2351 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2351 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2011-2013 Blender Foundation
 | 
						|
 *
 | 
						|
 * Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
 * you may not use this file except in compliance with the License.
 | 
						|
 * You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 * http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 * Unless required by applicable law or agreed to in writing, software
 | 
						|
 * distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 * See the License for the specific language governing permissions and
 | 
						|
 * limitations under the License.
 | 
						|
 */
 | 
						|
 | 
						|
#include "bvh/bvh.h"
 | 
						|
#include "bvh/bvh_build.h"
 | 
						|
 | 
						|
#include "render/camera.h"
 | 
						|
#include "render/curves.h"
 | 
						|
#include "device/device.h"
 | 
						|
#include "render/graph.h"
 | 
						|
#include "render/shader.h"
 | 
						|
#include "render/light.h"
 | 
						|
#include "render/mesh.h"
 | 
						|
#include "render/nodes.h"
 | 
						|
#include "render/object.h"
 | 
						|
#include "render/scene.h"
 | 
						|
#include "render/stats.h"
 | 
						|
 | 
						|
#include "kernel/osl/osl_globals.h"
 | 
						|
 | 
						|
#include "subd/subd_split.h"
 | 
						|
#include "subd/subd_patch_table.h"
 | 
						|
 | 
						|
#include "util/util_foreach.h"
 | 
						|
#include "util/util_logging.h"
 | 
						|
#include "util/util_progress.h"
 | 
						|
#include "util/util_set.h"
 | 
						|
 | 
						|
#ifdef WITH_EMBREE
 | 
						|
#  include "bvh/bvh_embree.h"
 | 
						|
#endif
 | 
						|
 | 
						|
CCL_NAMESPACE_BEGIN
 | 
						|
 | 
						|
/* Triangle */
 | 
						|
 | 
						|
void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox& bounds) const
 | 
						|
{
 | 
						|
	bounds.grow(verts[v[0]]);
 | 
						|
	bounds.grow(verts[v[1]]);
 | 
						|
	bounds.grow(verts[v[2]]);
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::Triangle::motion_verts(const float3 *verts,
 | 
						|
                                  const float3 *vert_steps,
 | 
						|
                                  size_t num_verts,
 | 
						|
                                  size_t num_steps,
 | 
						|
                                  float time,
 | 
						|
                                  float3 r_verts[3]) const
 | 
						|
{
 | 
						|
	/* Figure out which steps we need to fetch and their interpolation factor. */
 | 
						|
	const size_t max_step = num_steps - 1;
 | 
						|
	const size_t step = min((int)(time * max_step), max_step - 1);
 | 
						|
	const float t = time*max_step - step;
 | 
						|
	/* Fetch vertex coordinates. */
 | 
						|
	float3 curr_verts[3];
 | 
						|
	float3 next_verts[3];
 | 
						|
	verts_for_step(verts,
 | 
						|
	               vert_steps,
 | 
						|
	               num_verts,
 | 
						|
	               num_steps,
 | 
						|
	               step,
 | 
						|
	               curr_verts);
 | 
						|
	verts_for_step(verts,
 | 
						|
	               vert_steps,
 | 
						|
	               num_verts,
 | 
						|
	               num_steps,
 | 
						|
	               step + 1,
 | 
						|
	               next_verts);
 | 
						|
	/* Interpolate between steps. */
 | 
						|
	r_verts[0] = (1.0f - t)*curr_verts[0] + t*next_verts[0];
 | 
						|
	r_verts[1] = (1.0f - t)*curr_verts[1] + t*next_verts[1];
 | 
						|
	r_verts[2] = (1.0f - t)*curr_verts[2] + t*next_verts[2];
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::Triangle::verts_for_step(const float3 *verts,
 | 
						|
                                    const float3 *vert_steps,
 | 
						|
                                    size_t num_verts,
 | 
						|
                                    size_t num_steps,
 | 
						|
                                    size_t step,
 | 
						|
                                    float3 r_verts[3]) const
 | 
						|
{
 | 
						|
	const size_t center_step = ((num_steps - 1) / 2);
 | 
						|
	if(step == center_step) {
 | 
						|
		/* Center step: regular vertex location. */
 | 
						|
		r_verts[0] = verts[v[0]];
 | 
						|
		r_verts[1] = verts[v[1]];
 | 
						|
		r_verts[2] = verts[v[2]];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* Center step not stored in the attribute array array. */
 | 
						|
		if(step > center_step) {
 | 
						|
			step--;
 | 
						|
		}
 | 
						|
		size_t offset = step * num_verts;
 | 
						|
		r_verts[0] = vert_steps[offset + v[0]];
 | 
						|
		r_verts[1] = vert_steps[offset + v[1]];
 | 
						|
		r_verts[2] = vert_steps[offset + v[2]];
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
float3 Mesh::Triangle::compute_normal(const float3 *verts) const
 | 
						|
{
 | 
						|
	const float3& v0 = verts[v[0]];
 | 
						|
	const float3& v1 = verts[v[1]];
 | 
						|
	const float3& v2 = verts[v[2]];
 | 
						|
	const float3 norm = cross(v1 - v0, v2 - v0);
 | 
						|
	const float normlen = len(norm);
 | 
						|
	if(normlen == 0.0f) {
 | 
						|
		return make_float3(1.0f, 0.0f, 0.0f);
 | 
						|
	}
 | 
						|
	return norm / normlen;
 | 
						|
}
 | 
						|
 | 
						|
bool Mesh::Triangle::valid(const float3 *verts) const
 | 
						|
{
 | 
						|
	return isfinite3_safe(verts[v[0]]) &&
 | 
						|
	       isfinite3_safe(verts[v[1]]) &&
 | 
						|
	       isfinite3_safe(verts[v[2]]);
 | 
						|
}
 | 
						|
 | 
						|
/* Curve */
 | 
						|
 | 
						|
void Mesh::Curve::bounds_grow(const int k, const float3 *curve_keys, const float *curve_radius, BoundBox& bounds) const
 | 
						|
{
 | 
						|
	float3 P[4];
 | 
						|
 | 
						|
	P[0] = curve_keys[max(first_key + k - 1,first_key)];
 | 
						|
	P[1] = curve_keys[first_key + k];
 | 
						|
	P[2] = curve_keys[first_key + k + 1];
 | 
						|
	P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
 | 
						|
 | 
						|
	float3 lower;
 | 
						|
	float3 upper;
 | 
						|
 | 
						|
	curvebounds(&lower.x, &upper.x, P, 0);
 | 
						|
	curvebounds(&lower.y, &upper.y, P, 1);
 | 
						|
	curvebounds(&lower.z, &upper.z, P, 2);
 | 
						|
 | 
						|
	float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
 | 
						|
 | 
						|
	bounds.grow(lower, mr);
 | 
						|
	bounds.grow(upper, mr);
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::Curve::bounds_grow(const int k,
 | 
						|
                              const float3 *curve_keys,
 | 
						|
                              const float *curve_radius,
 | 
						|
                              const Transform& aligned_space,
 | 
						|
                              BoundBox& bounds) const
 | 
						|
{
 | 
						|
	float3 P[4];
 | 
						|
 | 
						|
	P[0] = curve_keys[max(first_key + k - 1,first_key)];
 | 
						|
	P[1] = curve_keys[first_key + k];
 | 
						|
	P[2] = curve_keys[first_key + k + 1];
 | 
						|
	P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
 | 
						|
 | 
						|
	P[0] = transform_point(&aligned_space, P[0]);
 | 
						|
	P[1] = transform_point(&aligned_space, P[1]);
 | 
						|
	P[2] = transform_point(&aligned_space, P[2]);
 | 
						|
	P[3] = transform_point(&aligned_space, P[3]);
 | 
						|
 | 
						|
	float3 lower;
 | 
						|
	float3 upper;
 | 
						|
 | 
						|
	curvebounds(&lower.x, &upper.x, P, 0);
 | 
						|
	curvebounds(&lower.y, &upper.y, P, 1);
 | 
						|
	curvebounds(&lower.z, &upper.z, P, 2);
 | 
						|
 | 
						|
	float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
 | 
						|
 | 
						|
	bounds.grow(lower, mr);
 | 
						|
	bounds.grow(upper, mr);
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::Curve::bounds_grow(float4 keys[4], BoundBox& bounds) const
 | 
						|
{
 | 
						|
	float3 P[4] = {
 | 
						|
		float4_to_float3(keys[0]),
 | 
						|
		float4_to_float3(keys[1]),
 | 
						|
		float4_to_float3(keys[2]),
 | 
						|
		float4_to_float3(keys[3]),
 | 
						|
	};
 | 
						|
 | 
						|
	float3 lower;
 | 
						|
	float3 upper;
 | 
						|
 | 
						|
	curvebounds(&lower.x, &upper.x, P, 0);
 | 
						|
	curvebounds(&lower.y, &upper.y, P, 1);
 | 
						|
	curvebounds(&lower.z, &upper.z, P, 2);
 | 
						|
 | 
						|
	float mr = max(keys[1].w, keys[2].w);
 | 
						|
 | 
						|
	bounds.grow(lower, mr);
 | 
						|
	bounds.grow(upper, mr);
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::Curve::motion_keys(const float3 *curve_keys,
 | 
						|
                              const float *curve_radius,
 | 
						|
                              const float3 *key_steps,
 | 
						|
                              size_t num_curve_keys,
 | 
						|
                              size_t num_steps,
 | 
						|
                              float time,
 | 
						|
                              size_t k0, size_t k1,
 | 
						|
                              float4 r_keys[2]) const
 | 
						|
{
 | 
						|
	/* Figure out which steps we need to fetch and their interpolation factor. */
 | 
						|
	const size_t max_step = num_steps - 1;
 | 
						|
	const size_t step = min((int)(time * max_step), max_step - 1);
 | 
						|
	const float t = time*max_step - step;
 | 
						|
	/* Fetch vertex coordinates. */
 | 
						|
	float4 curr_keys[2];
 | 
						|
	float4 next_keys[2];
 | 
						|
	keys_for_step(curve_keys,
 | 
						|
	              curve_radius,
 | 
						|
	              key_steps,
 | 
						|
	              num_curve_keys,
 | 
						|
	              num_steps,
 | 
						|
	              step,
 | 
						|
	              k0, k1,
 | 
						|
	              curr_keys);
 | 
						|
	keys_for_step(curve_keys,
 | 
						|
	              curve_radius,
 | 
						|
	              key_steps,
 | 
						|
	              num_curve_keys,
 | 
						|
	              num_steps,
 | 
						|
	              step + 1,
 | 
						|
	              k0, k1,
 | 
						|
	              next_keys);
 | 
						|
	/* Interpolate between steps. */
 | 
						|
	r_keys[0] = (1.0f - t)*curr_keys[0] + t*next_keys[0];
 | 
						|
	r_keys[1] = (1.0f - t)*curr_keys[1] + t*next_keys[1];
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::Curve::cardinal_motion_keys(const float3 *curve_keys,
 | 
						|
                                       const float *curve_radius,
 | 
						|
                                       const float3 *key_steps,
 | 
						|
                                       size_t num_curve_keys,
 | 
						|
                                       size_t num_steps,
 | 
						|
                                       float time,
 | 
						|
                                       size_t k0, size_t k1,
 | 
						|
                                       size_t k2, size_t k3,
 | 
						|
                                       float4 r_keys[4]) const
 | 
						|
{
 | 
						|
	/* Figure out which steps we need to fetch and their interpolation factor. */
 | 
						|
	const size_t max_step = num_steps - 1;
 | 
						|
	const size_t step = min((int)(time * max_step), max_step - 1);
 | 
						|
	const float t = time*max_step - step;
 | 
						|
	/* Fetch vertex coordinates. */
 | 
						|
	float4 curr_keys[4];
 | 
						|
	float4 next_keys[4];
 | 
						|
	cardinal_keys_for_step(curve_keys,
 | 
						|
	                       curve_radius,
 | 
						|
	                       key_steps,
 | 
						|
	                       num_curve_keys,
 | 
						|
	                       num_steps,
 | 
						|
	                       step,
 | 
						|
	                       k0, k1, k2, k3,
 | 
						|
	                       curr_keys);
 | 
						|
	cardinal_keys_for_step(curve_keys,
 | 
						|
	                       curve_radius,
 | 
						|
	                       key_steps,
 | 
						|
	                       num_curve_keys,
 | 
						|
	                       num_steps,
 | 
						|
	                       step + 1,
 | 
						|
	                       k0, k1, k2, k3,
 | 
						|
	                       next_keys);
 | 
						|
	/* Interpolate between steps. */
 | 
						|
	r_keys[0] = (1.0f - t)*curr_keys[0] + t*next_keys[0];
 | 
						|
	r_keys[1] = (1.0f - t)*curr_keys[1] + t*next_keys[1];
 | 
						|
	r_keys[2] = (1.0f - t)*curr_keys[2] + t*next_keys[2];
 | 
						|
	r_keys[3] = (1.0f - t)*curr_keys[3] + t*next_keys[3];
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::Curve::keys_for_step(const float3 *curve_keys,
 | 
						|
                                const float *curve_radius,
 | 
						|
                                const float3 *key_steps,
 | 
						|
                                size_t num_curve_keys,
 | 
						|
                                size_t num_steps,
 | 
						|
                                size_t step,
 | 
						|
                                size_t k0, size_t k1,
 | 
						|
                                float4 r_keys[2]) const
 | 
						|
{
 | 
						|
	k0 = max(k0, 0);
 | 
						|
	k1 = min(k1, num_keys - 1);
 | 
						|
	const size_t center_step = ((num_steps - 1) / 2);
 | 
						|
	if(step == center_step) {
 | 
						|
		/* Center step: regular key location. */
 | 
						|
		/* TODO(sergey): Consider adding make_float4(float3, float)
 | 
						|
		 * function.
