This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/space_view3d/view3d_project.c
Campbell Barton eff8cc9ccc Cleanup: doxy comments
Use doxy references to function and enums,
also correct some names which became out of sync.
2019-04-14 10:48:42 +02:00

733 lines
24 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2008 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup spview3d
*/
#include "DNA_camera_types.h"
#include "DNA_object_types.h"
#include "DNA_screen_types.h"
#include "DNA_scene_types.h"
#include "DNA_view3d_types.h"
#include "BLI_sys_types.h" /* int64_t */
#include "BLI_math_vector.h"
#include "BKE_camera.h"
#include "BKE_screen.h"
#include "GPU_matrix.h"
#include "ED_view3d.h" /* own include */
#define BL_NEAR_CLIP 0.001
#define BL_ZERO_CLIP 0.001
/* Non Clipping Projection Functions
* ********************************* */
/**
* \note use #ED_view3d_ob_project_mat_get to get the projection matrix
*/
void ED_view3d_project_float_v2_m4(const ARegion *ar, const float co[3], float r_co[2], float mat[4][4])
{
float vec4[4];
copy_v3_v3(vec4, co);
vec4[3] = 1.0;
/* r_co[0] = IS_CLIPPED; */ /* always overwritten */
mul_m4_v4(mat, vec4);
if (vec4[3] > FLT_EPSILON) {
r_co[0] = (float)(ar->winx / 2.0f) + (ar->winx / 2.0f) * vec4[0] / vec4[3];
r_co[1] = (float)(ar->winy / 2.0f) + (ar->winy / 2.0f) * vec4[1] / vec4[3];
}
else {
zero_v2(r_co);
}
}
/**
* \note use #ED_view3d_ob_project_mat_get to get projecting mat
*/
void ED_view3d_project_float_v3_m4(const ARegion *ar, const float vec[3], float r_co[3], float mat[4][4])
{
float vec4[4];
copy_v3_v3(vec4, vec);
vec4[3] = 1.0;
/* r_co[0] = IS_CLIPPED; */ /* always overwritten */
mul_m4_v4(mat, vec4);
if (vec4[3] > FLT_EPSILON) {
r_co[0] = (float)(ar->winx / 2.0f) + (ar->winx / 2.0f) * vec4[0] / vec4[3];
r_co[1] = (float)(ar->winy / 2.0f) + (ar->winy / 2.0f) * vec4[1] / vec4[3];
r_co[2] = vec4[2] / vec4[3];
}
else {
zero_v3(r_co);
}
}
/* Clipping Projection Functions
* ***************************** */
eV3DProjStatus ED_view3d_project_base(const struct ARegion *ar, struct Base *base)
{
eV3DProjStatus ret = ED_view3d_project_short_global(ar, base->object->obmat[3], &base->sx, V3D_PROJ_TEST_CLIP_DEFAULT);
if (ret != V3D_PROJ_RET_OK) {
base->sx = IS_CLIPPED;
base->sy = 0;
}
return ret;
}
/* perspmat is typically...
