This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/render/mesh.cpp
Patrick Mours 3a65571195 Fix T90666: Toggling motion blur while persistent data is enabled results in artifacts
Enabling or disabling motion blur requires rebuilding the BVH of affected geometry and
uploading modified vertices to the device (since without motion blur the transform is
applied to the vertex positions, whereas with motion blur this is done during traversal).
Previously neither was happening when persistent data was enabled, since the relevant
node sockets were not tagged as modified after toggling motion blur.

The change to blender_object.cpp makes it so `geom->set_use_motion_blur()` is always
called (regardless of motion blur being toggled on or off), which will tag the geometry
as modified if that value changed and ensures the BVH is updated.
The change to hair.cpp/mesh.cpp was necessary since after motion blur is disabled,
the transform is applied to the vertex positions of a mesh, but those changes were not
uploaded to the device. This is fixed now that they are tagged as modified.

Maniphest Tasks: T90666

Differential Revision: https://developer.blender.org/D12781
2021-10-08 18:03:06 +02:00

813 lines
22 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh/bvh.h"
#include "bvh/bvh_build.h"
#include "device/device.h"
#include "render/graph.h"
#include "render/hair.h"
#include "render/mesh.h"
#include "render/object.h"
#include "render/scene.h"
#include "subd/subd_patch_table.h"
#include "subd/subd_split.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_progress.h"
#include "util/util_set.h"
CCL_NAMESPACE_BEGIN
/* Triangle */
void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox &bounds) const
{
bounds.grow(verts[v[0]]);
bounds.grow(verts[v[1]]);
bounds.grow(verts[v[2]]);
}
void Mesh::Triangle::motion_verts(const float3 *verts,
const float3 *vert_steps,
size_t num_verts,
size_t num_steps,
float time,
float3 r_verts[3]) const
{
/* Figure out which steps we need to fetch and their interpolation factor. */
const size_t max_step = num_steps - 1;
const size_t step = min((int)(time * max_step), max_step - 1);
const float t = time * max_step - step;
/* Fetch vertex coordinates. */
float3 curr_verts[3];
float3 next_verts[3];
verts_for_step(verts, vert_steps, num_verts, num_steps, step, curr_verts);
verts_for_step(verts, vert_steps, num_verts, num_steps, step + 1, next_verts);
/* Interpolate between steps. */
r_verts[0] = (1.0f - t) * curr_verts[0] + t * next_verts[0];
r_verts[1] = (1.0f - t) * curr_verts[1] + t * next_verts[1];
r_verts[2] = (1.0f - t) * curr_verts[2] + t * next_verts[2];
}
void Mesh::Triangle::verts_for_step(const float3 *verts,
const float3 *vert_steps,
size_t num_verts,
size_t num_steps,
size_t step,
float3 r_verts[3]) const
{
const size_t center_step = ((num_steps - 1) / 2);
if (step == center_step) {
/* Center step: regular vertex location. */
r_verts[0] = verts[v[0]];
r_verts[1] = verts[v[1]];
r_verts[2] = verts[v[2]];
}
else {
/* Center step not stored in the attribute array array. */
if (step > center_step) {
step--;
}
size_t offset = step * num_verts;
r_verts[0] = vert_steps[offset + v[0]];
r_verts[1] = vert_steps[offset + v[1]];
r_verts[2] = vert_steps[offset + v[2]];
}
}
float3 Mesh::Triangle::compute_normal(const float3 *verts) const
{
const float3 &v0 = verts[v[0]];
const float3 &v1 = verts[v[1]];
const float3 &v2 = verts[v[2]];
const float3 norm = cross(v1 - v0, v2 - v0);
