This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/integrator/integrator_state_util.h
Michael Jones (Apple) a0f269f682 Cycles: Kernel address space changes for MSL
This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation.

MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness.

The vast majority of deltas in this patch fall into one of two cases:

- Ensuring ccl_private is specified for thread-local pointer types
- Ensuring ccl_global is specified for device-wide pointer types

Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant.

In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture.

The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation.

Ref T92212

Reviewed By: brecht

Maniphest Tasks: T92212

Differential Revision: https://developer.blender.org/D12864
2021-10-14 16:14:43 +01:00

280 lines
9.9 KiB
C++

/*
* Copyright 2011-2021 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "kernel/integrator/integrator_state.h"
#include "kernel/kernel_differential.h"
CCL_NAMESPACE_BEGIN
/* Ray */
ccl_device_forceinline void integrator_state_write_ray(INTEGRATOR_STATE_ARGS,
ccl_private const Ray *ccl_restrict ray)
{
INTEGRATOR_STATE_WRITE(ray, P) = ray->P;
INTEGRATOR_STATE_WRITE(ray, D) = ray->D;
INTEGRATOR_STATE_WRITE(ray, t) = ray->t;
INTEGRATOR_STATE_WRITE(ray, time) = ray->time;
INTEGRATOR_STATE_WRITE(ray, dP) = ray->dP;
INTEGRATOR_STATE_WRITE(ray, dD) = ray->dD;
}
ccl_device_forceinline void integrator_state_read_ray(INTEGRATOR_STATE_CONST_ARGS,
ccl_private Ray *ccl_restrict ray)
{
ray->P = INTEGRATOR_STATE(ray, P);
ray->D = INTEGRATOR_STATE(ray, D);
ray->t = INTEGRATOR_STATE(ray, t);
ray->time = INTEGRATOR_STATE(ray, time);
ray->dP = INTEGRATOR_STATE(ray, dP);
ray->dD = INTEGRATOR_STATE(ray, dD);
}
/* Shadow Ray */
ccl_device_forceinline void integrator_state_write_shadow_ray(
INTEGRATOR_STATE_ARGS, ccl_private const Ray *ccl_restrict ray)
{
INTEGRATOR_STATE_WRITE(shadow_ray, P) = ray->P;
INTEGRATOR_STATE_WRITE(shadow_ray, D) = ray->D;
INTEGRATOR_STATE_WRITE(shadow_ray, t) = ray->t;
INTEGRATOR_STATE_WRITE(shadow_ray, time) = ray->time;
INTEGRATOR_STATE_WRITE(shadow_ray, dP) = ray->dP;
}
ccl_device_forceinline void integrator_state_read_shadow_ray(INTEGRATOR_STATE_CONST_ARGS,
ccl_private Ray *ccl_restrict ray)
{
ray->P = INTEGRATOR_STATE(shadow_ray, P);
ray->D = INTEGRATOR_STATE(shadow_ray, D);
ray->t = INTEGRATOR_STATE(shadow_ray, t);
ray->time = INTEGRATOR_STATE(shadow_ray, time);
ray->dP = INTEGRATOR_STATE(shadow_ray, dP);
ray->dD = differential_zero_compact();
}
/* Intersection */
ccl_device_forceinline void integrator_state_write_isect(
INTEGRATOR_STATE_ARGS, ccl_private const Intersection *ccl_restrict isect)
{
INTEGRATOR_STATE_WRITE(isect, t) = isect->t;
INTEGRATOR_STATE_WRITE(isect, u) = isect->u;
INTEGRATOR_STATE_WRITE(isect, v) = isect->v;
INTEGRATOR_STATE_WRITE(isect, object) = isect->object;
INTEGRATOR_STATE_WRITE(isect, prim) = isect->prim;
INTEGRATOR_STATE_WRITE(isect, type) = isect->type;
#ifdef __EMBREE__
INTEGRATOR_STATE_WRITE(isect, Ng) = isect->Ng;
#endif
}
ccl_device_forceinline void integrator_state_read_isect(
INTEGRATOR_STATE_CONST_ARGS, ccl_private Intersection *ccl_restrict isect)