* - 'rv3d->perspmat', is_local == false
* - 'rv3d->persmatob', is_local == true
*/
static eV3DProjStatus ed_view3d_project__internal(
const ARegion *ar,
float perspmat[4][4], const bool is_local, /* normally hidden */
const float co[3], float r_co[2], const eV3DProjTest flag)
{
float vec4[4];
/* check for bad flags */
BLI_assert((flag & V3D_PROJ_TEST_ALL) == flag);
if (flag & V3D_PROJ_TEST_CLIP_BB) {
RegionView3D *rv3d = ar->regiondata;
if (rv3d->rflag & RV3D_CLIPPING) {
if (ED_view3d_clipping_test(rv3d, co, is_local)) {
return V3D_PROJ_RET_CLIP_BB;
}
}
}
copy_v3_v3(vec4, co);
vec4[3] = 1.0;
mul_m4_v4(perspmat, vec4);
if (((flag & V3D_PROJ_TEST_CLIP_ZERO) == 0) || (fabsf(vec4[3]) > (float)BL_ZERO_CLIP)) {
if (((flag & V3D_PROJ_TEST_CLIP_NEAR) == 0) || (vec4[3] > (float)BL_NEAR_CLIP)) {
const float scalar = (vec4[3] != 0.0f) ? (1.0f / vec4[3]) : 0.0f;
const float fx = ((float)ar->winx / 2.0f) * (1.0f + (vec4[0] * scalar));
if (((flag & V3D_PROJ_TEST_CLIP_WIN) == 0) || (fx > 0.0f && fx < (float)ar->winx)) {
const float fy = ((float)ar->winy / 2.0f) * (1.0f + (vec4[1] * scalar));
if (((flag & V3D_PROJ_TEST_CLIP_WIN) == 0) || (fy > 0.0f && fy < (float)ar->winy)) {
r_co[0] = fx;
r_co[1] = fy;
/* check if the point is behind the view, we need to flip in this case */
if (UNLIKELY((flag & V3D_PROJ_TEST_CLIP_NEAR) == 0) && (vec4[3] < 0.0f)) {
negate_v2(r_co);
}
}
else {
return V3D_PROJ_RET_CLIP_WIN;
}
}
else {
return V3D_PROJ_RET_CLIP_WIN;
}
}
else {
return V3D_PROJ_RET_CLIP_NEAR;
}
}
else {
return V3D_PROJ_RET_CLIP_ZERO;
}
return V3D_PROJ_RET_OK;
}
eV3DProjStatus ED_view3d_project_short_ex(const ARegion *ar, float perspmat[4][4], const bool is_local,
const float co[3], short r_co[2], const eV3DProjTest flag)
{
float tvec[2];
eV3DProjStatus ret = ed_view3d_project__internal(ar, perspmat, is_local, co, tvec, flag);
if (ret == V3D_PROJ_RET_OK) {
if ((tvec[0] > -32700.0f && tvec[0] < 32700.0f) &&
(tvec[1] > -32700.0f && tvec[1] < 32700.0f))
{
r_co[0] = (short)floorf(tvec[0]);
r_co[1] = (short)floorf(tvec[1]);
}
else {
ret = V3D_PROJ_RET_OVERFLOW;
}
}
return ret;
}
eV3DProjStatus ED_view3d_project_int_ex(const ARegion *ar, float perspmat[4][4], const bool is_local,
const float co[3], int r_co[2], const eV3DProjTest flag)
{
float tvec[2];
eV3DProjStatus ret = ed_view3d_project__internal(ar, perspmat, is_local, co, tvec, flag);
if (ret == V3D_PROJ_RET_OK) {
if ((tvec[0] > -2140000000.0f && tvec[0] < 2140000000.0f) &&
(tvec[1] > -2140000000.0f && tvec[1] < 2140000000.0f))
{
r_co[0] = (int)floorf(tvec[0]);
r_co[1] = (int)floorf(tvec[1]);
}
else {
ret = V3D_PROJ_RET_OVERFLOW;
}
}
return ret;
}
eV3DProjStatus ED_view3d_project_float_ex(const ARegion *ar, float perspmat[4][4], const bool is_local,
const float co[3], float r_co[2], const eV3DProjTest flag)
{
float tvec[2];
eV3DProjStatus ret = ed_view3d_project__internal(ar, perspmat, is_local, co, tvec, flag);
if (ret == V3D_PROJ_RET_OK) {
if (isfinite(tvec[0]) &&
isfinite(tvec[1]))
{
copy_v2_v2(r_co, tvec);
}
else {
ret = V3D_PROJ_RET_OVERFLOW;
}
}
return ret;
}
/* --- short --- */
eV3DProjStatus ED_view3d_project_short_global(const ARegion *ar, const float co[3], short r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
return ED_view3d_project_short_ex(ar, rv3d->persmat, false, co, r_co, flag);
}
/* object space, use ED_view3d_init_mats_rv3d before calling */
eV3DProjStatus ED_view3d_project_short_object(const ARegion *ar, const float co[3], short r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