 | 
						|
		 */
 | 
						|
		r_keys[0] = make_float4(curve_keys[first_key + k0].x,
 | 
						|
		                        curve_keys[first_key + k0].y,
 | 
						|
		                        curve_keys[first_key + k0].z,
 | 
						|
		                        curve_radius[first_key + k0]);
 | 
						|
		r_keys[1] = make_float4(curve_keys[first_key + k1].x,
 | 
						|
		                        curve_keys[first_key + k1].y,
 | 
						|
		                        curve_keys[first_key + k1].z,
 | 
						|
		                        curve_radius[first_key + k1]);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* Center step is not stored in this array. */
 | 
						|
		if(step > center_step) {
 | 
						|
			step--;
 | 
						|
		}
 | 
						|
		const size_t offset = first_key + step * num_curve_keys;
 | 
						|
		r_keys[0] = make_float4(key_steps[offset + k0].x,
 | 
						|
		                        key_steps[offset + k0].y,
 | 
						|
		                        key_steps[offset + k0].z,
 | 
						|
		                        curve_radius[first_key + k0]);
 | 
						|
		r_keys[1] = make_float4(key_steps[offset + k1].x,
 | 
						|
		                        key_steps[offset + k1].y,
 | 
						|
		                        key_steps[offset + k1].z,
 | 
						|
		                        curve_radius[first_key + k1]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::Curve::cardinal_keys_for_step(const float3 *curve_keys,
 | 
						|
                                         const float *curve_radius,
 | 
						|
                                         const float3 *key_steps,
 | 
						|
                                         size_t num_curve_keys,
 | 
						|
                                         size_t num_steps,
 | 
						|
                                         size_t step,
 | 
						|
                                         size_t k0, size_t k1,
 | 
						|
                                         size_t k2, size_t k3,
 | 
						|
                                         float4 r_keys[4]) const
 | 
						|
{
 | 
						|
	k0 = max(k0, 0);
 | 
						|
	k3 = min(k3, num_keys - 1);
 | 
						|
	const size_t center_step = ((num_steps - 1) / 2);
 | 
						|
	if(step == center_step) {
 | 
						|
		/* Center step: regular key location. */
 | 
						|
		r_keys[0] = make_float4(curve_keys[first_key + k0].x,
 | 
						|
		                        curve_keys[first_key + k0].y,
 | 
						|
		                        curve_keys[first_key + k0].z,
 | 
						|
		                        curve_radius[first_key + k0]);
 | 
						|
		r_keys[1] = make_float4(curve_keys[first_key + k1].x,
 | 
						|
		                        curve_keys[first_key + k1].y,
 | 
						|
		                        curve_keys[first_key + k1].z,
 | 
						|
		                        curve_radius[first_key + k1]);
 | 
						|
		r_keys[2] = make_float4(curve_keys[first_key + k2].x,
 | 
						|
		                        curve_keys[first_key + k2].y,
 | 
						|
		                        curve_keys[first_key + k2].z,
 | 
						|
		                        curve_radius[first_key + k2]);
 | 
						|
		r_keys[3] = make_float4(curve_keys[first_key + k3].x,
 | 
						|
		                        curve_keys[first_key + k3].y,
 | 
						|
		                        curve_keys[first_key + k3].z,
 | 
						|
		                        curve_radius[first_key + k3]);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* Center step is not stored in this array. */
 | 
						|
		if(step > center_step) {
 | 
						|
			step--;
 | 
						|
		}
 | 
						|
		const size_t offset = first_key + step * num_curve_keys;
 | 
						|
		r_keys[0] = make_float4(key_steps[offset + k0].x,
 | 
						|
		                        key_steps[offset + k0].y,
 | 
						|
		                        key_steps[offset + k0].z,
 | 
						|
		                        curve_radius[first_key + k0]);
 | 
						|
		r_keys[1] = make_float4(key_steps[offset + k1].x,
 | 
						|
		                        key_steps[offset + k1].y,
 | 
						|
		                        key_steps[offset + k1].z,
 | 
						|
		                        curve_radius[first_key + k1]);
 | 
						|
		r_keys[2] = make_float4(key_steps[offset + k2].x,
 | 
						|
		                        key_steps[offset + k2].y,
 | 
						|
		                        key_steps[offset + k2].z,
 | 
						|
		                        curve_radius[first_key + k2]);
 | 
						|
		r_keys[3] = make_float4(key_steps[offset + k3].x,
 | 
						|
		                        key_steps[offset + k3].y,
 | 
						|
		                        key_steps[offset + k3].z,
 | 
						|
		                        curve_radius[first_key + k3]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* SubdFace */
 | 
						|
 | 
						|
float3 Mesh::SubdFace::normal(const Mesh *mesh) const
 | 
						|
{
 | 
						|
	float3 v0 = mesh->verts[mesh->subd_face_corners[start_corner+0]];
 | 
						|
	float3 v1 = mesh->verts[mesh->subd_face_corners[start_corner+1]];
 | 
						|
	float3 v2 = mesh->verts[mesh->subd_face_corners[start_corner+2]];
 | 
						|
 | 
						|
	return safe_normalize(cross(v1 - v0, v2 - v0));
 | 
						|
}
 | 
						|
 | 
						|
/* Mesh */
 | 
						|
 | 
						|
NODE_DEFINE(Mesh)
 | 
						|
{
 | 
						|
	NodeType* type = NodeType::add("mesh", create);
 | 
						|
 | 
						|
	SOCKET_UINT(motion_steps, "Motion Steps", 3);
 | 
						|
	SOCKET_BOOLEAN(use_motion_blur, "Use Motion Blur", false);
 | 
						|
 | 
						|
	SOCKET_INT_ARRAY(triangles, "Triangles", array<int>());
 | 
						|
	SOCKET_POINT_ARRAY(verts, "Vertices", array<float3>());
 | 
						|
	SOCKET_INT_ARRAY(shader, "Shader", array<int>());
 | 
						|
	SOCKET_BOOLEAN_ARRAY(smooth, "Smooth", array<bool>());
 | 
						|
 | 
						|
	SOCKET_POINT_ARRAY(curve_keys, "Curve Keys", array<float3>());
 | 
						|
	SOCKET_FLOAT_ARRAY(curve_radius, "Curve Radius", array<float>());
 | 
						|
	SOCKET_INT_ARRAY(curve_first_key, "Curve First Key", array<int>());
 | 
						|
	SOCKET_INT_ARRAY(curve_shader, "Curve Shader", array<int>());
 | 
						|
 | 
						|
	return type;
 | 
						|
}
 | 
						|
 | 
						|
Mesh::Mesh()
 | 
						|
: Node(node_type)
 | 
						|
{
 | 
						|
	need_update = true;
 | 
						|
	need_update_rebuild = false;
 | 
						|
	transform_applied = false;
 | 
						|
	transform_negative_scaled = false;
 | 
						|
	transform_normal = transform_identity();
 | 
						|
	bounds = BoundBox::empty;
 | 
						|
 | 
						|
	bvh = NULL;
 | 
						|
 | 
						|
	tri_offset = 0;
 | 
						|
	vert_offset = 0;
 | 
						|
 | 
						|
	curve_offset = 0;
 | 
						|
	curvekey_offset = 0;
 | 
						|
 | 
						|
	patch_offset = 0;
 | 
						|
	face_offset = 0;
 | 
						|
	corner_offset = 0;
 | 
						|
 | 
						|
	attr_map_offset = 0;
 | 
						|
 | 
						|
	num_subd_verts = 0;
 | 
						|
 | 
						|
	attributes.triangle_mesh = this;
 | 
						|
	curve_attributes.curve_mesh = this;
 | 
						|
	subd_attributes.subd_mesh = this;
 | 
						|
 | 
						|
	geometry_flags = GEOMETRY_NONE;
 | 
						|
 | 
						|
	volume_isovalue = 0.001f;
 | 
						|
	has_volume = false;
 | 
						|
	has_surface_bssrdf = false;
 | 
						|
 | 
						|
	num_ngons = 0;
 | 
						|
 | 
						|
	subdivision_type = SUBDIVISION_NONE;
 | 
						|
	subd_params = NULL;
 | 
						|
 | 
						|
	patch_table = NULL;
 | 
						|
}
 | 
						|
 | 
						|
Mesh::~Mesh()
 | 
						|
{
 | 
						|
	delete bvh;
 | 
						|
	delete patch_table;
 | 
						|
	delete subd_params;
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::resize_mesh(int numverts, int numtris)
 | 
						|
{
 | 
						|
	verts.resize(numverts);
 | 
						|
	triangles.resize(numtris * 3);
 | 
						|
	shader.resize(numtris);
 | 
						|
	smooth.resize(numtris);
 | 
						|
 | 
						|
	if(subd_faces.size()) {
 | 
						|
		triangle_patch.resize(numtris);
 | 
						|
		vert_patch_uv.resize(numverts);
 | 
						|
	}
 | 
						|
 | 
						|
	attributes.resize();
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::reserve_mesh(int numverts, int numtris)
 | 
						|
{
 | 
						|
	/* reserve space to add verts and triangles later */
 | 
						|
	verts.reserve(numverts);
 | 
						|
	triangles.reserve(numtris * 3);
 | 
						|
	shader.reserve(numtris);
 | 
						|
	smooth.reserve(numtris);
 | 
						|
 | 
						|
	if(subd_faces.size()) {
 | 
						|
		triangle_patch.reserve(numtris);
 | 
						|
		vert_patch_uv.reserve(numverts);
 | 
						|
	}
 | 
						|
 | 
						|
	attributes.resize(true);
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::resize_curves(int numcurves, int numkeys)
 | 
						|
{
 | 
						|
	curve_keys.resize(numkeys);
 | 
						|
	curve_radius.resize(numkeys);
 | 
						|
	curve_first_key.resize(numcurves);
 | 
						|
	curve_shader.resize(numcurves);
 | 
						|
 | 
						|
	curve_attributes.resize();
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::reserve_curves(int numcurves, int numkeys)
 | 
						|
{
 | 
						|
	curve_keys.reserve(numkeys);
 | 
						|
	curve_radius.reserve(numkeys);
 | 
						|
	curve_first_key.reserve(numcurves);
 | 
						|
	curve_shader.reserve(numcurves);
 | 
						|
 | 
						|
	curve_attributes.resize(true);
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::resize_subd_faces(int numfaces, int num_ngons_, int numcorners)
 | 
						|
{
 | 
						|
	subd_faces.resize(numfaces);
 | 
						|
	subd_face_corners.resize(numcorners);
 | 
						|
	num_ngons = num_ngons_;
 | 
						|
 | 
						|
	subd_attributes.resize();
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::reserve_subd_faces(int numfaces, int num_ngons_, int numcorners)
 | 
						|
{
 | 
						|
	subd_faces.reserve(numfaces);
 | 
						|
	subd_face_corners.reserve(numcorners);
 | 
						|
	num_ngons = num_ngons_;
 | 
						|
 | 
						|
	subd_attributes.resize(true);
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::clear(bool preserve_voxel_data)
 | 
						|
{
 | 
						|
	/* clear all verts and triangles */
 | 
						|
	verts.clear();
 | 
						|
	triangles.clear();
 | 
						|
	shader.clear();
 | 
						|
	smooth.clear();
 | 
						|
 | 
						|
	triangle_patch.clear();
 | 
						|
	vert_patch_uv.clear();
 | 
						|
 | 
						|
	curve_keys.clear();
 | 
						|
	curve_radius.clear();
 | 
						|
	curve_first_key.clear();
 | 
						|
	curve_shader.clear();
 | 
						|
 | 
						|
	subd_faces.clear();
 | 
						|
	subd_face_corners.clear();
 | 
						|
 | 
						|
	num_subd_verts = 0;
 | 
						|
 | 
						|
	subd_creases.clear();
 | 
						|
 | 
						|
	curve_attributes.clear();
 | 
						|
	subd_attributes.clear();
 | 
						|
	attributes.clear(preserve_voxel_data);
 | 
						|
 | 
						|
	used_shaders.clear();
 | 
						|
 | 
						|
	if(!preserve_voxel_data) {
 | 
						|
		geometry_flags = GEOMETRY_NONE;
 | 
						|
	}
 | 
						|
 | 
						|
	transform_applied = false;
 | 
						|
	transform_negative_scaled = false;
 | 
						|
	transform_normal = transform_identity();
 | 
						|
 | 
						|
	delete patch_table;
 | 
						|
	patch_table = NULL;
 | 
						|
}
 | 
						|
 | 
						|
int Mesh::split_vertex(int vertex)
 | 
						|
{
 | 
						|
	/* copy vertex location and vertex attributes */
 | 
						|
	add_vertex_slow(verts[vertex]);
 | 
						|
 | 
						|
	foreach(Attribute& attr, attributes.attributes) {
 | 
						|