const float normlen = len(norm);
if (normlen == 0.0f) {
return make_float3(1.0f, 0.0f, 0.0f);
}
return norm / normlen;
}
bool Mesh::Triangle::valid(const float3 *verts) const
{
return isfinite3_safe(verts[v[0]]) && isfinite3_safe(verts[v[1]]) && isfinite3_safe(verts[v[2]]);
}
/* SubdFace */
float3 Mesh::SubdFace::normal(const Mesh *mesh) const
{
float3 v0 = mesh->verts[mesh->subd_face_corners[start_corner + 0]];
float3 v1 = mesh->verts[mesh->subd_face_corners[start_corner + 1]];
float3 v2 = mesh->verts[mesh->subd_face_corners[start_corner + 2]];
return safe_normalize(cross(v1 - v0, v2 - v0));
}
/* Mesh */
NODE_DEFINE(Mesh)
{
NodeType *type = NodeType::add("mesh", create, NodeType::NONE, Geometry::get_node_base_type());
SOCKET_INT_ARRAY(triangles, "Triangles", array<int>());
SOCKET_POINT_ARRAY(verts, "Vertices", array<float3>());
SOCKET_INT_ARRAY(shader, "Shader", array<int>());
SOCKET_BOOLEAN_ARRAY(smooth, "Smooth", array<bool>());
SOCKET_INT_ARRAY(triangle_patch, "Triangle Patch", array<int>());
SOCKET_POINT2_ARRAY(vert_patch_uv, "Patch UVs", array<float2>());
static NodeEnum subdivision_type_enum;
subdivision_type_enum.insert("none", SUBDIVISION_NONE);
subdivision_type_enum.insert("linear", SUBDIVISION_LINEAR);
subdivision_type_enum.insert("catmull_clark", SUBDIVISION_CATMULL_CLARK);
SOCKET_ENUM(subdivision_type, "Subdivision Type", subdivision_type_enum, SUBDIVISION_NONE);
SOCKET_INT_ARRAY(subd_creases_edge, "Subdivision Crease Edges", array<int>());
SOCKET_FLOAT_ARRAY(subd_creases_weight, "Subdivision Crease Weights", array<float>());
SOCKET_INT_ARRAY(subd_face_corners, "Subdivision Face Corners", array<int>());
SOCKET_INT_ARRAY(subd_start_corner, "Subdivision Face Start Corner", array<int>());
SOCKET_INT_ARRAY(subd_num_corners, "Subdivision Face Corner Count", array<int>());
SOCKET_INT_ARRAY(subd_shader, "Subdivision Face Shader", array<int>());
SOCKET_BOOLEAN_ARRAY(subd_smooth, "Subdivision Face Smooth", array<bool>());
SOCKET_INT_ARRAY(subd_ptex_offset, "Subdivision Face PTex Offset", array<int>());
SOCKET_INT(num_ngons, "NGons Number", 0);
/* Subdivisions parameters */
SOCKET_FLOAT(subd_dicing_rate, "Subdivision Dicing Rate", 0.0f)
SOCKET_INT(subd_max_level, "Subdivision Dicing Rate", 0);
SOCKET_TRANSFORM(subd_objecttoworld, "Subdivision Object Transform", transform_identity());
return type;
}
SubdParams *Mesh::get_subd_params()
{
if (subdivision_type == SubdivisionType::SUBDIVISION_NONE) {
return nullptr;
}
if (!subd_params) {
subd_params = new SubdParams(this);
}
subd_params->dicing_rate = subd_dicing_rate;
subd_params->max_level = subd_max_level;
subd_params->objecttoworld = subd_objecttoworld;
return subd_params;
}
bool Mesh::need_tesselation()
{
return get_subd_params() && (verts_is_modified() || subd_dicing_rate_is_modified() ||
subd_objecttoworld_is_modified() || subd_max_level_is_modified());
}
Mesh::Mesh(const NodeType *node_type, Type geom_type_)
: Geometry(node_type, geom_type_), subd_attributes(this, ATTR_PRIM_SUBD)
{
vert_offset = 0;
patch_offset = 0;
face_offset = 0;
corner_offset = 0;
num_subd_verts = 0;
num_subd_faces = 0;
num_ngons = 0;
subdivision_type = SUBDIVISION_NONE;
subd_params = NULL;
patch_table = NULL;
}
Mesh::Mesh() : Mesh(get_node_type(), Geometry::MESH)
{
}
Mesh::~Mesh()
{
delete patch_table;
delete subd_params;
}
void Mesh::resize_mesh(int numverts, int numtris)
{
verts.resize(numverts);
triangles.resize(numtris * 3);
