|
|
}
|
|
|
|
void BlenderSync::sync_mesh_motion(BL::Depsgraph b_depsgraph,
|
|
BL::Object b_ob,
|
|
Mesh *mesh,
|
|
int motion_step)
|
|
{
|
|
/* Fluid motion blur already exported. */
|
|
BL::FluidDomainSettings b_fluid_domain = object_fluid_liquid_domain_find(b_ob);
|
|
if (b_fluid_domain) {
|
|
return;
|
|
}
|
|
|
|
/* Cached motion blur already exported. */
|
|
BL::MeshSequenceCacheModifier mesh_cache = object_mesh_cache_find(b_ob);
|
|
if (mesh_cache) {
|
|
return;
|
|
}
|
|
|
|
/* Skip if no vertices were exported. */
|
|
size_t numverts = mesh->get_verts().size();
|
|
if (numverts == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Skip objects without deforming modifiers. this is not totally reliable,
|
|
* would need a more extensive check to see which objects are animated. */
|
|
BL::Mesh b_mesh(PointerRNA_NULL);
|
|
if (ccl::BKE_object_is_deform_modified(b_ob, b_scene, preview)) {
|
|
/* get derived mesh */
|
|
b_mesh = object_to_mesh(b_data, b_ob, b_depsgraph, false, Mesh::SUBDIVISION_NONE);
|
|
}
|
|
|
|
/* TODO(sergey): Perform preliminary check for number of vertices. */
|
|
if (b_mesh) {
|
|
/* Export deformed coordinates. */
|
|
/* Find attributes. */
|
|
Attribute *attr_mP = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
|
Attribute *attr_mN = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
|
|
Attribute *attr_N = mesh->attributes.find(ATTR_STD_VERTEX_NORMAL);
|
|
bool new_attribute = false;
|
|
/* Add new attributes if they don't exist already. */
|
|
if (!attr_mP) {
|
|
attr_mP = mesh->attributes.add(ATTR_STD_MOTION_VERTEX_POSITION);
|
|
if (attr_N)
|
|
attr_mN = mesh->attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
|
|
|
|
new_attribute = true;
|
|
}
|
|
/* Load vertex data from mesh. */
|
|
float3 *mP = attr_mP->data_float3() + motion_step * numverts;
|
|
float3 *mN = (attr_mN) ? attr_mN->data_float3() + motion_step * numverts : NULL;
|
|
/* NOTE: We don't copy more that existing amount of vertices to prevent
|
|
* possible memory corruption.
|
|
*/
|
|
BL::Mesh::vertices_iterator v;
|
|
int i = 0;
|
|
for (b_mesh.vertices.begin(v); v != b_mesh.vertices.end() && i < numverts; ++v, ++i) {
|
|
mP[i] = get_float3(v->co());
|
|
if (mN)
|
|
mN[i] = get_float3(v->normal());
|
|
}
|
|
if (new_attribute) {
|
|
/* In case of new attribute, we verify if there really was any motion. */
|
|
if (b_mesh.vertices.length() != numverts ||
|
|
memcmp(mP, &mesh->get_verts()[0], sizeof(float3) * numverts) == 0) {
|
|
/* no motion, remove attributes again */
|
|
if (b_mesh.vertices.length() != numverts) {
|
|
VLOG(1) << "Topology differs, disabling motion blur for object " << b_ob.name();
|
|
}
|
|
else {
|
|
VLOG(1) << "No actual deformation motion for object " << b_ob.name();
|
|
}
|
|
mesh->attributes.remove(ATTR_STD_MOTION_VERTEX_POSITION);
|
|
if (attr_mN)
|
|
mesh->attributes.remove(ATTR_STD_MOTION_VERTEX_NORMAL);
|
|
}
|
|
else if (motion_step > 0) {
|
|
VLOG(1) << "Filling deformation motion for object " << b_ob.name();
|
|
/* motion, fill up previous steps that we might have skipped because
|
|
* they had no motion, but we need them anyway now */
|
|
float3 *P = &mesh->get_verts()[0];
|
|
float3 *N = (attr_N) ? attr_N->data_float3() : NULL;
|
|
for (int step = 0; step < motion_step; step++) {
|
|
memcpy(attr_mP->data_float3() + step * numverts, P, sizeof(float3) * numverts);
|
|
if (attr_mN)
|
|
memcpy(attr_mN->data_float3() + step * numverts, N, sizeof(float3) * numverts);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (b_mesh.vertices.length() != numverts) {
|
|
VLOG(1) << "Topology differs, discarding motion blur for object " << b_ob.name()
|
|
<< " at time " << motion_step;
|
|
memcpy(mP, &mesh->get_verts()[0], sizeof(float3) * numverts);
|
|
if (mN != NULL) {
|
|
memcpy(mN, attr_N->data_float3(), sizeof(float3) * numverts);
|
|
}
|
|
}
|
|
}
|
|
|
|
free_object_to_mesh(b_data, b_ob, b_mesh);
|
|
return;
|
|
}
|
|
|
|
/* No deformation on this frame, copy coordinates if other frames did have it. */
|
|
mesh->copy_center_to_motion_step(motion_step);
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|