		if(attr.element == ATTR_ELEMENT_VERTEX) {
 | 
						|
			array<char> tmp(attr.data_sizeof());
 | 
						|
			memcpy(tmp.data(), attr.data() + tmp.size()*vertex, tmp.size());
 | 
						|
			attr.add(tmp.data());
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	foreach(Attribute& attr, subd_attributes.attributes) {
 | 
						|
		if(attr.element == ATTR_ELEMENT_VERTEX) {
 | 
						|
			array<char> tmp(attr.data_sizeof());
 | 
						|
			memcpy(tmp.data(), attr.data() + tmp.size()*vertex, tmp.size());
 | 
						|
			attr.add(tmp.data());
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return verts.size() - 1;
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::add_vertex(float3 P)
 | 
						|
{
 | 
						|
	verts.push_back_reserved(P);
 | 
						|
 | 
						|
	if(subd_faces.size()) {
 | 
						|
		vert_patch_uv.push_back_reserved(make_float2(0.0f, 0.0f));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::add_vertex_slow(float3 P)
 | 
						|
{
 | 
						|
	verts.push_back_slow(P);
 | 
						|
 | 
						|
	if(subd_faces.size()) {
 | 
						|
		vert_patch_uv.push_back_slow(make_float2(0.0f, 0.0f));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_)
 | 
						|
{
 | 
						|
	triangles.push_back_reserved(v0);
 | 
						|
	triangles.push_back_reserved(v1);
 | 
						|
	triangles.push_back_reserved(v2);
 | 
						|
	shader.push_back_reserved(shader_);
 | 
						|
	smooth.push_back_reserved(smooth_);
 | 
						|
 | 
						|
	if(subd_faces.size()) {
 | 
						|
		triangle_patch.push_back_reserved(-1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::add_curve_key(float3 co, float radius)
 | 
						|
{
 | 
						|
	curve_keys.push_back_reserved(co);
 | 
						|
	curve_radius.push_back_reserved(radius);
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::add_curve(int first_key, int shader)
 | 
						|
{
 | 
						|
	curve_first_key.push_back_reserved(first_key);
 | 
						|
	curve_shader.push_back_reserved(shader);
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::add_subd_face(int* corners, int num_corners, int shader_, bool smooth_)
 | 
						|
{
 | 
						|
	int start_corner = subd_face_corners.size();
 | 
						|
 | 
						|
	for(int i = 0; i < num_corners; i++) {
 | 
						|
		subd_face_corners.push_back_reserved(corners[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	int ptex_offset = 0;
 | 
						|
 | 
						|
	if(subd_faces.size()) {
 | 
						|
		SubdFace& s = subd_faces[subd_faces.size()-1];
 | 
						|
		ptex_offset = s.ptex_offset + s.num_ptex_faces();
 | 
						|
	}
 | 
						|
 | 
						|
	SubdFace face = {start_corner, num_corners, shader_, smooth_, ptex_offset};
 | 
						|
	subd_faces.push_back_reserved(face);
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::compute_bounds()
 | 
						|
{
 | 
						|
	BoundBox bnds = BoundBox::empty;
 | 
						|
	size_t verts_size = verts.size();
 | 
						|
	size_t curve_keys_size = curve_keys.size();
 | 
						|
 | 
						|
	if(verts_size + curve_keys_size > 0) {
 | 
						|
		for(size_t i = 0; i < verts_size; i++)
 | 
						|
			bnds.grow(verts[i]);
 | 
						|
 | 
						|
		for(size_t i = 0; i < curve_keys_size; i++)
 | 
						|
			bnds.grow(curve_keys[i], curve_radius[i]);
 | 
						|
 | 
						|
		Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
 | 
						|
		if(use_motion_blur && attr) {
 | 
						|
			size_t steps_size = verts.size() * (motion_steps - 1);
 | 
						|
			float3 *vert_steps = attr->data_float3();
 | 
						|
 | 
						|
			for(size_t i = 0; i < steps_size; i++)
 | 
						|
				bnds.grow(vert_steps[i]);
 | 
						|
		}
 | 
						|
 | 
						|
		Attribute *curve_attr = curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
 | 
						|
		if(use_motion_blur && curve_attr) {
 | 
						|
			size_t steps_size = curve_keys.size() * (motion_steps - 1);
 | 
						|
			float3 *key_steps = curve_attr->data_float3();
 | 
						|
 | 
						|
			for(size_t i = 0; i < steps_size; i++)
 | 
						|
				bnds.grow(key_steps[i]);
 | 
						|
		}
 | 
						|
 | 
						|
		if(!bnds.valid()) {
 | 
						|
			bnds = BoundBox::empty;
 | 
						|
 | 
						|
			/* skip nan or inf coordinates */
 | 
						|
			for(size_t i = 0; i < verts_size; i++)
 | 
						|
				bnds.grow_safe(verts[i]);
 | 
						|
 | 
						|
			for(size_t i = 0; i < curve_keys_size; i++)
 | 
						|
				bnds.grow_safe(curve_keys[i], curve_radius[i]);
 | 
						|
 | 
						|
			if(use_motion_blur && attr) {
 | 
						|
				size_t steps_size = verts.size() * (motion_steps - 1);
 | 
						|
				float3 *vert_steps = attr->data_float3();
 | 
						|
 | 
						|
				for(size_t i = 0; i < steps_size; i++)
 | 
						|
					bnds.grow_safe(vert_steps[i]);
 | 
						|
			}
 | 
						|
 | 
						|
			if(use_motion_blur && curve_attr) {
 | 
						|
				size_t steps_size = curve_keys.size() * (motion_steps - 1);
 | 
						|
				float3 *key_steps = curve_attr->data_float3();
 | 
						|
 | 
						|
				for(size_t i = 0; i < steps_size; i++)
 | 
						|
					bnds.grow_safe(key_steps[i]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if(!bnds.valid()) {
 | 
						|
		/* empty mesh */
 | 
						|
		bnds.grow(make_float3(0.0f, 0.0f, 0.0f));
 | 
						|
	}
 | 
						|
 | 
						|
	bounds = bnds;
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::add_face_normals()
 | 
						|
{
 | 
						|
	/* don't compute if already there */
 | 
						|
	if(attributes.find(ATTR_STD_FACE_NORMAL))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* get attributes */
 | 
						|
	Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL);
 | 
						|
	float3 *fN = attr_fN->data_float3();
 | 
						|
 | 
						|
	/* compute face normals */
 | 
						|
	size_t triangles_size = num_triangles();
 | 
						|
 | 
						|
	if(triangles_size) {
 | 
						|
		float3 *verts_ptr = verts.data();
 | 
						|
 | 
						|
		for(size_t i = 0; i < triangles_size; i++) {
 | 
						|
			fN[i] = get_triangle(i).compute_normal(verts_ptr);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* expected to be in local space */
 | 
						|
	if(transform_applied) {
 | 
						|
		Transform ntfm = transform_inverse(transform_normal);
 | 
						|
 | 
						|
		for(size_t i = 0; i < triangles_size; i++)
 | 
						|
			fN[i] = normalize(transform_direction(&ntfm, fN[i]));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::add_vertex_normals()
 | 
						|
{
 | 
						|
	bool flip = transform_negative_scaled;
 | 
						|
	size_t verts_size = verts.size();
 | 
						|
	size_t triangles_size = num_triangles();
 | 
						|
 | 
						|
	/* static vertex normals */
 | 
						|
	if(!attributes.find(ATTR_STD_VERTEX_NORMAL) && triangles_size) {
 | 
						|
		/* get attributes */
 | 
						|
		Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
 | 
						|
		Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL);
 | 
						|
 | 
						|
		float3 *fN = attr_fN->data_float3();
 | 
						|
		float3 *vN = attr_vN->data_float3();
 | 
						|
 | 
						|
		/* compute vertex normals */
 | 
						|
		memset(vN, 0, verts.size()*sizeof(float3));
 | 
						|
 | 
						|
		for(size_t i = 0; i < triangles_size; i++) {
 | 
						|
			for(size_t j = 0; j < 3; j++) {
 | 
						|
				vN[get_triangle(i).v[j]] += fN[i];
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		for(size_t i = 0; i < verts_size; i++) {
 | 
						|
			vN[i] = normalize(vN[i]);
 | 
						|
			if(flip) {
 | 
						|
				vN[i] = -vN[i];
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* motion vertex normals */
 | 
						|
	Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
 | 
						|
	Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
 | 
						|
 | 
						|
	if(has_motion_blur() && attr_mP && !attr_mN && triangles_size) {
 | 
						|
		/* create attribute */
 | 
						|
		attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
 | 
						|
 | 
						|
		for(int step = 0; step < motion_steps - 1; step++) {
 | 
						|
			float3 *mP = attr_mP->data_float3() + step*verts.size();
 | 
						|
			float3 *mN = attr_mN->data_float3() + step*verts.size();
 | 
						|
 | 
						|
			/* compute */
 | 
						|
			memset(mN, 0, verts.size()*sizeof(float3));
 | 
						|
 | 
						|
			for(size_t i = 0; i < triangles_size; i++) {
 | 
						|
				for(size_t j = 0; j < 3; j++) {
 | 
						|
					float3 fN = get_triangle(i).compute_normal(mP);
 | 
						|
					mN[get_triangle(i).v[j]] += fN;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			for(size_t i = 0; i < verts_size; i++) {
 | 
						|
				mN[i] = normalize(mN[i]);
 | 
						|
				if(flip) {
 | 
						|
					mN[i] = -mN[i];
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* subd vertex normals */
 | 
						|
	if(!subd_attributes.find(ATTR_STD_VERTEX_NORMAL) && subd_faces.size()) {
 | 
						|
		/* get attributes */
 | 
						|
		Attribute *attr_vN = subd_attributes.add(ATTR_STD_VERTEX_NORMAL);
 | 
						|
		float3 *vN = attr_vN->data_float3();
 | 
						|
 | 
						|
		/* compute vertex normals */
 | 
						|
		memset(vN, 0, verts.size()*sizeof(float3));
 | 
						|
 | 
						|
		for(size_t i = 0; i < subd_faces.size(); i++) {
 | 
						|
			SubdFace& face = subd_faces[i];
 | 
						|
			float3 fN = face.normal(this);
 | 
						|
 | 
						|
			for(size_t j = 0; j < face.num_corners; j++) {
 | 
						|
				size_t corner = subd_face_corners[face.start_corner+j];
 | 
						|
				vN[corner] += fN;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		for(size_t i = 0; i < verts_size; i++) {
 | 
						|
			vN[i] = normalize(vN[i]);
 | 
						|
			if(flip) {
 | 
						|
				vN[i] = -vN[i];
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::add_undisplaced()
 | 
						|
{
 | 
						|
	AttributeSet& attrs = (subdivision_type == SUBDIVISION_NONE) ? attributes : subd_attributes;
 | 
						|
 | 
						|
	/* don't compute if already there */
 | 
						|
	if(attrs.find(ATTR_STD_POSITION_UNDISPLACED)) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* get attribute */
 | 
						|
	Attribute *attr = attrs.add(ATTR_STD_POSITION_UNDISPLACED);
 | 
						|
	attr->flags |= ATTR_SUBDIVIDED;
 | 
						|
 | 
						|
	float3 *data = attr->data_float3();
 | 
						|
 | 
						|
	/* copy verts */
 | 
						|
	size_t size = attr->buffer_size(this, (subdivision_type == SUBDIVISION_NONE) ? ATTR_PRIM_TRIANGLE : ATTR_PRIM_SUBD);
 | 
						|
 | 
						|
	/* Center points for ngons aren't stored in Mesh::verts but are included in size since they will be
 | 
						|
	 * calculated later, we subtract them from size here so we don't have an overflow while copying.
 | 
						|
	 */
 | 
						|
	size -= num_ngons * attr->data_sizeof();
 | 
						|
 | 
						|
	if(size) {
 | 
						|
		memcpy(data, verts.data(), size);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::pack_shaders(Scene *scene, uint *tri_shader)
 | 
						|
{
 | 
						|
	uint shader_id = 0;
 | 
						|
	uint last_shader = -1;
 | 
						|
	bool last_smooth = false;
 | 
						|
 | 
						|
	size_t triangles_size = num_triangles();
 | 
						|
	int *shader_ptr = shader.data();
 | 
						|
 | 
						|
	for(size_t i = 0; i < triangles_size; i++) {
 | 
						|
		if(shader_ptr[i] != last_shader || last_smooth != smooth[i]) {
 | 
						|
			last_shader = shader_ptr[i];
 | 
						|
			last_smooth = smooth[i];
 | 
						|
			Shader *shader = (last_shader < used_shaders.size()) ?