ED_view3d_check_mats_rv3d(rv3d);
return ED_view3d_project_short_ex(ar, rv3d->persmatob, true, co, r_co, flag);
}
/* --- int --- */
eV3DProjStatus ED_view3d_project_int_global(const ARegion *ar, const float co[3], int r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
return ED_view3d_project_int_ex(ar, rv3d->persmat, false, co, r_co, flag);
}
/* object space, use ED_view3d_init_mats_rv3d before calling */
eV3DProjStatus ED_view3d_project_int_object(const ARegion *ar, const float co[3], int r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
ED_view3d_check_mats_rv3d(rv3d);
return ED_view3d_project_int_ex(ar, rv3d->persmatob, true, co, r_co, flag);
}
/* --- float --- */
eV3DProjStatus ED_view3d_project_float_global(const ARegion *ar, const float co[3], float r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
return ED_view3d_project_float_ex(ar, rv3d->persmat, false, co, r_co, flag);
}
/* object space, use ED_view3d_init_mats_rv3d before calling */
eV3DProjStatus ED_view3d_project_float_object(const ARegion *ar, const float co[3], float r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
ED_view3d_check_mats_rv3d(rv3d);
return ED_view3d_project_float_ex(ar, rv3d->persmatob, true, co, r_co, flag);
}
/* More Generic Window/Ray/Vector projection functions
* *************************************************** */
float ED_view3d_pixel_size(const RegionView3D *rv3d, const float co[3])
{
return mul_project_m4_v3_zfac((float(*)[4])rv3d->persmat, co) * rv3d->pixsize * U.pixelsize;
}
float ED_view3d_pixel_size_no_ui_scale(const RegionView3D *rv3d, const float co[3])
{
return mul_project_m4_v3_zfac((float(*)[4])rv3d->persmat, co) * rv3d->pixsize;
}
/**
* Calculate a depth value from \a co, use with #ED_view3d_win_to_delta
*/
float ED_view3d_calc_zfac(const RegionView3D *rv3d, const float co[3], bool *r_flip)
{
float zfac = mul_project_m4_v3_zfac((float (*)[4])rv3d->persmat, co);
if (r_flip) {
*r_flip = (zfac < 0.0f);
}
/* if x,y,z is exactly the viewport offset, zfac is 0 and we don't want that
* (accounting for near zero values) */
if (zfac < 1.e-6f && zfac > -1.e-6f) {
zfac = 1.0f;
}
/* Negative zfac means x, y, z was behind the camera (in perspective).
* This gives flipped directions, so revert back to ok default case. */
if (zfac < 0.0f) {
zfac = -zfac;
}
return zfac;
}
static void view3d_win_to_ray_segment(
struct Depsgraph *depsgraph,
const ARegion *ar, const View3D *v3d, const float mval[2],
float r_ray_co[3], float r_ray_dir[3], float r_ray_start[3], float r_ray_end[3])
{
RegionView3D *rv3d = ar->regiondata;
float _ray_co[3], _ray_dir[3], start_offset, end_offset;
if (!r_ray_co) {
r_ray_co = _ray_co;
}
if (!r_ray_dir) {
r_ray_dir = _ray_dir;
}
ED_view3d_win_to_origin(ar, mval, r_ray_co);
ED_view3d_win_to_vector(ar, mval, r_ray_dir);
if ((rv3d->is_persp == false) && (rv3d->persp != RV3D_CAMOB)) {
end_offset = v3d->clip_end / 2.0f;
start_offset = -end_offset;
}
else {
ED_view3d_clip_range_get(depsgraph, v3d, rv3d, &start_offset, &end_offset, false);
}
if (r_ray_start) {
madd_v3_v3v3fl(r_ray_start, r_ray_co, r_ray_dir, start_offset);
}
if (r_ray_end) {
madd_v3_v3v3fl(r_ray_end, r_ray_co, r_ray_dir, end_offset);
}
}
bool ED_view3d_clip_segment(const RegionView3D *rv3d, float ray_start[3], float ray_end[3])
{
if ((rv3d->rflag & RV3D_CLIPPING) &&
(clip_segment_v3_plane_n(ray_start, ray_end, rv3d->clip, 6,
ray_start, ray_end) == false))
{
return false;
}
return true;
}
/**
* Calculate a 3d viewpoint and direction vector from 2d window coordinates.