{
isect->prim = INTEGRATOR_STATE(isect, prim);
isect->object = INTEGRATOR_STATE(isect, object);
isect->type = INTEGRATOR_STATE(isect, type);
isect->u = INTEGRATOR_STATE(isect, u);
isect->v = INTEGRATOR_STATE(isect, v);
isect->t = INTEGRATOR_STATE(isect, t);
#ifdef __EMBREE__
isect->Ng = INTEGRATOR_STATE(isect, Ng);
#endif
}
ccl_device_forceinline VolumeStack integrator_state_read_volume_stack(INTEGRATOR_STATE_CONST_ARGS,
int i)
{
VolumeStack entry = {INTEGRATOR_STATE_ARRAY(volume_stack, i, object),
INTEGRATOR_STATE_ARRAY(volume_stack, i, shader)};
return entry;
}
ccl_device_forceinline void integrator_state_write_volume_stack(INTEGRATOR_STATE_ARGS,
int i,
VolumeStack entry)
{
INTEGRATOR_STATE_ARRAY_WRITE(volume_stack, i, object) = entry.object;
INTEGRATOR_STATE_ARRAY_WRITE(volume_stack, i, shader) = entry.shader;
}
ccl_device_forceinline bool integrator_state_volume_stack_is_empty(INTEGRATOR_STATE_CONST_ARGS)
{
return (kernel_data.kernel_features & KERNEL_FEATURE_VOLUME) ?
INTEGRATOR_STATE_ARRAY(volume_stack, 0, shader) == SHADER_NONE :
true;
}
/* Shadow Intersection */
ccl_device_forceinline void integrator_state_write_shadow_isect(
INTEGRATOR_STATE_ARGS, ccl_private const Intersection *ccl_restrict isect, const int index)
{
INTEGRATOR_STATE_ARRAY_WRITE(shadow_isect, index, t) = isect->t;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_isect, index, u) = isect->u;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_isect, index, v) = isect->v;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_isect, index, object) = isect->object;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_isect, index, prim) = isect->prim;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_isect, index, type) = isect->type;
#ifdef __EMBREE__
INTEGRATOR_STATE_ARRAY_WRITE(shadow_isect, index, Ng) = isect->Ng;
#endif
}
ccl_device_forceinline void integrator_state_read_shadow_isect(
INTEGRATOR_STATE_CONST_ARGS, ccl_private Intersection *ccl_restrict isect, const int index)
{
isect->prim = INTEGRATOR_STATE_ARRAY(shadow_isect, index, prim);
isect->object = INTEGRATOR_STATE_ARRAY(shadow_isect, index, object);
isect->type = INTEGRATOR_STATE_ARRAY(shadow_isect, index, type);
isect->u = INTEGRATOR_STATE_ARRAY(shadow_isect, index, u);
isect->v = INTEGRATOR_STATE_ARRAY(shadow_isect, index, v);
isect->t = INTEGRATOR_STATE_ARRAY(shadow_isect, index, t);
#ifdef __EMBREE__
isect->Ng = INTEGRATOR_STATE_ARRAY(shadow_isect, index, Ng);
#endif
}
ccl_device_forceinline void integrator_state_copy_volume_stack_to_shadow(INTEGRATOR_STATE_ARGS)
{
if (kernel_data.kernel_features & KERNEL_FEATURE_VOLUME) {
int index = 0;
int shader;
do {
shader = INTEGRATOR_STATE_ARRAY(volume_stack, index, shader);
INTEGRATOR_STATE_ARRAY_WRITE(shadow_volume_stack, index, object) = INTEGRATOR_STATE_ARRAY(
volume_stack, index, object);
INTEGRATOR_STATE_ARRAY_WRITE(shadow_volume_stack, index, shader) = shader;
++index;
} while (shader != OBJECT_NONE);
}
}
ccl_device_forceinline VolumeStack
integrator_state_read_shadow_volume_stack(INTEGRATOR_STATE_CONST_ARGS, int i)
{
VolumeStack entry = {INTEGRATOR_STATE_ARRAY(shadow_volume_stack, i, object),