 | 
						|
				used_shaders[last_shader] : scene->default_surface;
 | 
						|
			shader_id = scene->shader_manager->get_shader_id(shader, last_smooth);
 | 
						|
		}
 | 
						|
 | 
						|
		tri_shader[i] = shader_id;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::pack_normals(float4 *vnormal)
 | 
						|
{
 | 
						|
	Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
 | 
						|
	if(attr_vN == NULL) {
 | 
						|
		/* Happens on objects with just hair. */
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	bool do_transform = transform_applied;
 | 
						|
	Transform ntfm = transform_normal;
 | 
						|
 | 
						|
	float3 *vN = attr_vN->data_float3();
 | 
						|
	size_t verts_size = verts.size();
 | 
						|
 | 
						|
	for(size_t i = 0; i < verts_size; i++) {
 | 
						|
		float3 vNi = vN[i];
 | 
						|
 | 
						|
		if(do_transform)
 | 
						|
			vNi = safe_normalize(transform_direction(&ntfm, vNi));
 | 
						|
 | 
						|
		vnormal[i] = make_float4(vNi.x, vNi.y, vNi.z, 0.0f);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::pack_verts(const vector<uint>& tri_prim_index,
 | 
						|
                      uint4 *tri_vindex,
 | 
						|
                      uint *tri_patch,
 | 
						|
                      float2 *tri_patch_uv,
 | 
						|
                      size_t vert_offset,
 | 
						|
                      size_t tri_offset)
 | 
						|
{
 | 
						|
	size_t verts_size = verts.size();
 | 
						|
 | 
						|
	if(verts_size && subd_faces.size()) {
 | 
						|
		float2 *vert_patch_uv_ptr = vert_patch_uv.data();
 | 
						|
 | 
						|
		for(size_t i = 0; i < verts_size; i++) {
 | 
						|
			tri_patch_uv[i] = vert_patch_uv_ptr[i];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	size_t triangles_size = num_triangles();
 | 
						|
 | 
						|
	for(size_t i = 0; i < triangles_size; i++) {
 | 
						|
		Triangle t = get_triangle(i);
 | 
						|
		tri_vindex[i] = make_uint4(t.v[0] + vert_offset,
 | 
						|
		                           t.v[1] + vert_offset,
 | 
						|
		                           t.v[2] + vert_offset,
 | 
						|
		                           tri_prim_index[i + tri_offset]);
 | 
						|
 | 
						|
		tri_patch[i] = (!subd_faces.size()) ? -1 : (triangle_patch[i]*8 + patch_offset);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::pack_curves(Scene *scene, float4 *curve_key_co, float4 *curve_data, size_t curvekey_offset)
 | 
						|
{
 | 
						|
	size_t curve_keys_size = curve_keys.size();
 | 
						|
 | 
						|
	/* pack curve keys */
 | 
						|
	if(curve_keys_size) {
 | 
						|
		float3 *keys_ptr = curve_keys.data();
 | 
						|
		float *radius_ptr = curve_radius.data();
 | 
						|
 | 
						|
		for(size_t i = 0; i < curve_keys_size; i++)
 | 
						|
			curve_key_co[i] = make_float4(keys_ptr[i].x, keys_ptr[i].y, keys_ptr[i].z, radius_ptr[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* pack curve segments */
 | 
						|
	size_t curve_num = num_curves();
 | 
						|
 | 
						|
	for(size_t i = 0; i < curve_num; i++) {
 | 
						|
		Curve curve = get_curve(i);
 | 
						|
		int shader_id = curve_shader[i];
 | 
						|
		Shader *shader = (shader_id < used_shaders.size()) ?
 | 
						|
			used_shaders[shader_id] : scene->default_surface;
 | 
						|
		shader_id = scene->shader_manager->get_shader_id(shader, false);
 | 
						|
 | 
						|
		curve_data[i] = make_float4(
 | 
						|
			__int_as_float(curve.first_key + curvekey_offset),
 | 
						|
			__int_as_float(curve.num_keys),
 | 
						|
			__int_as_float(shader_id),
 | 
						|
			0.0f);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::pack_patches(uint *patch_data, uint vert_offset, uint face_offset, uint corner_offset)
 | 
						|
{
 | 
						|
	size_t num_faces = subd_faces.size();
 | 
						|
	int ngons = 0;
 | 
						|
 | 
						|
	for(size_t f = 0; f < num_faces; f++) {
 | 
						|
		SubdFace face = subd_faces[f];
 | 
						|
 | 
						|
		if(face.is_quad()) {
 | 
						|
			int c[4];
 | 
						|
			memcpy(c, &subd_face_corners[face.start_corner], sizeof(int)*4);
 | 
						|
 | 
						|
			*(patch_data++) = c[0] + vert_offset;
 | 
						|
			*(patch_data++) = c[1] + vert_offset;
 | 
						|
			*(patch_data++) = c[2] + vert_offset;
 | 
						|
			*(patch_data++) = c[3] + vert_offset;
 | 
						|
 | 
						|
			*(patch_data++) = f+face_offset;
 | 
						|
			*(patch_data++) = face.num_corners;
 | 
						|
			*(patch_data++) = face.start_corner + corner_offset;
 | 
						|
			*(patch_data++) = 0;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			for(int i = 0; i < face.num_corners; i++) {
 | 
						|
				int c[4];
 | 
						|
				c[0] = subd_face_corners[face.start_corner + mod(i + 0, face.num_corners)];
 | 
						|
				c[1] = subd_face_corners[face.start_corner + mod(i + 1, face.num_corners)];
 | 
						|
				c[2] = verts.size() - num_subd_verts + ngons;
 | 
						|
				c[3] = subd_face_corners[face.start_corner + mod(i - 1, face.num_corners)];
 | 
						|
 | 
						|
				*(patch_data++) = c[0] + vert_offset;
 | 
						|
				*(patch_data++) = c[1] + vert_offset;
 | 
						|
				*(patch_data++) = c[2] + vert_offset;
 | 
						|
				*(patch_data++) = c[3] + vert_offset;
 | 
						|
 | 
						|
				*(patch_data++) = f+face_offset;
 | 
						|
				*(patch_data++) = face.num_corners | (i << 16);
 | 
						|
				*(patch_data++) = face.start_corner + corner_offset;
 | 
						|
				*(patch_data++) = subd_face_corners.size() + ngons + corner_offset;
 | 
						|
			}
 | 
						|
 | 
						|
			ngons++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::compute_bvh(Device *device,
 | 
						|
                       DeviceScene *dscene,
 | 
						|
                       SceneParams *params,
 | 
						|
                       Progress *progress,
 | 
						|
                       int n,
 | 
						|
                       int total)
 | 
						|
{
 | 
						|
	if(progress->get_cancel())
 | 
						|
		return;
 | 
						|
 | 
						|
	compute_bounds();
 | 
						|
 | 
						|
	if(need_build_bvh()) {
 | 
						|
		string msg = "Updating Mesh BVH ";
 | 
						|
		if(name == "")
 | 
						|
			msg += string_printf("%u/%u", (uint)(n+1), (uint)total);
 | 
						|
		else
 | 
						|
			msg += string_printf("%s %u/%u", name.c_str(), (uint)(n+1), (uint)total);
 | 
						|
 | 
						|
		Object object;
 | 
						|
		object.mesh = this;
 | 
						|
 | 
						|
		vector<Object*> objects;
 | 
						|
		objects.push_back(&object);
 | 
						|
 | 
						|
		if(bvh && !need_update_rebuild) {
 | 
						|
			progress->set_status(msg, "Refitting BVH");
 | 
						|
			bvh->objects = objects;
 | 
						|
			bvh->refit(*progress);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			progress->set_status(msg, "Building BVH");
 | 
						|
 | 
						|
			BVHParams bparams;
 | 
						|
			bparams.use_spatial_split = params->use_bvh_spatial_split;
 | 
						|
			bparams.bvh_layout = BVHParams::best_bvh_layout(
 | 
						|
			        params->bvh_layout,
 | 
						|
			        device->get_bvh_layout_mask());
 | 
						|
			bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
 | 
						|
			                              params->use_bvh_unaligned_nodes;
 | 
						|
			bparams.num_motion_triangle_steps = params->num_bvh_time_steps;
 | 
						|
			bparams.num_motion_curve_steps = params->num_bvh_time_steps;
 | 
						|
			bparams.bvh_type = params->bvh_type;
 | 
						|
			bparams.curve_flags = dscene->data.curve.curveflags;
 | 
						|
			bparams.curve_subdivisions = dscene->data.curve.subdivisions;
 | 
						|
 | 
						|
			delete bvh;
 | 
						|
			bvh = BVH::create(bparams, objects);
 | 
						|
			MEM_GUARDED_CALL(progress, bvh->build, *progress);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	need_update = false;
 | 
						|
	need_update_rebuild = false;
 | 
						|
}
 | 
						|
 | 
						|
void Mesh::tag_update(Scene *scene, bool rebuild)
 | 
						|
{
 | 
						|
	need_update = true;
 | 
						|
 | 
						|
	if(rebuild) {
 | 
						|
		need_update_rebuild = true;
 | 
						|
		scene->light_manager->need_update = true;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		foreach(Shader *shader, used_shaders)
 | 
						|
			if(shader->has_surface_emission)
 | 
						|
				scene->light_manager->need_update = true;
 | 
						|
	}
 | 
						|
 | 
						|
	scene->mesh_manager->need_update = true;
 | 
						|
	scene->object_manager->need_update = true;
 | 
						|
}
 | 
						|
 | 
						|
bool Mesh::has_motion_blur() const
 | 
						|
{
 | 
						|
	return (use_motion_blur &&
 | 
						|
	        (attributes.find(ATTR_STD_MOTION_VERTEX_POSITION) ||
 | 
						|
	         curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)));
 | 
						|
}
 | 
						|
 | 
						|
bool Mesh::has_true_displacement() const
 | 
						|
{
 | 
						|
	foreach(Shader *shader, used_shaders) {
 | 
						|
		if(shader->has_displacement && shader->displacement_method != DISPLACE_BUMP) {
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
float Mesh::motion_time(int step) const
 | 
						|
{
 | 
						|
	return (motion_steps > 1) ? 2.0f * step / (motion_steps - 1) - 1.0f : 0.0f;
 | 
						|
}
 | 
						|
 | 
						|
int Mesh::motion_step(float time) const
 | 
						|
{
 | 
						|
	if(motion_steps > 1) {
 | 
						|
		int attr_step = 0;
 | 
						|
 | 
						|
		for(int step = 0; step < motion_steps; step++) {
 | 
						|
			float step_time = motion_time(step);
 | 
						|
			if(step_time == time) {
 | 
						|
				return attr_step;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Center step is stored in a separate attribute. */
 | 
						|
			if(step != motion_steps / 2) {
 | 
						|
				attr_step++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
bool Mesh::need_build_bvh() const
 | 
						|
{
 | 
						|
	return !transform_applied || has_surface_bssrdf;
 | 
						|
}
 | 
						|
 | 
						|
bool Mesh::is_instanced() const
 | 
						|
{
 | 
						|
	/* Currently we treat subsurface objects as instanced.
 | 
						|
	 *
 | 
						|
	 * While it might be not very optimal for ray traversal, it avoids having
 | 
						|
	 * duplicated BVH in the memory, saving quite some space.