* This ray_start is located at the viewpoint, ray_normal is the direction towards mval.
* ray_start is clipped by the view near limit so points in front of it are always in view.
* In orthographic view the resulting ray_normal will match the view vector.
* This version also returns the ray_co point of the ray on window plane, useful to fix precision
* issues esp. with ortho view, where default ray_start is set rather far away.
* \param ar: The region (used for the window width and height).
* \param v3d: The 3d viewport (used for near clipping value).
* \param mval: The area relative 2d location (such as event->mval, converted into float[2]).
* \param r_ray_co: The world-space point where the ray intersects the window plane.
* \param r_ray_normal: The normalized world-space direction of towards mval.
* \param r_ray_start: The world-space starting point of the ray.
* \param do_clip_planes: Optionally clip the start of the ray by the view clipping planes.
* \return success, false if the ray is totally clipped.
*/
bool ED_view3d_win_to_ray_clipped_ex(
struct Depsgraph *depsgraph,
const ARegion *ar, const View3D *v3d, const float mval[2],
float r_ray_co[3], float r_ray_normal[3], float r_ray_start[3], bool do_clip_planes)
{
float ray_end[3];
view3d_win_to_ray_segment(depsgraph, ar, v3d, mval, r_ray_co, r_ray_normal, r_ray_start, ray_end);
/* bounds clipping */
if (do_clip_planes) {
return ED_view3d_clip_segment(ar->regiondata, r_ray_start, ray_end);
}
return true;
}
/**
* Calculate a 3d viewpoint and direction vector from 2d window coordinates.
* This ray_start is located at the viewpoint, ray_normal is the direction towards mval.
* ray_start is clipped by the view near limit so points in front of it are always in view.
* In orthographic view the resulting ray_normal will match the view vector.
* \param ar: The region (used for the window width and height).
* \param v3d: The 3d viewport (used for near clipping value).
* \param mval: The area relative 2d location (such as event->mval, converted into float[2]).
* \param r_ray_start: The world-space point where the ray intersects the window plane.
* \param r_ray_normal: The normalized world-space direction of towards mval.
* \param do_clip_planes: Optionally clip the start of the ray by the view clipping planes.
* \return success, false if the ray is totally clipped.
*/
bool ED_view3d_win_to_ray_clipped(
struct Depsgraph *depsgraph,
const ARegion *ar, const View3D *v3d, const float mval[2],
float r_ray_start[3], float r_ray_normal[3], const bool do_clip_planes)
{
return ED_view3d_win_to_ray_clipped_ex(depsgraph, ar, v3d, mval, NULL, r_ray_normal, r_ray_start, do_clip_planes);
}
/**
* Calculate a 3d viewpoint and direction vector from 2d window coordinates.
* This ray_start is located at the viewpoint, ray_normal is the direction towards mval.
* \param ar: The region (used for the window width and height).
* \param mval: The area relative 2d location (such as event->mval, converted into float[2]).
* \param r_ray_start: The world-space point where the ray intersects the window plane.
* \param r_ray_normal: The normalized world-space direction of towards mval.
*
* \note Ignores view near/far clipping, to take this into account use #ED_view3d_win_to_ray_clipped.
*/
void ED_view3d_win_to_ray(
const ARegion *ar, const float mval[2],
float r_ray_start[3], float r_ray_normal[3])
{
ED_view3d_win_to_origin(ar, mval, r_ray_start);
ED_view3d_win_to_vector(ar, mval, r_ray_normal);
}
/**
* Calculate a normalized 3d direction vector from the viewpoint towards a global location.
* In orthographic view the resulting vector will match the view vector.
* \param rv3d: The region (used for the window width and height).