shader.resize(numtris);
smooth.resize(numtris);
if (get_num_subd_faces()) {
triangle_patch.resize(numtris);
vert_patch_uv.resize(numverts);
}
attributes.resize();
}
void Mesh::reserve_mesh(int numverts, int numtris)
{
/* reserve space to add verts and triangles later */
verts.reserve(numverts);
triangles.reserve(numtris * 3);
shader.reserve(numtris);
smooth.reserve(numtris);
if (get_num_subd_faces()) {
triangle_patch.reserve(numtris);
vert_patch_uv.reserve(numverts);
}
attributes.resize(true);
}
void Mesh::resize_subd_faces(int numfaces, int num_ngons_, int numcorners)
{
subd_start_corner.resize(numfaces);
subd_num_corners.resize(numfaces);
subd_shader.resize(numfaces);
subd_smooth.resize(numfaces);
subd_ptex_offset.resize(numfaces);
subd_face_corners.resize(numcorners);
num_ngons = num_ngons_;
num_subd_faces = numfaces;
subd_attributes.resize();
}
void Mesh::reserve_subd_faces(int numfaces, int num_ngons_, int numcorners)
{
subd_start_corner.reserve(numfaces);
subd_num_corners.reserve(numfaces);
subd_shader.reserve(numfaces);
subd_smooth.reserve(numfaces);
subd_ptex_offset.reserve(numfaces);
subd_face_corners.reserve(numcorners);
num_ngons = num_ngons_;
num_subd_faces = numfaces;
subd_attributes.resize(true);
}
void Mesh::reserve_subd_creases(size_t num_creases)
{
subd_creases_edge.reserve(num_creases * 2);
subd_creases_weight.reserve(num_creases);
}
void Mesh::clear_non_sockets()
{
Geometry::clear(true);
num_subd_verts = 0;
num_subd_faces = 0;
vert_to_stitching_key_map.clear();
vert_stitching_map.clear();
delete patch_table;
patch_table = NULL;
}
void Mesh::clear(bool preserve_shaders, bool preserve_voxel_data)
{
Geometry::clear(preserve_shaders);
/* clear all verts and triangles */
verts.clear();
triangles.clear();
shader.clear();
smooth.clear();
triangle_patch.clear();
vert_patch_uv.clear();
subd_start_corner.clear();
subd_num_corners.clear();
subd_shader.clear();
subd_smooth.clear();
subd_ptex_offset.clear();
subd_face_corners.clear();
subd_creases_edge.clear();
subd_creases_weight.clear();
subd_attributes.clear();
attributes.clear(preserve_voxel_data);
subdivision_type = SubdivisionType::SUBDIVISION_NONE;
clear_non_sockets();
}
void Mesh::clear(bool preserve_shaders)
{
clear(preserve_shaders, false);
}
void Mesh::add_vertex(float3 P)
{
verts.push_back_reserved(P);
tag_verts_modified();
if (get_num_subd_faces()) {
vert_patch_uv.push_back_reserved(zero_float2());
tag_vert_patch_uv_modified();
}
}
void Mesh::add_vertex_slow(float3 P)
{
verts.push_back_slow(P);
tag_verts_modified();
if (get_num_subd_faces()) {
vert_patch_uv.push_back_slow(zero_float2());
tag_vert_patch_uv_modified();
}
}
void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_)
{
triangles.push_back_reserved(v0);
triangles.push_back_reserved(v1);
triangles.push_back_reserved(v2);
shader.push_back_reserved(shader_);
smooth.push_back_reserved(smooth_);
tag_triangles_modified();
tag_shader_modified();
tag_smooth_modified();
if (get_num_subd_faces()) {
triangle_patch.push_back_reserved(-1);
tag_triangle_patch_modified();
}
}
void Mesh::add_subd_face(int *corners, int num_corners, int shader_, bool smooth_)
{
int start_corner = subd_face_corners.size();
for (int i = 0; i < num_corners; i++) {
subd_face_corners.push_back_reserved(corners[i]);
}
int ptex_offset = 0;
// cannot use get_num_subd_faces here as it holds the total number of subd_faces, but we do not
// have the total amount of data yet
if (subd_shader.size()) {