 | 
						|
	 */
 | 
						|
	return !transform_applied || has_surface_bssrdf;
 | 
						|
}
 | 
						|
 | 
						|
/* Mesh Manager */
 | 
						|
 | 
						|
MeshManager::MeshManager()
 | 
						|
{
 | 
						|
	need_update = true;
 | 
						|
	need_flags_update = true;
 | 
						|
}
 | 
						|
 | 
						|
MeshManager::~MeshManager()
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::update_osl_attributes(Device *device, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
 | 
						|
{
 | 
						|
#ifdef WITH_OSL
 | 
						|
	/* for OSL, a hash map is used to lookup the attribute by name. */
 | 
						|
	OSLGlobals *og = (OSLGlobals*)device->osl_memory();
 | 
						|
 | 
						|
	og->object_name_map.clear();
 | 
						|
	og->attribute_map.clear();
 | 
						|
	og->object_names.clear();
 | 
						|
 | 
						|
	og->attribute_map.resize(scene->objects.size()*ATTR_PRIM_TYPES);
 | 
						|
 | 
						|
	for(size_t i = 0; i < scene->objects.size(); i++) {
 | 
						|
		/* set object name to object index map */
 | 
						|
		Object *object = scene->objects[i];
 | 
						|
		og->object_name_map[object->name] = i;
 | 
						|
		og->object_names.push_back(object->name);
 | 
						|
 | 
						|
		/* set object attributes */
 | 
						|
		foreach(ParamValue& attr, object->attributes) {
 | 
						|
			OSLGlobals::Attribute osl_attr;
 | 
						|
 | 
						|
			osl_attr.type = attr.type();
 | 
						|
			osl_attr.desc.element = ATTR_ELEMENT_OBJECT;
 | 
						|
			osl_attr.value = attr;
 | 
						|
			osl_attr.desc.offset = 0;
 | 
						|
			osl_attr.desc.flags = 0;
 | 
						|
 | 
						|
			og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][attr.name()] = osl_attr;
 | 
						|
			og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][attr.name()] = osl_attr;
 | 
						|
			og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][attr.name()] = osl_attr;
 | 
						|
		}
 | 
						|
 | 
						|
		/* find mesh attributes */
 | 
						|
		size_t j;
 | 
						|
 | 
						|
		for(j = 0; j < scene->meshes.size(); j++)
 | 
						|
			if(scene->meshes[j] == object->mesh)
 | 
						|
				break;
 | 
						|
 | 
						|
		AttributeRequestSet& attributes = mesh_attributes[j];
 | 
						|
 | 
						|
		/* set object attributes */
 | 
						|
		foreach(AttributeRequest& req, attributes.requests) {
 | 
						|
			OSLGlobals::Attribute osl_attr;
 | 
						|
 | 
						|
			if(req.triangle_desc.element != ATTR_ELEMENT_NONE) {
 | 
						|
				osl_attr.desc = req.triangle_desc;
 | 
						|
 | 
						|
				if(req.triangle_type == TypeDesc::TypeFloat)
 | 
						|
					osl_attr.type = TypeDesc::TypeFloat;
 | 
						|
				else if(req.triangle_type == TypeDesc::TypeMatrix)
 | 
						|
					osl_attr.type = TypeDesc::TypeMatrix;
 | 
						|
				else
 | 
						|
					osl_attr.type = TypeDesc::TypeColor;
 | 
						|
 | 
						|
				if(req.std != ATTR_STD_NONE) {
 | 
						|
					/* if standard attribute, add lookup by geom: name convention */
 | 
						|
					ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
 | 
						|
					og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][stdname] = osl_attr;
 | 
						|
				}
 | 
						|
				else if(req.name != ustring()) {
 | 
						|
					/* add lookup by mesh attribute name */
 | 
						|
					og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][req.name] = osl_attr;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if(req.curve_desc.element != ATTR_ELEMENT_NONE) {
 | 
						|
				osl_attr.desc = req.curve_desc;
 | 
						|
 | 
						|
				if(req.curve_type == TypeDesc::TypeFloat)
 | 
						|
					osl_attr.type = TypeDesc::TypeFloat;
 | 
						|
				else if(req.curve_type == TypeDesc::TypeMatrix)
 | 
						|
					osl_attr.type = TypeDesc::TypeMatrix;
 | 
						|
				else
 | 
						|
					osl_attr.type = TypeDesc::TypeColor;
 | 
						|
 | 
						|
				if(req.std != ATTR_STD_NONE) {
 | 
						|
					/* if standard attribute, add lookup by geom: name convention */
 | 
						|
					ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
 | 
						|
					og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][stdname] = osl_attr;
 | 
						|
				}
 | 
						|
				else if(req.name != ustring()) {
 | 
						|
					/* add lookup by mesh attribute name */
 | 
						|
					og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][req.name] = osl_attr;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if(req.subd_desc.element != ATTR_ELEMENT_NONE) {
 | 
						|
				osl_attr.desc = req.subd_desc;
 | 
						|
 | 
						|
				if(req.subd_type == TypeDesc::TypeFloat)
 | 
						|
					osl_attr.type = TypeDesc::TypeFloat;
 | 
						|
				else if(req.subd_type == TypeDesc::TypeMatrix)
 | 
						|
					osl_attr.type = TypeDesc::TypeMatrix;
 | 
						|
				else
 | 
						|
					osl_attr.type = TypeDesc::TypeColor;
 | 
						|
 | 
						|
				if(req.std != ATTR_STD_NONE) {
 | 
						|
					/* if standard attribute, add lookup by geom: name convention */
 | 
						|
					ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
 | 
						|
					og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][stdname] = osl_attr;
 | 
						|
				}
 | 
						|
				else if(req.name != ustring()) {
 | 
						|
					/* add lookup by mesh attribute name */
 | 
						|
					og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][req.name] = osl_attr;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#else
 | 
						|
	(void) device;
 | 
						|
	(void) scene;
 | 
						|
	(void) mesh_attributes;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::update_svm_attributes(Device *, DeviceScene *dscene, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
 | 
						|
{
 | 
						|
	/* for SVM, the attributes_map table is used to lookup the offset of an
 | 
						|
	 * attribute, based on a unique shader attribute id. */
 | 
						|
 | 
						|
	/* compute array stride */
 | 
						|
	int attr_map_size = 0;
 | 
						|
 | 
						|
	for(size_t i = 0; i < scene->meshes.size(); i++) {
 | 
						|
		Mesh *mesh = scene->meshes[i];
 | 
						|
		mesh->attr_map_offset = attr_map_size;
 | 
						|
		attr_map_size += (mesh_attributes[i].size() + 1)*ATTR_PRIM_TYPES;
 | 
						|
	}
 | 
						|
 | 
						|
	if(attr_map_size == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* create attribute map */
 | 
						|
	uint4 *attr_map = dscene->attributes_map.alloc(attr_map_size);
 | 
						|
	memset(attr_map, 0, dscene->attributes_map.size()*sizeof(uint));
 | 
						|
 | 
						|
	for(size_t i = 0; i < scene->meshes.size(); i++) {
 | 
						|
		Mesh *mesh = scene->meshes[i];
 | 
						|
		AttributeRequestSet& attributes = mesh_attributes[i];
 | 
						|
 | 
						|
		/* set object attributes */
 | 
						|
		int index = mesh->attr_map_offset;
 | 
						|
 | 
						|
		foreach(AttributeRequest& req, attributes.requests) {
 | 
						|
			uint id;
 | 
						|
 | 
						|
			if(req.std == ATTR_STD_NONE)
 | 
						|
				id = scene->shader_manager->get_attribute_id(req.name);
 | 
						|
			else
 | 
						|
				id = scene->shader_manager->get_attribute_id(req.std);
 | 
						|
 | 
						|
			if(mesh->num_triangles()) {
 | 
						|
				attr_map[index].x = id;
 | 
						|
				attr_map[index].y = req.triangle_desc.element;
 | 
						|
				attr_map[index].z = as_uint(req.triangle_desc.offset);
 | 
						|
 | 
						|
				if(req.triangle_type == TypeDesc::TypeFloat)
 | 
						|
					attr_map[index].w = NODE_ATTR_FLOAT;
 | 
						|
				else if(req.triangle_type == TypeDesc::TypeMatrix)
 | 
						|
					attr_map[index].w = NODE_ATTR_MATRIX;
 | 
						|
				else
 | 
						|
					attr_map[index].w = NODE_ATTR_FLOAT3;
 | 
						|
 | 
						|
				attr_map[index].w |= req.triangle_desc.flags << 8;
 | 
						|
			}
 | 
						|
 | 
						|
			index++;
 | 
						|
 | 
						|
			if(mesh->num_curves()) {
 | 
						|
				attr_map[index].x = id;
 | 
						|
				attr_map[index].y = req.curve_desc.element;
 | 
						|
				attr_map[index].z = as_uint(req.curve_desc.offset);
 | 
						|
 | 
						|
				if(req.curve_type == TypeDesc::TypeFloat)
 | 
						|
					attr_map[index].w = NODE_ATTR_FLOAT;
 | 
						|
				else if(req.curve_type == TypeDesc::TypeMatrix)
 | 
						|
					attr_map[index].w = NODE_ATTR_MATRIX;
 | 
						|
				else
 | 
						|
					attr_map[index].w = NODE_ATTR_FLOAT3;
 | 
						|
 | 
						|
				attr_map[index].w |= req.curve_desc.flags << 8;
 | 
						|
			}
 | 
						|
 | 
						|
			index++;
 | 
						|
 | 
						|
			if(mesh->subd_faces.size()) {
 | 
						|
				attr_map[index].x = id;
 | 
						|
				attr_map[index].y = req.subd_desc.element;
 | 
						|
				attr_map[index].z = as_uint(req.subd_desc.offset);
 | 
						|
 | 
						|
				if(req.subd_type == TypeDesc::TypeFloat)
 | 
						|
					attr_map[index].w = NODE_ATTR_FLOAT;
 | 
						|
				else if(req.subd_type == TypeDesc::TypeMatrix)
 | 
						|
					attr_map[index].w = NODE_ATTR_MATRIX;
 | 
						|
				else
 | 
						|
					attr_map[index].w = NODE_ATTR_FLOAT3;
 | 
						|
 | 
						|
				attr_map[index].w |= req.subd_desc.flags << 8;
 | 
						|
			}
 | 
						|
 | 
						|
			index++;
 | 
						|
		}
 | 
						|
 | 
						|
		/* terminator */
 | 
						|
		for(int j = 0; j < ATTR_PRIM_TYPES; j++) {
 | 
						|
			attr_map[index].x = ATTR_STD_NONE;
 | 
						|
			attr_map[index].y = 0;
 | 
						|
			attr_map[index].z = 0;
 | 
						|
			attr_map[index].w = 0;
 | 
						|
 | 
						|
			index++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* copy to device */
 | 
						|
	dscene->attributes_map.copy_to_device();
 | 
						|
}
 | 
						|
 | 
						|
static void update_attribute_element_size(Mesh *mesh,
 | 
						|
                                          Attribute *mattr,
 | 
						|
                                          AttributePrimitive prim,
 | 
						|
                                          size_t *attr_float_size,
 | 
						|
                                          size_t *attr_float3_size,
 | 
						|
                                          size_t *attr_uchar4_size)
 | 
						|
{
 | 
						|
	if(mattr) {
 | 
						|
		size_t size = mattr->element_size(mesh, prim);
 | 
						|
 | 
						|
		if(mattr->element == ATTR_ELEMENT_VOXEL) {
 | 
						|
			/* pass */
 | 
						|
		}
 | 
						|
		else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
 | 
						|
			*attr_uchar4_size += size;
 | 
						|
		}
 | 
						|
		else if(mattr->type == TypeDesc::TypeFloat) {
 | 
						|
			*attr_float_size += size;
 | 
						|
		}
 | 
						|
		else if(mattr->type == TypeDesc::TypeMatrix) {
 | 
						|
			*attr_float3_size += size * 4;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			*attr_float3_size += size;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void update_attribute_element_offset(Mesh *mesh,
 | 
						|
                                            device_vector<float>& attr_float,
 | 
						|
                                            size_t& attr_float_offset,
 | 
						|
                                            device_vector<float4>& attr_float3,
 | 
						|
                                            size_t& attr_float3_offset,
 | 
						|
                                            device_vector<uchar4>& attr_uchar4,
 | 
						|
                                            size_t& attr_uchar4_offset,
 | 
						|
                                            Attribute *mattr,
 | 
						|
                                            AttributePrimitive prim,
 | 
						|
                                            TypeDesc& type,
 | 
						|
                                            AttributeDescriptor& desc)
 | 
						|
{
 | 
						|
	if(mattr) {
 | 
						|
		/* store element and type */
 | 
						|
		desc.element = mattr->element;
 | 
						|
		desc.flags = mattr->flags;
 | 
						|
		type = mattr->type;
 | 
						|
 | 
						|
		/* store attribute data in arrays */
 | 
						|
		size_t size = mattr->element_size(mesh, prim);
 | 
						|
 | 
						|
		AttributeElement& element = desc.element;
 | 
						|
		int& offset = desc.offset;
 | 
						|
 | 
						|
		if(mattr->element == ATTR_ELEMENT_VOXEL) {
 | 
						|
			/* store slot in offset value */
 | 
						|
			VoxelAttribute *voxel_data = mattr->data_voxel();
 | 
						|
			offset = voxel_data->slot;
 | 
						|
		}
 | 
						|
		else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
 | 
						|
			uchar4 *data = mattr->data_uchar4();
 | 
						|
			offset = attr_uchar4_offset;
 | 
						|
 | 
						|
			assert(attr_uchar4.size() >= offset + size);
 | 
						|
			for(size_t k = 0; k < size; k++) {
 | 
						|
				attr_uchar4[offset+k] = data[k];
 | 
						|
			}
 | 
						|
			attr_uchar4_offset += size;
 | 
						|
		}
 | 
						|
		else if(mattr->type == TypeDesc::TypeFloat) {
 | 
						|
			float *data = mattr->data_float();
 | 
						|
			offset = attr_float_offset;
 | 
						|
 | 
						|
			assert(attr_float.size() >= offset + size);
 | 
						|
			for(size_t k = 0; k < size; k++) {
 | 
						|
				attr_float[offset+k] = data[k];