INTEGRATOR_STATE_ARRAY(shadow_volume_stack, i, shader)};
return entry;
}
ccl_device_forceinline bool integrator_state_shadow_volume_stack_is_empty(
INTEGRATOR_STATE_CONST_ARGS)
{
return (kernel_data.kernel_features & KERNEL_FEATURE_VOLUME) ?
INTEGRATOR_STATE_ARRAY(shadow_volume_stack, 0, shader) == SHADER_NONE :
true;
}
ccl_device_forceinline void integrator_state_write_shadow_volume_stack(INTEGRATOR_STATE_ARGS,
int i,
VolumeStack entry)
{
INTEGRATOR_STATE_ARRAY_WRITE(shadow_volume_stack, i, object) = entry.object;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_volume_stack, i, shader) = entry.shader;
}
#if defined(__KERNEL_GPU__)
ccl_device_inline void integrator_state_copy_only(const IntegratorState to_state,
const IntegratorState state)
{
int index;
/* Rely on the compiler to optimize out unused assignments and `while(false)`'s. */
# define KERNEL_STRUCT_BEGIN(name) \
index = 0; \
do {
# define KERNEL_STRUCT_MEMBER(parent_struct, type, name, feature) \
if (kernel_integrator_state.parent_struct.name != nullptr) { \
kernel_integrator_state.parent_struct.name[to_state] = \
kernel_integrator_state.parent_struct.name[state]; \
}
# define KERNEL_STRUCT_ARRAY_MEMBER(parent_struct, type, name, feature) \
if (kernel_integrator_state.parent_struct[index].name != nullptr) { \
kernel_integrator_state.parent_struct[index].name[to_state] = \
kernel_integrator_state.parent_struct[index].name[state]; \
}
# define KERNEL_STRUCT_END(name) \
} \
while (false) \
;
# define KERNEL_STRUCT_END_ARRAY(name, cpu_array_size, gpu_array_size) \
++index; \
} \
while (index < gpu_array_size) \
;
# define KERNEL_STRUCT_VOLUME_STACK_SIZE kernel_data.volume_stack_size
# include "kernel/integrator/integrator_state_template.h"
# undef KERNEL_STRUCT_BEGIN
# undef KERNEL_STRUCT_MEMBER
# undef KERNEL_STRUCT_ARRAY_MEMBER
# undef KERNEL_STRUCT_END
# undef KERNEL_STRUCT_END_ARRAY
# undef KERNEL_STRUCT_VOLUME_STACK_SIZE
}
ccl_device_inline void integrator_state_move(const IntegratorState to_state,
const IntegratorState state)
{
integrator_state_copy_only(to_state, state);
INTEGRATOR_STATE_WRITE(path, queued_kernel) = 0;
INTEGRATOR_STATE_WRITE(shadow_path, queued_kernel) = 0;
}
#endif
/* NOTE: Leaves kernel scheduling information untouched. Use INIT semantic for one of the paths
* after this function. */
ccl_device_inline void integrator_state_shadow_catcher_split(INTEGRATOR_STATE_ARGS)
{
#if defined(__KERNEL_GPU__)
const IntegratorState to_state = atomic_fetch_and_add_uint32(
&kernel_integrator_state.next_shadow_catcher_path_index[0], 1);
integrator_state_copy_only(to_state, state);
kernel_integrator_state.path.flag[to_state] |= PATH_RAY_SHADOW_CATCHER_PASS;
#else
IntegratorStateCPU *ccl_restrict split_state = state + 1;
/* Only copy the required subset, since shadow intersections are big and irrelevant here. */
split_state->path = state->path;
split_state->ray = state->ray;
split_state->isect = state->isect;
memcpy(split_state->volume_stack, state->volume_stack, sizeof(state->volume_stack));
split_state->shadow_path = state->shadow_path;
split_state->path.flag |= PATH_RAY_SHADOW_CATCHER_PASS;
#endif
}
CCL_NAMESPACE_END