SubdFace s = get_subd_face(subd_shader.size() - 1);
ptex_offset = s.ptex_offset + s.num_ptex_faces();
}
subd_start_corner.push_back_reserved(start_corner);
subd_num_corners.push_back_reserved(num_corners);
subd_shader.push_back_reserved(shader_);
subd_smooth.push_back_reserved(smooth_);
subd_ptex_offset.push_back_reserved(ptex_offset);
tag_subd_face_corners_modified();
tag_subd_start_corner_modified();
tag_subd_num_corners_modified();
tag_subd_shader_modified();
tag_subd_smooth_modified();
tag_subd_ptex_offset_modified();
}
Mesh::SubdFace Mesh::get_subd_face(size_t index) const
{
Mesh::SubdFace s;
s.shader = subd_shader[index];
s.num_corners = subd_num_corners[index];
s.smooth = subd_smooth[index];
s.ptex_offset = subd_ptex_offset[index];
s.start_corner = subd_start_corner[index];
return s;
}
void Mesh::add_crease(int v0, int v1, float weight)
{
subd_creases_edge.push_back_slow(v0);
subd_creases_edge.push_back_slow(v1);
subd_creases_weight.push_back_slow(weight);
tag_subd_creases_edge_modified();
tag_subd_creases_edge_modified();
tag_subd_creases_weight_modified();
}
void Mesh::copy_center_to_motion_step(const int motion_step)
{
Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (attr_mP) {
Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
Attribute *attr_N = attributes.find(ATTR_STD_VERTEX_NORMAL);
float3 *P = &verts[0];
float3 *N = (attr_N) ? attr_N->data_float3() : NULL;
size_t numverts = verts.size();
memcpy(attr_mP->data_float3() + motion_step * numverts, P, sizeof(float3) * numverts);
if (attr_mN)
memcpy(attr_mN->data_float3() + motion_step * numverts, N, sizeof(float3) * numverts);
}
}
void Mesh::get_uv_tiles(ustring map, unordered_set<int> &tiles)
{
Attribute *attr, *subd_attr;
if (map.empty()) {
attr = attributes.find(ATTR_STD_UV);
subd_attr = subd_attributes.find(ATTR_STD_UV);
}
else {
attr = attributes.find(map);
subd_attr = subd_attributes.find(map);
}
if (attr) {
attr->get_uv_tiles(this, ATTR_PRIM_GEOMETRY, tiles);
}
if (subd_attr) {
subd_attr->get_uv_tiles(this, ATTR_PRIM_SUBD, tiles);
}
}
void Mesh::compute_bounds()
{
BoundBox bnds = BoundBox::empty;
size_t verts_size = verts.size();
if (verts_size > 0) {
for (size_t i = 0; i < verts_size; i++)
bnds.grow(verts[i]);
Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (use_motion_blur && attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for (size_t i = 0; i < steps_size; i++)
bnds.grow(vert_steps[i]);
}
if (!bnds.valid()) {
bnds = BoundBox::empty;
/* skip nan or inf coordinates */
for (size_t i = 0; i < verts_size; i++)
bnds.grow_safe(verts[i]);
if (use_motion_blur && attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for (size_t i = 0; i < steps_size; i++)
bnds.grow_safe(vert_steps[i]);
}
}
}
if (!bnds.valid()) {
/* empty mesh */
bnds.grow(zero_float3());
}
bounds = bnds;
}
void Mesh::apply_transform(const Transform &tfm, const bool apply_to_motion)
{
transform_normal = transform_transposed_inverse(tfm);
/* apply to mesh vertices */
for (size_t i = 0; i < verts.size(); i++)
verts[i] = transform_point(&tfm, verts[i]);
tag_verts_modified();
if (apply_to_motion) {
Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for (size_t i = 0; i < steps_size; i++)
vert_steps[i] = transform_point(&tfm, vert_steps[i]);
}
Attribute *attr_N = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
if (attr_N) {
Transform ntfm = transform_normal;
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *normal_steps = attr_N->data_float3();