 | 
						|
			}
 | 
						|
			attr_float_offset += size;
 | 
						|
		}
 | 
						|
		else if(mattr->type == TypeDesc::TypeMatrix) {
 | 
						|
			Transform *tfm = mattr->data_transform();
 | 
						|
			offset = attr_float3_offset;
 | 
						|
 | 
						|
			assert(attr_float3.size() >= offset + size * 3);
 | 
						|
			for(size_t k = 0; k < size*3; k++) {
 | 
						|
				attr_float3[offset+k] = (&tfm->x)[k];
 | 
						|
			}
 | 
						|
			attr_float3_offset += size * 3;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			float4 *data = mattr->data_float4();
 | 
						|
			offset = attr_float3_offset;
 | 
						|
 | 
						|
			assert(attr_float3.size() >= offset + size);
 | 
						|
			for(size_t k = 0; k < size; k++) {
 | 
						|
				attr_float3[offset+k] = data[k];
 | 
						|
			}
 | 
						|
			attr_float3_offset += size;
 | 
						|
		}
 | 
						|
 | 
						|
		/* mesh vertex/curve index is global, not per object, so we sneak
 | 
						|
		 * a correction for that in here */
 | 
						|
		if(mesh->subdivision_type == Mesh::SUBDIVISION_CATMULL_CLARK && desc.flags & ATTR_SUBDIVIDED) {
 | 
						|
			/* indices for subdivided attributes are retrieved
 | 
						|
			 * from patch table so no need for correction here*/
 | 
						|
		}
 | 
						|
		else if(element == ATTR_ELEMENT_VERTEX)
 | 
						|
			offset -= mesh->vert_offset;
 | 
						|
		else if(element == ATTR_ELEMENT_VERTEX_MOTION)
 | 
						|
			offset -= mesh->vert_offset;
 | 
						|
		else if(element == ATTR_ELEMENT_FACE) {
 | 
						|
			if(prim == ATTR_PRIM_TRIANGLE)
 | 
						|
				offset -= mesh->tri_offset;
 | 
						|
			else
 | 
						|
				offset -= mesh->face_offset;
 | 
						|
		}
 | 
						|
		else if(element == ATTR_ELEMENT_CORNER || element == ATTR_ELEMENT_CORNER_BYTE) {
 | 
						|
			if(prim == ATTR_PRIM_TRIANGLE)
 | 
						|
				offset -= 3*mesh->tri_offset;
 | 
						|
			else
 | 
						|
				offset -= mesh->corner_offset;
 | 
						|
		}
 | 
						|
		else if(element == ATTR_ELEMENT_CURVE)
 | 
						|
			offset -= mesh->curve_offset;
 | 
						|
		else if(element == ATTR_ELEMENT_CURVE_KEY)
 | 
						|
			offset -= mesh->curvekey_offset;
 | 
						|
		else if(element == ATTR_ELEMENT_CURVE_KEY_MOTION)
 | 
						|
			offset -= mesh->curvekey_offset;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* attribute not found */
 | 
						|
		desc.element = ATTR_ELEMENT_NONE;
 | 
						|
		desc.offset = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::device_update_attributes(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
 | 
						|
{
 | 
						|
	progress.set_status("Updating Mesh", "Computing attributes");
 | 
						|
 | 
						|
	/* gather per mesh requested attributes. as meshes may have multiple
 | 
						|
	 * shaders assigned, this merges the requested attributes that have
 | 
						|
	 * been set per shader by the shader manager */
 | 
						|
	vector<AttributeRequestSet> mesh_attributes(scene->meshes.size());
 | 
						|
 | 
						|
	for(size_t i = 0; i < scene->meshes.size(); i++) {
 | 
						|
		Mesh *mesh = scene->meshes[i];
 | 
						|
 | 
						|
		scene->need_global_attributes(mesh_attributes[i]);
 | 
						|
 | 
						|
		foreach(Shader *shader, mesh->used_shaders) {
 | 
						|
			mesh_attributes[i].add(shader->attributes);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* mesh attribute are stored in a single array per data type. here we fill
 | 
						|
	 * those arrays, and set the offset and element type to create attribute
 | 
						|
	 * maps next */
 | 
						|
 | 
						|
	/* Pre-allocate attributes to avoid arrays re-allocation which would
 | 
						|
	 * take 2x of overall attribute memory usage.
 | 
						|
	 */
 | 
						|
	size_t attr_float_size = 0;
 | 
						|
	size_t attr_float3_size = 0;
 | 
						|
	size_t attr_uchar4_size = 0;
 | 
						|
	for(size_t i = 0; i < scene->meshes.size(); i++) {
 | 
						|
		Mesh *mesh = scene->meshes[i];
 | 
						|
		AttributeRequestSet& attributes = mesh_attributes[i];
 | 
						|
		foreach(AttributeRequest& req, attributes.requests) {
 | 
						|
			Attribute *triangle_mattr = mesh->attributes.find(req);
 | 
						|
			Attribute *curve_mattr = mesh->curve_attributes.find(req);
 | 
						|
			Attribute *subd_mattr = mesh->subd_attributes.find(req);
 | 
						|
 | 
						|
			update_attribute_element_size(mesh,
 | 
						|
			                              triangle_mattr,
 | 
						|
			                              ATTR_PRIM_TRIANGLE,
 | 
						|
			                              &attr_float_size,
 | 
						|
			                              &attr_float3_size,
 | 
						|
			                              &attr_uchar4_size);
 | 
						|
			update_attribute_element_size(mesh,
 | 
						|
			                              curve_mattr,
 | 
						|
			                              ATTR_PRIM_CURVE,
 | 
						|
			                              &attr_float_size,
 | 
						|
			                              &attr_float3_size,
 | 
						|
			                              &attr_uchar4_size);
 | 
						|
			update_attribute_element_size(mesh,
 | 
						|
			                              subd_mattr,
 | 
						|
			                              ATTR_PRIM_SUBD,
 | 
						|
			                              &attr_float_size,
 | 
						|
			                              &attr_float3_size,
 | 
						|
			                              &attr_uchar4_size);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	dscene->attributes_float.alloc(attr_float_size);
 | 
						|
	dscene->attributes_float3.alloc(attr_float3_size);
 | 
						|
	dscene->attributes_uchar4.alloc(attr_uchar4_size);
 | 
						|
 | 
						|
	size_t attr_float_offset = 0;
 | 
						|
	size_t attr_float3_offset = 0;
 | 
						|
	size_t attr_uchar4_offset = 0;
 | 
						|
 | 
						|
	/* Fill in attributes. */
 | 
						|
	for(size_t i = 0; i < scene->meshes.size(); i++) {
 | 
						|
		Mesh *mesh = scene->meshes[i];
 | 
						|
		AttributeRequestSet& attributes = mesh_attributes[i];
 | 
						|
 | 
						|
		/* todo: we now store std and name attributes from requests even if
 | 
						|
		 * they actually refer to the same mesh attributes, optimize */
 | 
						|
		foreach(AttributeRequest& req, attributes.requests) {
 | 
						|
			Attribute *triangle_mattr = mesh->attributes.find(req);
 | 
						|
			Attribute *curve_mattr = mesh->curve_attributes.find(req);
 | 
						|
			Attribute *subd_mattr = mesh->subd_attributes.find(req);
 | 
						|
 | 
						|
			update_attribute_element_offset(mesh,
 | 
						|
			                                dscene->attributes_float, attr_float_offset,
 | 
						|
			                                dscene->attributes_float3, attr_float3_offset,
 | 
						|
			                                dscene->attributes_uchar4, attr_uchar4_offset,
 | 
						|
			                                triangle_mattr,
 | 
						|
			                                ATTR_PRIM_TRIANGLE,
 | 
						|
			                                req.triangle_type,
 | 
						|
			                                req.triangle_desc);
 | 
						|
 | 
						|
			update_attribute_element_offset(mesh,
 | 
						|
			                                dscene->attributes_float, attr_float_offset,
 | 
						|
			                                dscene->attributes_float3, attr_float3_offset,
 | 
						|
			                                dscene->attributes_uchar4, attr_uchar4_offset,
 | 
						|
			                                curve_mattr,
 | 
						|
			                                ATTR_PRIM_CURVE,
 | 
						|
			                                req.curve_type,
 | 
						|
			                                req.curve_desc);
 | 
						|
 | 
						|
			update_attribute_element_offset(mesh,
 | 
						|
			                                dscene->attributes_float, attr_float_offset,
 | 
						|
			                                dscene->attributes_float3, attr_float3_offset,
 | 
						|
			                                dscene->attributes_uchar4, attr_uchar4_offset,
 | 
						|
			                                subd_mattr,
 | 
						|
			                                ATTR_PRIM_SUBD,
 | 
						|
			                                req.subd_type,
 | 
						|
			                                req.subd_desc);
 | 
						|
 | 
						|
			if(progress.get_cancel()) return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* create attribute lookup maps */
 | 
						|
	if(scene->shader_manager->use_osl())
 | 
						|
		update_osl_attributes(device, scene, mesh_attributes);
 | 
						|
 | 
						|
	update_svm_attributes(device, dscene, scene, mesh_attributes);
 | 
						|
 | 
						|
	if(progress.get_cancel()) return;
 | 
						|
 | 
						|
	/* copy to device */
 | 
						|
	progress.set_status("Updating Mesh", "Copying Attributes to device");
 | 
						|
 | 
						|
	if(dscene->attributes_float.size()) {
 | 
						|
		dscene->attributes_float.copy_to_device();
 | 
						|
	}
 | 
						|
	if(dscene->attributes_float3.size()) {
 | 
						|
		dscene->attributes_float3.copy_to_device();
 | 
						|
	}
 | 
						|
	if(dscene->attributes_uchar4.size()) {
 | 
						|
		dscene->attributes_uchar4.copy_to_device();
 | 
						|
	}
 | 
						|
 | 
						|
	if(progress.get_cancel()) return;
 | 
						|
 | 
						|
	/* After mesh attributes and patch tables have been copied to device memory,
 | 
						|
	 * we need to update offsets in the objects. */
 | 
						|
	scene->object_manager->device_update_mesh_offsets(device, dscene, scene);
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::mesh_calc_offset(Scene *scene)
 | 
						|
{
 | 
						|
	size_t vert_size = 0;
 | 
						|
	size_t tri_size = 0;
 | 
						|
 | 
						|
	size_t curve_key_size = 0;
 | 
						|
	size_t curve_size = 0;
 | 
						|
 | 
						|
	size_t patch_size = 0;
 | 
						|
	size_t face_size = 0;
 | 
						|
	size_t corner_size = 0;
 | 
						|
 | 
						|
	foreach(Mesh *mesh, scene->meshes) {
 | 
						|
		mesh->vert_offset = vert_size;
 | 
						|
		mesh->tri_offset = tri_size;
 | 
						|
 | 
						|
		mesh->curvekey_offset = curve_key_size;
 | 
						|
		mesh->curve_offset = curve_size;
 | 
						|
 | 
						|
		mesh->patch_offset = patch_size;
 | 
						|
		mesh->face_offset = face_size;
 | 
						|
		mesh->corner_offset = corner_size;
 | 
						|
 | 
						|
		vert_size += mesh->verts.size();
 | 
						|
		tri_size += mesh->num_triangles();
 | 
						|
 | 
						|
		curve_key_size += mesh->curve_keys.size();
 | 
						|
		curve_size += mesh->num_curves();
 | 
						|
 | 
						|
		if(mesh->subd_faces.size()) {
 | 
						|
			Mesh::SubdFace& last = mesh->subd_faces[mesh->subd_faces.size()-1];
 | 
						|
			patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
 | 
						|
 | 
						|
			/* patch tables are stored in same array so include them in patch_size */
 | 
						|
			if(mesh->patch_table) {
 | 
						|
				mesh->patch_table_offset = patch_size;
 | 
						|
				patch_size += mesh->patch_table->total_size();
 | 
						|
			}
 | 
						|
		}
 | 
						|
		face_size += mesh->subd_faces.size();
 | 
						|
		corner_size += mesh->subd_face_corners.size();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::device_update_mesh(Device *,
 | 
						|
                                     DeviceScene *dscene,
 | 
						|
                                     Scene *scene,
 | 
						|
                                     bool for_displacement,
 | 
						|
                                     Progress& progress)
 | 
						|
{
 | 
						|
	/* Count. */
 | 
						|
	size_t vert_size = 0;
 | 
						|
	size_t tri_size = 0;
 | 
						|
 | 
						|
	size_t curve_key_size = 0;
 | 
						|
	size_t curve_size = 0;
 | 
						|
 | 
						|
	size_t patch_size = 0;
 | 
						|
 | 
						|
	foreach(Mesh *mesh, scene->meshes) {
 | 
						|
		vert_size += mesh->verts.size();
 | 
						|
		tri_size += mesh->num_triangles();
 | 
						|
 | 
						|
		curve_key_size += mesh->curve_keys.size();
 | 
						|
		curve_size += mesh->num_curves();
 | 
						|
 | 
						|
		if(mesh->subd_faces.size()) {
 | 
						|
			Mesh::SubdFace& last = mesh->subd_faces[mesh->subd_faces.size()-1];
 | 
						|
			patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
 | 
						|
 | 
						|
			/* patch tables are stored in same array so include them in patch_size */
 | 
						|
			if(mesh->patch_table) {
 | 
						|
				mesh->patch_table_offset = patch_size;
 | 
						|
				patch_size += mesh->patch_table->total_size();
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Create mapping from triangle to primitive triangle array. */
 | 
						|
	vector<uint> tri_prim_index(tri_size);
 | 
						|
	if(for_displacement) {
 | 
						|
		/* For displacement kernels we do some trickery to make them believe
 | 
						|
		 * we've got all required data ready. However, that data is different
 | 
						|
		 * from final render kernels since we don't have BVH yet, so can't
 | 
						|
		 * really use same semantic of arrays.