* \param coord: The world-space location.
* \param vec: The resulting normalized vector.
*/
void ED_view3d_global_to_vector(const RegionView3D *rv3d, const float coord[3], float vec[3])
{
if (rv3d->is_persp) {
float p1[4], p2[4];
copy_v3_v3(p1, coord);
p1[3] = 1.0f;
copy_v3_v3(p2, p1);
p2[3] = 1.0f;
mul_m4_v4((float (*)[4])rv3d->viewmat, p2);
mul_v3_fl(p2, 2.0f);
mul_m4_v4((float (*)[4])rv3d->viewinv, p2);
sub_v3_v3v3(vec, p1, p2);
}
else {
copy_v3_v3(vec, rv3d->viewinv[2]);
}
normalize_v3(vec);
}
/* very similar to ED_view3d_win_to_3d() but has no advantage, de-duplicating */
#if 0
bool view3d_get_view_aligned_coordinate(ARegion *ar, float fp[3], const int mval[2], const bool do_fallback)
{
RegionView3D *rv3d = ar->regiondata;
float dvec[3];
int mval_cpy[2];
eV3DProjStatus ret;
ret = ED_view3d_project_int_global(ar, fp, mval_cpy, V3D_PROJ_TEST_NOP);
if (ret == V3D_PROJ_RET_OK) {
const float mval_f[2] = {(float)(mval_cpy[0] - mval[0]),
(float)(mval_cpy[1] - mval[1])};
const float zfac = ED_view3d_calc_zfac(rv3d, fp, NULL);
ED_view3d_win_to_delta(ar, mval_f, dvec, zfac);
sub_v3_v3(fp, dvec);
return true;
}
else {
/* fallback to the view center */
if (do_fallback) {
negate_v3_v3(fp, rv3d->ofs);
return view3d_get_view_aligned_coordinate(ar, fp, mval, false);
}
else {
return false;
}
}
}
#endif
/**
* Calculate a 3d location from 2d window coordinates.
* \param ar: The region (used for the window width and height).
* \param depth_pt: The reference location used to calculate the Z depth.
* \param mval: The area relative location (such as event->mval converted to floats).
* \param r_out: The resulting world-space location.
*/
void ED_view3d_win_to_3d(
const View3D *v3d, const ARegion *ar,
const float depth_pt[3], const float mval[2],
float r_out[3])
{
RegionView3D *rv3d = ar->regiondata;
float ray_origin[3];
float ray_direction[3];
float lambda;
if (rv3d->is_persp) {
float plane[4];
copy_v3_v3(ray_origin, rv3d->viewinv[3]);
ED_view3d_win_to_vector(ar, mval, ray_direction);
/* note, we could use isect_line_plane_v3() however we want the intersection to be infront of the
* view no matter what, so apply the unsigned factor instead */
plane_from_point_normal_v3(plane, depth_pt, rv3d->viewinv[2]);
isect_ray_plane_v3(ray_origin, ray_direction, plane, &lambda, false);
lambda = fabsf(lambda);
}
else {
float dx = (2.0f * mval[0] / (float)ar->winx) - 1.0f;
float dy = (2.0f * mval[1] / (float)ar->winy) - 1.0f;
if (rv3d->persp == RV3D_CAMOB) {
/* ortho camera needs offset applied */
const Camera *cam = v3d->camera->data;
const int sensor_fit = BKE_camera_sensor_fit(cam->sensor_fit, ar->winx, ar->winy);
const float zoomfac = BKE_screen_view3d_zoom_to_fac(rv3d->camzoom) * 4.0f;
const float aspx = ar->winx / (float)ar->winy;
const float aspy = ar->winy / (float)ar->winx;
const float shiftx = cam->shiftx * 0.5f * (sensor_fit == CAMERA_SENSOR_FIT_HOR ? 1.0f : aspy);
const float shifty = cam->shifty * 0.5f * (sensor_fit == CAMERA_SENSOR_FIT_HOR ? aspx : 1.0f);
dx += (rv3d->camdx + shiftx) * zoomfac;
dy += (rv3d->camdy + shifty) * zoomfac;
}
