This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/closure/volume.h
Michael Jones (Apple) a0f269f682 Cycles: Kernel address space changes for MSL
This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation.

MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness.

The vast majority of deltas in this patch fall into one of two cases:

- Ensuring ccl_private is specified for thread-local pointer types
- Ensuring ccl_global is specified for device-wide pointer types

Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant.

In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture.

The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation.

Ref T92212

Reviewed By: brecht

Maniphest Tasks: T92212

Differential Revision: https://developer.blender.org/D12864
2021-10-14 16:14:43 +01:00

226 lines
7.3 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
CCL_NAMESPACE_BEGIN
/* VOLUME EXTINCTION */
ccl_device void volume_extinction_setup(ccl_private ShaderData *sd, float3 weight)
{
if (sd->flag & SD_EXTINCTION) {
sd->closure_transparent_extinction += weight;
}
else {
sd->flag |= SD_EXTINCTION;
sd->closure_transparent_extinction = weight;
}
}
/* HENYEY-GREENSTEIN CLOSURE */
typedef struct HenyeyGreensteinVolume {
SHADER_CLOSURE_BASE;
float g;
} HenyeyGreensteinVolume;
static_assert(sizeof(ShaderClosure) >= sizeof(HenyeyGreensteinVolume),
"HenyeyGreensteinVolume is too large!");
/* Given cosine between rays, return probability density that a photon bounces
* to that direction. The g parameter controls how different it is from the
* uniform sphere. g=0 uniform diffuse-like, g=1 close to sharp single ray. */
ccl_device float single_peaked_henyey_greenstein(float cos_theta, float g)
{
return ((1.0f - g * g) / safe_powf(1.0f + g * g - 2.0f * g * cos_theta, 1.5f)) *
(M_1_PI_F * 0.25f);
};
ccl_device int volume_henyey_greenstein_setup(ccl_private HenyeyGreensteinVolume *volume)
{
volume->type = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
/* clamp anisotropy to avoid delta function */
volume->g = signf(volume->g) * min(fabsf(volume->g), 1.0f - 1e-3f);
return SD_SCATTER;
}
ccl_device float3 volume_henyey_greenstein_eval_phase(ccl_private const ShaderVolumeClosure *svc,
const float3 I,
float3 omega_in,
ccl_private float *pdf)
{
float g = svc->g;
/* note that I points towards the viewer */
if (fabsf(g) < 1e-3f) {
*pdf = M_1_PI_F * 0.25f;
}
else {
float cos_theta = dot(-I, omega_in);
*pdf = single_peaked_henyey_greenstein(cos_theta, g);
}
return make_float3(*pdf, *pdf, *pdf);
}
ccl_device float3
henyey_greenstrein_sample(float3 D, float g, float randu, float randv, ccl_private float *pdf)
{
/* match pdf for small g */
float cos_theta;
bool isotropic = fabsf(g) < 1e-3f;
if (isotropic) {
cos_theta = (1.0f - 2.0f * randu);
if (pdf) {
*pdf = M_1_PI_F * 0.25f;
}
}
else {
float k = (1.0f - g * g) / (1.0f - g + 2.0f * g * randu);
cos_theta = (1.0f + g * g - k * k) / (2.0f * g);
if (pdf) {
*pdf = single_peaked_henyey_greenstein(cos_theta, g);
}
}
float sin_theta = safe_sqrtf(1.0f - cos_theta * cos_theta);
float phi = M_2PI_F * randv;
float3 dir = make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cos_theta);
float3 T, B;
make_orthonormals(D, &T, &B);
dir = dir.x * T + dir.y * B + dir.z * D;
return dir;
}
ccl_device int volume_henyey_greenstein_sample(ccl_private const ShaderVolumeClosure *svc,
float3 I,
float3 dIdx,
float3 dIdy,
float randu,
float randv,
ccl_private float3 *eval,
ccl_private float3 *omega_in,
ccl_private float3 *domega_in_dx,
ccl_private float3 *domega_in_dy,
ccl_private float *pdf)
{
float g = svc->g;
/* note that I points towards the viewer and so is used negated */
*omega_in = henyey_greenstrein_sample(-I, g, randu, randv, pdf);
*eval = make_float3(*pdf, *pdf, *pdf); /* perfect importance sampling */
#ifdef __RAY_DIFFERENTIALS__
/* todo: implement ray differential estimation */
*domega_in_dx = make_float3(0.0f, 0.0f, 0.0f);
*domega_in_dy = make_float3(0.0f, 0.0f, 0.0f);
#endif
return LABEL_VOLUME_SCATTER;
}
/* VOLUME CLOSURE */
ccl_device float3 volume_phase_eval(ccl_private const ShaderData *sd,
ccl_private const ShaderVolumeClosure *svc,
float3 omega_in,
ccl_private float *pdf)
{
return volume_henyey_greenstein_eval_phase(svc, sd->I, omega_in, pdf);
}
ccl_device int volume_phase_sample(ccl_private const ShaderData *sd,
ccl_private const ShaderVolumeClosure *svc,
float randu,
float randv,
ccl_private float3 *eval,
ccl_private float3 *omega_in,
ccl_private differential3 *domega_in,
ccl_private float *pdf)
{
return volume_henyey_greenstein_sample(svc,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
}
/* Volume sampling utilities. */
/* todo: this value could be tweaked or turned into a probability to avoid
* unnecessary work in volumes and subsurface scattering. */
#define VOLUME_THROUGHPUT_EPSILON 1e-6f
ccl_device float3 volume_color_transmittance(float3 sigma, float t)
{
return exp3(-sigma * t);
}
ccl_device float volume_channel_get(float3 value, int channel)
{
return (channel == 0) ? value.x : ((channel == 1) ? value.y : value.z);
}
ccl_device int volume_sample_channel(float3 albedo,
float3 throughput,
float rand,
ccl_private float3 *pdf)
{
/* Sample color channel proportional to throughput and single scattering
* albedo, to significantly reduce noise with many bounce, following:
*
* "Practical and Controllable Subsurface Scattering for Production Path
* Tracing". Matt Jen-Yuan Chiang, Peter Kutz, Brent Burley. SIGGRAPH 2016. */
float3 weights = fabs(throughput * albedo);
float sum_weights = weights.x + weights.y + weights.z;
float3 weights_pdf;
if (sum_weights > 0.0f) {
weights_pdf = weights / sum_weights;
}
else {
weights_pdf = make_float3(1.0f / 3.0f, 1.0f / 3.0f, 1.0f / 3.0f);
}
*pdf = weights_pdf;
/* OpenCL does not support -> on float3, so don't use pdf->x. */
if (rand < weights_pdf.x) {
return 0;
}
else if (rand < weights_pdf.x + weights_pdf.y) {
return 1;
}
else {
return 2;
}
}
CCL_NAMESPACE_END