 | 
						|
		 */
 | 
						|
		foreach(Mesh *mesh, scene->meshes) {
 | 
						|
			for(size_t i = 0; i < mesh->num_triangles(); ++i) {
 | 
						|
				tri_prim_index[i + mesh->tri_offset] = 3 * (i + mesh->tri_offset);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		for(size_t i = 0; i < dscene->prim_index.size(); ++i) {
 | 
						|
			if((dscene->prim_type[i] & PRIMITIVE_ALL_TRIANGLE) != 0) {
 | 
						|
				tri_prim_index[dscene->prim_index[i]] = dscene->prim_tri_index[i];
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fill in all the arrays. */
 | 
						|
	if(tri_size != 0) {
 | 
						|
		/* normals */
 | 
						|
		progress.set_status("Updating Mesh", "Computing normals");
 | 
						|
 | 
						|
		uint *tri_shader = dscene->tri_shader.alloc(tri_size);
 | 
						|
		float4 *vnormal = dscene->tri_vnormal.alloc(vert_size);
 | 
						|
		uint4 *tri_vindex = dscene->tri_vindex.alloc(tri_size);
 | 
						|
		uint *tri_patch = dscene->tri_patch.alloc(tri_size);
 | 
						|
		float2 *tri_patch_uv = dscene->tri_patch_uv.alloc(vert_size);
 | 
						|
 | 
						|
		foreach(Mesh *mesh, scene->meshes) {
 | 
						|
			mesh->pack_shaders(scene,
 | 
						|
			                   &tri_shader[mesh->tri_offset]);
 | 
						|
			mesh->pack_normals(&vnormal[mesh->vert_offset]);
 | 
						|
			mesh->pack_verts(tri_prim_index,
 | 
						|
			                 &tri_vindex[mesh->tri_offset],
 | 
						|
			                 &tri_patch[mesh->tri_offset],
 | 
						|
			                 &tri_patch_uv[mesh->vert_offset],
 | 
						|
			                 mesh->vert_offset,
 | 
						|
			                 mesh->tri_offset);
 | 
						|
			if(progress.get_cancel()) return;
 | 
						|
		}
 | 
						|
 | 
						|
		/* vertex coordinates */
 | 
						|
		progress.set_status("Updating Mesh", "Copying Mesh to device");
 | 
						|
 | 
						|
		dscene->tri_shader.copy_to_device();
 | 
						|
		dscene->tri_vnormal.copy_to_device();
 | 
						|
		dscene->tri_vindex.copy_to_device();
 | 
						|
		dscene->tri_patch.copy_to_device();
 | 
						|
		dscene->tri_patch_uv.copy_to_device();
 | 
						|
	}
 | 
						|
 | 
						|
	if(curve_size != 0) {
 | 
						|
		progress.set_status("Updating Mesh", "Copying Strands to device");
 | 
						|
 | 
						|
		float4 *curve_keys = dscene->curve_keys.alloc(curve_key_size);
 | 
						|
		float4 *curves = dscene->curves.alloc(curve_size);
 | 
						|
 | 
						|
		foreach(Mesh *mesh, scene->meshes) {
 | 
						|
			mesh->pack_curves(scene, &curve_keys[mesh->curvekey_offset], &curves[mesh->curve_offset], mesh->curvekey_offset);
 | 
						|
			if(progress.get_cancel()) return;
 | 
						|
		}
 | 
						|
 | 
						|
		dscene->curve_keys.copy_to_device();
 | 
						|
		dscene->curves.copy_to_device();
 | 
						|
	}
 | 
						|
 | 
						|
	if(patch_size != 0) {
 | 
						|
		progress.set_status("Updating Mesh", "Copying Patches to device");
 | 
						|
 | 
						|
		uint *patch_data = dscene->patches.alloc(patch_size);
 | 
						|
 | 
						|
		foreach(Mesh *mesh, scene->meshes) {
 | 
						|
			mesh->pack_patches(&patch_data[mesh->patch_offset], mesh->vert_offset, mesh->face_offset, mesh->corner_offset);
 | 
						|
 | 
						|
			if(mesh->patch_table) {
 | 
						|
				mesh->patch_table->copy_adjusting_offsets(&patch_data[mesh->patch_table_offset], mesh->patch_table_offset);
 | 
						|
			}
 | 
						|
 | 
						|
			if(progress.get_cancel()) return;
 | 
						|
		}
 | 
						|
 | 
						|
		dscene->patches.copy_to_device();
 | 
						|
	}
 | 
						|
 | 
						|
	if(for_displacement) {
 | 
						|
		float4 *prim_tri_verts = dscene->prim_tri_verts.alloc(tri_size * 3);
 | 
						|
		foreach(Mesh *mesh, scene->meshes) {
 | 
						|
			for(size_t i = 0; i < mesh->num_triangles(); ++i) {
 | 
						|
				Mesh::Triangle t = mesh->get_triangle(i);
 | 
						|
				size_t offset = 3 * (i + mesh->tri_offset);
 | 
						|
				prim_tri_verts[offset + 0] = float3_to_float4(mesh->verts[t.v[0]]);
 | 
						|
				prim_tri_verts[offset + 1] = float3_to_float4(mesh->verts[t.v[1]]);
 | 
						|
				prim_tri_verts[offset + 2] = float3_to_float4(mesh->verts[t.v[2]]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		dscene->prim_tri_verts.copy_to_device();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::device_update_bvh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
 | 
						|
{
 | 
						|
	/* bvh build */
 | 
						|
	progress.set_status("Updating Scene BVH", "Building");
 | 
						|
 | 
						|
	BVHParams bparams;
 | 
						|
	bparams.top_level = true;
 | 
						|
	bparams.bvh_layout = BVHParams::best_bvh_layout(
 | 
						|
	        scene->params.bvh_layout,
 | 
						|
	        device->get_bvh_layout_mask());
 | 
						|
	bparams.use_spatial_split = scene->params.use_bvh_spatial_split;
 | 
						|
	bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
 | 
						|
	                              scene->params.use_bvh_unaligned_nodes;
 | 
						|
	bparams.num_motion_triangle_steps = scene->params.num_bvh_time_steps;
 | 
						|
	bparams.num_motion_curve_steps = scene->params.num_bvh_time_steps;
 | 
						|
	bparams.bvh_type = scene->params.bvh_type;
 | 
						|
	bparams.curve_flags = dscene->data.curve.curveflags;
 | 
						|
	bparams.curve_subdivisions = dscene->data.curve.subdivisions;
 | 
						|
 | 
						|
	VLOG(1) << "Using " << bvh_layout_name(bparams.bvh_layout)
 | 
						|
	        << " layout.";
 | 
						|
 | 
						|
#ifdef WITH_EMBREE
 | 
						|
	if(bparams.bvh_layout == BVH_LAYOUT_EMBREE) {
 | 
						|
		if(dscene->data.bvh.scene) {
 | 
						|
			BVHEmbree::destroy(dscene->data.bvh.scene);
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	BVH *bvh = BVH::create(bparams, scene->objects);
 | 
						|
	bvh->build(progress, &device->stats);
 | 
						|
 | 
						|
	if(progress.get_cancel()) {
 | 
						|
#ifdef WITH_EMBREE
 | 
						|
		if(bparams.bvh_layout == BVH_LAYOUT_EMBREE) {
 | 
						|
			if(dscene->data.bvh.scene) {
 | 
						|
				BVHEmbree::destroy(dscene->data.bvh.scene);
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
		delete bvh;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* copy to device */
 | 
						|
	progress.set_status("Updating Scene BVH", "Copying BVH to device");
 | 
						|
 | 
						|
	PackedBVH& pack = bvh->pack;
 | 
						|
 | 
						|
	if(pack.nodes.size()) {
 | 
						|
		dscene->bvh_nodes.steal_data(pack.nodes);
 | 
						|
		dscene->bvh_nodes.copy_to_device();
 | 
						|
	}
 | 
						|
	if(pack.leaf_nodes.size()) {
 | 
						|
		dscene->bvh_leaf_nodes.steal_data(pack.leaf_nodes);
 | 
						|
		dscene->bvh_leaf_nodes.copy_to_device();
 | 
						|
	}
 | 
						|
	if(pack.object_node.size()) {
 | 
						|
		dscene->object_node.steal_data(pack.object_node);
 | 
						|
		dscene->object_node.copy_to_device();
 | 
						|
	}
 | 
						|
	if(pack.prim_tri_index.size()) {
 | 
						|
		dscene->prim_tri_index.steal_data(pack.prim_tri_index);
 | 
						|
		dscene->prim_tri_index.copy_to_device();
 | 
						|
	}
 | 
						|
	if(pack.prim_tri_verts.size()) {
 | 
						|
		dscene->prim_tri_verts.steal_data(pack.prim_tri_verts);
 | 
						|
		dscene->prim_tri_verts.copy_to_device();
 | 
						|
	}
 | 
						|
	if(pack.prim_type.size()) {
 | 
						|
		dscene->prim_type.steal_data(pack.prim_type);
 | 
						|
		dscene->prim_type.copy_to_device();
 | 
						|
	}
 | 
						|
	if(pack.prim_visibility.size()) {
 | 
						|
		dscene->prim_visibility.steal_data(pack.prim_visibility);
 | 
						|
		dscene->prim_visibility.copy_to_device();
 | 
						|
	}
 | 
						|
	if(pack.prim_index.size()) {
 | 
						|
		dscene->prim_index.steal_data(pack.prim_index);
 | 
						|
		dscene->prim_index.copy_to_device();
 | 
						|
	}
 | 
						|
	if(pack.prim_object.size()) {
 | 
						|
		dscene->prim_object.steal_data(pack.prim_object);
 | 
						|
		dscene->prim_object.copy_to_device();
 | 
						|
	}
 | 
						|
	if(pack.prim_time.size()) {
 | 
						|
		dscene->prim_time.steal_data(pack.prim_time);
 | 
						|
		dscene->prim_time.copy_to_device();
 | 
						|
	}
 | 
						|
 | 
						|
	dscene->data.bvh.root = pack.root_index;
 | 
						|
	dscene->data.bvh.bvh_layout = bparams.bvh_layout;
 | 
						|
	dscene->data.bvh.use_bvh_steps = (scene->params.num_bvh_time_steps != 0);
 | 
						|
 | 
						|
 | 
						|
#ifdef WITH_EMBREE
 | 
						|
	if(bparams.bvh_layout == BVH_LAYOUT_EMBREE) {
 | 
						|
		dscene->data.bvh.scene = ((BVHEmbree*)bvh)->scene;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		dscene->data.bvh.scene = NULL;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	delete bvh;
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::device_update_preprocess(Device *device,
 | 
						|
                                           Scene *scene,
 | 
						|
                                           Progress& progress)
 | 
						|
{
 | 
						|
	if(!need_update && !need_flags_update) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	progress.set_status("Updating Meshes Flags");
 | 
						|
 | 
						|
	/* Update flags. */
 | 
						|
	bool volume_images_updated = false;
 | 
						|
 | 
						|
	foreach(Mesh *mesh, scene->meshes) {
 | 
						|
		mesh->has_volume = false;
 | 
						|
 | 
						|
		foreach(const Shader *shader, mesh->used_shaders) {
 | 
						|
			if(shader->has_volume) {
 | 
						|
				mesh->has_volume = true;
 | 
						|
			}
 | 
						|
			if(shader->has_surface_bssrdf) {
 | 
						|
				mesh->has_surface_bssrdf = true;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if(need_update && mesh->has_volume) {
 | 
						|
			/* Create volume meshes if there is voxel data. */
 | 
						|
			bool has_voxel_attributes = false;
 | 
						|
 | 
						|
			foreach(Attribute& attr, mesh->attributes.attributes) {
 | 
						|
				if(attr.element == ATTR_ELEMENT_VOXEL) {
 | 
						|
					has_voxel_attributes = true;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if(has_voxel_attributes) {
 | 
						|
				if(!volume_images_updated) {
 | 
						|
					progress.set_status("Updating Meshes Volume Bounds");
 | 
						|
					device_update_volume_images(device, scene, progress);
 | 
						|
					volume_images_updated = true;
 | 
						|
				}
 | 
						|
 | 
						|
				create_volume_mesh(scene, mesh, progress);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	need_flags_update = false;
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::device_update_displacement_images(Device *device,
 | 
						|
                                                    Scene *scene,
 | 
						|
                                                    Progress& progress)
 | 
						|
{
 | 
						|
	progress.set_status("Updating Displacement Images");
 | 
						|
	TaskPool pool;
 | 
						|
	ImageManager *image_manager = scene->image_manager;
 | 
						|
	set<int> bump_images;
 | 
						|
	foreach(Mesh *mesh, scene->meshes) {
 | 
						|
		if(mesh->need_update) {
 | 
						|
			foreach(Shader *shader, mesh->used_shaders) {
 | 
						|
				if(!shader->has_displacement || shader->displacement_method == DISPLACE_BUMP) {
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
				foreach(ShaderNode* node, shader->graph->nodes) {
 | 
						|
					if(node->special_type != SHADER_SPECIAL_TYPE_IMAGE_SLOT) {
 | 
						|
						continue;
 | 
						|
					}
 | 
						|
 | 
						|