ray_origin[0] = (rv3d->persinv[0][0] * dx) + (rv3d->persinv[1][0] * dy) + rv3d->viewinv[3][0];
ray_origin[1] = (rv3d->persinv[0][1] * dx) + (rv3d->persinv[1][1] * dy) + rv3d->viewinv[3][1];
ray_origin[2] = (rv3d->persinv[0][2] * dx) + (rv3d->persinv[1][2] * dy) + rv3d->viewinv[3][2];
copy_v3_v3(ray_direction, rv3d->viewinv[2]);
lambda = ray_point_factor_v3(depth_pt, ray_origin, ray_direction);
}
madd_v3_v3v3fl(r_out, ray_origin, ray_direction, lambda);
}
void ED_view3d_win_to_3d_int(
const View3D *v3d, const ARegion *ar,
const float depth_pt[3], const int mval[2],
float r_out[3])
{
const float mval_fl[2] = {mval[0], mval[1]};
ED_view3d_win_to_3d(v3d, ar, depth_pt, mval_fl, r_out);
}
bool ED_view3d_win_to_3d_on_plane(
const ARegion *ar,
const float plane[4], const float mval[2], const bool do_clip,
float r_out[3])
{
float ray_co[3], ray_no[3];
ED_view3d_win_to_origin(ar, mval, ray_co);
ED_view3d_win_to_vector(ar, mval, ray_no);
float lambda;
if (isect_ray_plane_v3(ray_co, ray_no, plane, &lambda, do_clip)) {
madd_v3_v3v3fl(r_out, ray_co, ray_no, lambda);
return true;
}
return false;
}
bool ED_view3d_win_to_3d_on_plane_int(
const ARegion *ar,
const float plane[4], const int mval[2], const bool do_clip,
float r_out[3])
{
const float mval_fl[2] = {mval[0], mval[1]};
return ED_view3d_win_to_3d_on_plane(ar, plane, mval_fl, do_clip, r_out);
}
/**
* Calculate a 3d difference vector from 2d window offset.
* note that #ED_view3d_calc_zfac() must be called first to determine
* the depth used to calculate the delta.
* \param ar: The region (used for the window width and height).
* \param mval: The area relative 2d difference (such as event->mval[0] - other_x).
* \param out: The resulting world-space delta.
*/
void ED_view3d_win_to_delta(const ARegion *ar, const float mval[2], float out[3], const float zfac)
{
RegionView3D *rv3d = ar->regiondata;
float dx, dy;
dx = 2.0f * mval[0] * zfac / ar->winx;
dy = 2.0f * mval[1] * zfac / ar->winy;
out[0] = (rv3d->persinv[0][0] * dx + rv3d->persinv[1][0] * dy);
out[1] = (rv3d->persinv[0][1] * dx + rv3d->persinv[1][1] * dy);
out[2] = (rv3d->persinv[0][2] * dx + rv3d->persinv[1][2] * dy);
}
/**
* Calculate a 3d origin from 2d window coordinates.
* \note Orthographic views have a less obvious origin,
* Since far clip can be a very large value resulting in numeric precision issues,
* the origin in this case is close to zero coordinate.
*
* \param ar: The region (used for the window width and height).
* \param mval: The area relative 2d location (such as event->mval converted to floats).
* \param out: The resulting normalized world-space direction vector.
*/
void ED_view3d_win_to_origin(const ARegion *ar, const float mval[2], float out[3])
{
RegionView3D *rv3d = ar->regiondata;
if (rv3d->is_persp) {
copy_v3_v3(out, rv3d->viewinv[3]);
}
else {
out[0] = 2.0f * mval[0] / ar->winx - 1.0f;
out[1] = 2.0f * mval[1] / ar->winy - 1.0f;
if (rv3d->persp == RV3D_CAMOB) {
out[2] = -1.0f;
}
else {
out[2] = 0.0f;
}
mul_project_m4_v3(rv3d->persinv, out);
}
}
/**
* Calculate a 3d direction vector from 2d window coordinates.