for (size_t i = 0; i < steps_size; i++)
normal_steps[i] = normalize(transform_direction(&ntfm, normal_steps[i]));
}
}
}
void Mesh::add_face_normals()
{
/* don't compute if already there */
if (attributes.find(ATTR_STD_FACE_NORMAL))
return;
/* get attributes */
Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL);
float3 *fN = attr_fN->data_float3();
/* compute face normals */
size_t triangles_size = num_triangles();
if (triangles_size) {
float3 *verts_ptr = verts.data();
for (size_t i = 0; i < triangles_size; i++) {
fN[i] = get_triangle(i).compute_normal(verts_ptr);
}
}
/* expected to be in local space */
if (transform_applied) {
Transform ntfm = transform_inverse(transform_normal);
for (size_t i = 0; i < triangles_size; i++)
fN[i] = normalize(transform_direction(&ntfm, fN[i]));
}
}
void Mesh::add_vertex_normals()
{
bool flip = transform_negative_scaled;
size_t verts_size = verts.size();
size_t triangles_size = num_triangles();
/* static vertex normals */
if (!attributes.find(ATTR_STD_VERTEX_NORMAL) && triangles_size) {
/* get attributes */
Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *fN = attr_fN->data_float3();
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
memset(vN, 0, verts.size() * sizeof(float3));
for (size_t i = 0; i < triangles_size; i++) {
for (size_t j = 0; j < 3; j++) {
vN[get_triangle(i).v[j]] += fN[i];
}
}
for (size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
if (flip) {
vN[i] = -vN[i];
}
}
}
/* motion vertex normals */
Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
if (has_motion_blur() && attr_mP && !attr_mN && triangles_size) {
/* create attribute */
attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
for (int step = 0; step < motion_steps - 1; step++) {
float3 *mP = attr_mP->data_float3() + step * verts.size();
float3 *mN = attr_mN->data_float3() + step * verts.size();
/* compute */
memset(mN, 0, verts.size() * sizeof(float3));
for (size_t i = 0; i < triangles_size; i++) {
for (size_t j = 0; j < 3; j++) {
float3 fN = get_triangle(i).compute_normal(mP);
mN[get_triangle(i).v[j]] += fN;
}
}
for (size_t i = 0; i < verts_size; i++) {
mN[i] = normalize(mN[i]);
if (flip) {
mN[i] = -mN[i];
}
}
}
}
/* subd vertex normals */
if (!subd_attributes.find(ATTR_STD_VERTEX_NORMAL) && get_num_subd_faces()) {
/* get attributes */
Attribute *attr_vN = subd_attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
memset(vN, 0, verts.size() * sizeof(float3));
for (size_t i = 0; i < get_num_subd_faces(); i++) {
SubdFace face = get_subd_face(i);
float3 fN = face.normal(this);
for (size_t j = 0; j < face.num_corners; j++) {
size_t corner = subd_face_corners[face.start_corner + j];
vN[corner] += fN;
}
}
for (size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
if (flip) {
vN[i] = -vN[i];
}
}
}
}
void Mesh::add_undisplaced()
{
AttributeSet &attrs = (subdivision_type == SUBDIVISION_NONE) ? attributes : subd_attributes;
/* don't compute if already there */
if (attrs.find(ATTR_STD_POSITION_UNDISPLACED)) {
return;
}
/* get attribute */
Attribute *attr = attrs.add(ATTR_STD_POSITION_UNDISPLACED);
attr->flags |= ATTR_SUBDIVIDED;
float3 *data = attr->data_float3();
/* copy verts */
size_t size = attr->buffer_size(this, ATTR_PRIM_GEOMETRY);
/* Center points for ngons aren't stored in Mesh::verts but are included in size since they will
* be calculated later, we subtract them from size here so we don't have an overflow while
* copying.