					ImageSlotTextureNode *image_node = static_cast<ImageSlotTextureNode*>(node);
 | 
						|
					int slot = image_node->slot;
 | 
						|
					if(slot != -1) {
 | 
						|
						bump_images.insert(slot);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	foreach(int slot, bump_images) {
 | 
						|
		pool.push(function_bind(&ImageManager::device_update_slot,
 | 
						|
		                        image_manager,
 | 
						|
		                        device,
 | 
						|
		                        scene,
 | 
						|
		                        slot,
 | 
						|
		                        &progress));
 | 
						|
	}
 | 
						|
	pool.wait_work();
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::device_update_volume_images(Device *device,
 | 
						|
                                              Scene *scene,
 | 
						|
                                              Progress& progress)
 | 
						|
{
 | 
						|
	progress.set_status("Updating Volume Images");
 | 
						|
	TaskPool pool;
 | 
						|
	ImageManager *image_manager = scene->image_manager;
 | 
						|
	set<int> volume_images;
 | 
						|
 | 
						|
	foreach(Mesh *mesh, scene->meshes) {
 | 
						|
		if(!mesh->need_update) {
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		foreach(Attribute& attr, mesh->attributes.attributes) {
 | 
						|
			if(attr.element != ATTR_ELEMENT_VOXEL) {
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			VoxelAttribute *voxel = attr.data_voxel();
 | 
						|
 | 
						|
			if(voxel->slot != -1) {
 | 
						|
				volume_images.insert(voxel->slot);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	foreach(int slot, volume_images) {
 | 
						|
		pool.push(function_bind(&ImageManager::device_update_slot,
 | 
						|
		                        image_manager,
 | 
						|
		                        device,
 | 
						|
		                        scene,
 | 
						|
		                        slot,
 | 
						|
		                        &progress));
 | 
						|
	}
 | 
						|
	pool.wait_work();
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
 | 
						|
{
 | 
						|
	if(!need_update)
 | 
						|
		return;
 | 
						|
 | 
						|
	VLOG(1) << "Total " << scene->meshes.size() << " meshes.";
 | 
						|
 | 
						|
	bool true_displacement_used = false;
 | 
						|
	size_t total_tess_needed = 0;
 | 
						|
 | 
						|
	foreach(Mesh *mesh, scene->meshes) {
 | 
						|
		foreach(Shader *shader, mesh->used_shaders) {
 | 
						|
			if(shader->need_update_mesh)
 | 
						|
				mesh->need_update = true;
 | 
						|
		}
 | 
						|
 | 
						|
		if(mesh->need_update) {
 | 
						|
			/* Update normals. */
 | 
						|
			mesh->add_face_normals();
 | 
						|
			mesh->add_vertex_normals();
 | 
						|
 | 
						|
			if(mesh->need_attribute(scene, ATTR_STD_POSITION_UNDISPLACED)) {
 | 
						|
				mesh->add_undisplaced();
 | 
						|
			}
 | 
						|
 | 
						|
			/* Test if we need tesselation. */
 | 
						|
			if(mesh->subdivision_type != Mesh::SUBDIVISION_NONE &&
 | 
						|
			   mesh->num_subd_verts == 0 &&
 | 
						|
			   mesh->subd_params)
 | 
						|
			{
 | 
						|
				total_tess_needed++;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Test if we need displacement. */
 | 
						|
			if(mesh->has_true_displacement()) {
 | 
						|
				true_displacement_used = true;
 | 
						|
			}
 | 
						|
 | 
						|
			if(progress.get_cancel()) return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Tessellate meshes that are using subdivision */
 | 
						|
	if(total_tess_needed) {
 | 
						|
		size_t i = 0;
 | 
						|
		foreach(Mesh *mesh, scene->meshes) {
 | 
						|
			if(mesh->need_update &&
 | 
						|
			   mesh->subdivision_type != Mesh::SUBDIVISION_NONE &&
 | 
						|
			   mesh->num_subd_verts == 0 &&
 | 
						|
			   mesh->subd_params)
 | 
						|
			{
 | 
						|
				string msg = "Tessellating ";
 | 
						|
				if(mesh->name == "")
 | 
						|
					msg += string_printf("%u/%u", (uint)(i+1), (uint)total_tess_needed);
 | 
						|
				else
 | 
						|
					msg += string_printf("%s %u/%u", mesh->name.c_str(), (uint)(i+1), (uint)total_tess_needed);
 | 
						|
 | 
						|
				progress.set_status("Updating Mesh", msg);
 | 
						|
 | 
						|
				DiagSplit dsplit(*mesh->subd_params);
 | 
						|
				mesh->tessellate(&dsplit);
 | 
						|
 | 
						|
				i++;
 | 
						|
 | 
						|
				if(progress.get_cancel()) return;
 | 
						|
			}
 | 
						|
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Update images needed for true displacement. */
 | 
						|
	bool old_need_object_flags_update = false;
 | 
						|
	if(true_displacement_used) {
 | 
						|
		VLOG(1) << "Updating images used for true displacement.";
 | 
						|
		device_update_displacement_images(device, scene, progress);
 | 
						|
		old_need_object_flags_update = scene->object_manager->need_flags_update;
 | 
						|
		scene->object_manager->device_update_flags(device,
 | 
						|
		                                           dscene,
 | 
						|
		                                           scene,
 | 
						|
		                                           progress,
 | 
						|
		                                           false);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Device update. */
 | 
						|
	device_free(device, dscene);
 | 
						|
 | 
						|
	mesh_calc_offset(scene);
 | 
						|
	if(true_displacement_used) {
 | 
						|
		device_update_mesh(device, dscene, scene, true, progress);
 | 
						|
	}
 | 
						|
	if(progress.get_cancel()) return;
 | 
						|
 | 
						|
	device_update_attributes(device, dscene, scene, progress);
 | 
						|
	if(progress.get_cancel()) return;
 | 
						|
 | 
						|
	/* Update displacement. */
 | 
						|
	bool displacement_done = false;
 | 
						|
	size_t num_bvh = 0;
 | 
						|
 | 
						|
	foreach(Mesh *mesh, scene->meshes) {
 | 
						|
		if(mesh->need_update) {
 | 
						|
			if(displace(device, dscene, scene, mesh, progress)) {
 | 
						|
				displacement_done = true;
 | 
						|
			}
 | 
						|
 | 
						|
			if(mesh->need_build_bvh()) {
 | 
						|
				num_bvh++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if(progress.get_cancel()) return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Device re-update after displacement. */
 | 
						|
	if(displacement_done) {
 | 
						|
		device_free(device, dscene);
 | 
						|
 | 
						|
		device_update_attributes(device, dscene, scene, progress);
 | 
						|
		if(progress.get_cancel()) return;
 | 
						|
	}
 | 
						|
 | 
						|
	TaskPool pool;
 | 
						|
 | 
						|
	size_t i = 0;
 | 
						|
	foreach(Mesh *mesh, scene->meshes) {
 | 
						|
		if(mesh->need_update) {
 | 
						|
			pool.push(function_bind(&Mesh::compute_bvh,
 | 
						|
			                        mesh,
 | 
						|
			                        device,
 | 
						|
			                        dscene,
 | 
						|
			                        &scene->params,
 | 
						|
			                        &progress,
 | 
						|
			                        i,
 | 
						|
			                        num_bvh));
 | 
						|
			if(mesh->need_build_bvh()) {
 | 
						|
				i++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	TaskPool::Summary summary;
 | 
						|
	pool.wait_work(&summary);
 | 
						|
	VLOG(2) << "Objects BVH build pool statistics:\n"
 | 
						|
	        << summary.full_report();
 | 
						|
 | 
						|
	foreach(Shader *shader, scene->shaders) {
 | 
						|
		shader->need_update_mesh = false;
 | 
						|
	}
 | 
						|
 | 
						|
	Scene::MotionType need_motion = scene->need_motion();
 | 
						|
	bool motion_blur = need_motion == Scene::MOTION_BLUR;
 | 
						|
 | 
						|
	/* Update objects. */
 | 
						|
	vector<Object *> volume_objects;
 | 
						|
	foreach(Object *object, scene->objects) {
 | 
						|
		object->compute_bounds(motion_blur);
 | 
						|
	}
 | 
						|
 | 
						|
	if(progress.get_cancel()) return;
 | 
						|
 | 
						|
	device_update_bvh(device, dscene, scene, progress);
 | 
						|
	if(progress.get_cancel()) return;
 | 
						|
 | 
						|
	device_update_mesh(device, dscene, scene, false, progress);
 | 
						|
	if(progress.get_cancel()) return;
 | 
						|
 | 
						|
	need_update = false;
 | 
						|
 | 
						|
	if(true_displacement_used) {
 | 
						|
		/* Re-tag flags for update, so they're re-evaluated
 | 
						|
		 * for meshes with correct bounding boxes.
 | 
						|
		 *
 | 
						|
		 * This wouldn't cause wrong results, just true
 | 
						|
		 * displacement might be less optimal ot calculate.
 | 
						|
		 */
 | 
						|
		scene->object_manager->need_flags_update = old_need_object_flags_update;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::device_free(Device *device, DeviceScene *dscene)
 | 
						|
{
 | 
						|
	dscene->bvh_nodes.free();
 | 
						|
	dscene->bvh_leaf_nodes.free();
 | 
						|
	dscene->object_node.free();
 | 
						|
	dscene->prim_tri_verts.free();
 | 
						|
	dscene->prim_tri_index.free();
 | 
						|
	dscene->prim_type.free();
 | 
						|
	dscene->prim_visibility.free();
 | 
						|
	dscene->prim_index.free();
 | 
						|
	dscene->prim_object.free();
 | 
						|
	dscene->prim_time.free();
 | 
						|
	dscene->tri_shader.free();
 | 
						|
	dscene->tri_vnormal.free();
 | 
						|
	dscene->tri_vindex.free();
 | 
						|
	dscene->tri_patch.free();
 | 
						|
	dscene->tri_patch_uv.free();
 | 
						|
	dscene->curves.free();
 | 
						|
	dscene->curve_keys.free();
 | 
						|
	dscene->patches.free();
 | 
						|
	dscene->attributes_map.free();
 | 
						|
	dscene->attributes_float.free();
 | 
						|
	dscene->attributes_float3.free();
 | 
						|
	dscene->attributes_uchar4.free();
 | 
						|
 | 
						|
#ifdef WITH_OSL
 | 
						|
	OSLGlobals *og = (OSLGlobals*)device->osl_memory();
 | 
						|
 | 
						|
	if(og) {
 | 
						|
		og->object_name_map.clear();
 | 
						|
		og->attribute_map.clear();
 | 
						|
		og->object_names.clear();
 | 
						|
	}
 | 
						|
#else
 | 
						|
	(void) device;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::tag_update(Scene *scene)
 | 
						|
{
 | 
						|
	need_update = true;
 | 
						|
	scene->object_manager->need_update = true;
 | 
						|
}
 | 
						|
 | 
						|
void MeshManager::collect_statistics(const Scene *scene, RenderStats *stats)
 | 
						|
{
 | 
						|
	foreach(Mesh *mesh, scene->meshes) {
 | 
						|
		stats->mesh.geometry.add_entry(
 | 
						|
		        NamedSizeEntry(string(mesh->name.c_str()),
 | 
						|
		                       mesh->get_total_size_in_bytes()));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
bool Mesh::need_attribute(Scene *scene, AttributeStandard std)
 | 
						|
{
 | 
						|
	if(std == ATTR_STD_NONE)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if(scene->need_global_attribute(std))
 | 
						|
		return true;
 | 
						|
 | 
						|
	foreach(Shader *shader, used_shaders)
 | 
						|
		if(shader->attributes.find(std))
 | 
						|
			return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Mesh::need_attribute(Scene * /*scene*/, ustring name)
 | 
						|
{
 | 
						|
	if(name == ustring())
 | 
						|
		return false;
 | 
						|
 | 
						|
	foreach(Shader *shader, used_shaders)
 | 
						|
		if(shader->attributes.find(name))
 | 
						|
			return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
CCL_NAMESPACE_END
 |