* This direction vector starts and the view in the direction of the 2d window coordinates.
* In orthographic view all window coordinates yield the same vector.
*
* \note doesn't rely on ED_view3d_calc_zfac
* for perspective view, get the vector direction to
* the mouse cursor as a normalized vector.
*
* \param ar: The region (used for the window width and height).
* \param mval: The area relative 2d location (such as event->mval converted to floats).
* \param out: The resulting normalized world-space direction vector.
*/
void ED_view3d_win_to_vector(const ARegion *ar, const float mval[2], float out[3])
{
RegionView3D *rv3d = ar->regiondata;
if (rv3d->is_persp) {
out[0] = 2.0f * (mval[0] / ar->winx) - 1.0f;
out[1] = 2.0f * (mval[1] / ar->winy) - 1.0f;
out[2] = -0.5f;
mul_project_m4_v3(rv3d->persinv, out);
sub_v3_v3(out, rv3d->viewinv[3]);
}
else {
negate_v3_v3(out, rv3d->viewinv[2]);
}
normalize_v3(out);
}
/**
* Calculate a 3d segment from 2d window coordinates.
* This ray_start is located at the viewpoint, ray_end is a far point.
* ray_start and ray_end are clipped by the view near and far limits
* so points along this line are always in view.
* In orthographic view all resulting segments will be parallel.
* \param ar: The region (used for the window width and height).
* \param v3d: The 3d viewport (used for near and far clipping range).
* \param mval: The area relative 2d location (such as event->mval, converted into float[2]).
* \param r_ray_start: The world-space starting point of the segment.
* \param r_ray_end: The world-space end point of the segment.
* \param do_clip_planes: Optionally clip the ray by the view clipping planes.
* \return success, false if the segment is totally clipped.
*/
bool ED_view3d_win_to_segment_clipped(
struct Depsgraph *depsgraph,
const ARegion *ar, View3D *v3d, const float mval[2],
float r_ray_start[3], float r_ray_end[3], const bool do_clip_planes)
{
view3d_win_to_ray_segment(depsgraph, ar, v3d, mval, NULL, NULL, r_ray_start, r_ray_end);
/* bounds clipping */
if (do_clip_planes) {
return ED_view3d_clip_segment((RegionView3D *)ar->regiondata, r_ray_start, r_ray_end);
}
return true;
}
/* Utility functions for projection
* ******************************** */
void ED_view3d_ob_project_mat_get(const RegionView3D *rv3d, Object *ob, float pmat[4][4])
{
float vmat[4][4];
mul_m4_m4m4(vmat, (float (*)[4])rv3d->viewmat, ob->obmat);
mul_m4_m4m4(pmat, (float (*)[4])rv3d->winmat, vmat);
}
void ED_view3d_ob_project_mat_get_from_obmat(const RegionView3D *rv3d, float obmat[4][4], float pmat[4][4])
{
float vmat[4][4];
mul_m4_m4m4(vmat, (float (*)[4])rv3d->viewmat, obmat);
mul_m4_m4m4(pmat, (float (*)[4])rv3d->winmat, vmat);
}
/**
* Convert between region relative coordinates (x,y) and depth component z and
* a point in world space. */
void ED_view3d_project(const struct ARegion *ar, const float world[3], float region[3])
{
// viewport is set up to make coordinates relative to the region, not window
RegionView3D *rv3d = ar->regiondata;
int viewport[4] = {0, 0, ar->winx, ar->winy};
GPU_matrix_project(world, rv3d->viewmat, rv3d->winmat, viewport, region);
}
bool ED_view3d_unproject(const struct ARegion *ar, float regionx, float regiony, float regionz, float world[3])
{
RegionView3D *rv3d = ar->regiondata;
int viewport[4] = {0, 0, ar->winx, ar->winy};
float region[3] = {regionx, regiony, regionz};
return GPU_matrix_unproject(region, rv3d->viewmat, rv3d->winmat, viewport, world);
}