*/
size -= num_ngons * attr->data_sizeof();
if (size) {
memcpy(data, verts.data(), size);
}
}
void Mesh::pack_shaders(Scene *scene, uint *tri_shader)
{
uint shader_id = 0;
uint last_shader = -1;
bool last_smooth = false;
size_t triangles_size = num_triangles();
int *shader_ptr = shader.data();
for (size_t i = 0; i < triangles_size; i++) {
if (shader_ptr[i] != last_shader || last_smooth != smooth[i]) {
last_shader = shader_ptr[i];
last_smooth = smooth[i];
Shader *shader = (last_shader < used_shaders.size()) ?
static_cast<Shader *>(used_shaders[last_shader]) :
scene->default_surface;
shader_id = scene->shader_manager->get_shader_id(shader, last_smooth);
}
tri_shader[i] = shader_id;
}
}
void Mesh::pack_normals(float4 *vnormal)
{
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
if (attr_vN == NULL) {
/* Happens on objects with just hair. */
return;
}
bool do_transform = transform_applied;
Transform ntfm = transform_normal;
float3 *vN = attr_vN->data_float3();
size_t verts_size = verts.size();
for (size_t i = 0; i < verts_size; i++) {
float3 vNi = vN[i];
if (do_transform)
vNi = safe_normalize(transform_direction(&ntfm, vNi));
vnormal[i] = make_float4(vNi.x, vNi.y, vNi.z, 0.0f);
}
}
void Mesh::pack_verts(float4 *tri_verts, uint4 *tri_vindex, uint *tri_patch, float2 *tri_patch_uv)
{
size_t verts_size = verts.size();
if (verts_size && get_num_subd_faces()) {
float2 *vert_patch_uv_ptr = vert_patch_uv.data();
for (size_t i = 0; i < verts_size; i++) {
tri_patch_uv[i] = vert_patch_uv_ptr[i];
}
}
size_t triangles_size = num_triangles();
for (size_t i = 0; i < triangles_size; i++) {
const Triangle t = get_triangle(i);
tri_vindex[i] = make_uint4(
t.v[0] + vert_offset, t.v[1] + vert_offset, t.v[2] + vert_offset, 3 * (prim_offset + i));
tri_patch[i] = (!get_num_subd_faces()) ? -1 : (triangle_patch[i] * 8 + patch_offset);
tri_verts[i * 3] = float3_to_float4(verts[t.v[0]]);
tri_verts[i * 3 + 1] = float3_to_float4(verts[t.v[1]]);
tri_verts[i * 3 + 2] = float3_to_float4(verts[t.v[2]]);
}
}
void Mesh::pack_patches(uint *patch_data)
{
size_t num_faces = get_num_subd_faces();
int ngons = 0;
for (size_t f = 0; f < num_faces; f++) {
SubdFace face = get_subd_face(f);
if (face.is_quad()) {
int c[4];
memcpy(c, &subd_face_corners[face.start_corner], sizeof(int) * 4);
*(patch_data++) = c[0] + vert_offset;
*(patch_data++) = c[1] + vert_offset;
*(patch_data++) = c[2] + vert_offset;
*(patch_data++) = c[3] + vert_offset;
*(patch_data++) = f + face_offset;
*(patch_data++) = face.num_corners;
*(patch_data++) = face.start_corner + corner_offset;
*(patch_data++) = 0;
}
else {
for (int i = 0; i < face.num_corners; i++) {
int c[4];
c[0] = subd_face_corners[face.start_corner + mod(i + 0, face.num_corners)];
c[1] = subd_face_corners[face.start_corner + mod(i + 1, face.num_corners)];
c[2] = verts.size() - num_subd_verts + ngons;
c[3] = subd_face_corners[face.start_corner + mod(i - 1, face.num_corners)];
*(patch_data++) = c[0] + vert_offset;
*(patch_data++) = c[1] + vert_offset;
*(patch_data++) = c[2] + vert_offset;
*(patch_data++) = c[3] + vert_offset;
*(patch_data++) = f + face_offset;
*(patch_data++) = face.num_corners | (i << 16);
*(patch_data++) = face.start_corner + corner_offset;
*(patch_data++) = subd_face_corners.size() + ngons + corner_offset;
}
ngons++;
}
}
}
PrimitiveType Mesh::primitive_type() const
{
return has_motion_blur() ? PRIMITIVE_MOTION_TRIANGLE : PRIMITIVE_TRIANGLE;
}
CCL_NAMESPACE_END