While \file doesn't need an argument, it can't have another doxy command after it.
466 lines
12 KiB
C
466 lines
12 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup edtransform
|
|
*/
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
#include "DNA_screen_types.h"
|
|
|
|
#include "BKE_context.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "WM_types.h"
|
|
#include "WM_api.h"
|
|
|
|
#include "transform.h"
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
/* ************************** INPUT FROM MOUSE *************************** */
|
|
|
|
static void InputVector(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
convertViewVec(t, output, mval[0] - mi->imval[0], mval[1] - mi->imval[1]);
|
|
}
|
|
|
|
static void InputSpring(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
double dx, dy;
|
|
float ratio;
|
|
|
|
dx = ((double)mi->center[0] - mval[0]);
|
|
dy = ((double)mi->center[1] - mval[1]);
|
|
ratio = hypot(dx, dy) / (double)mi->factor;
|
|
|
|
output[0] = ratio;
|
|
}
|
|
|
|
static void InputSpringFlip(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
InputSpring(t, mi, mval, output);
|
|
|
|
/* flip scale */
|
|
/* values can become really big when zoomed in so use longs [#26598] */
|
|
if ((int64_t)((int)mi->center[0] - mval[0]) * (int64_t)((int)mi->center[0] - mi->imval[0]) +
|
|
(int64_t)((int)mi->center[1] - mval[1]) * (int64_t)((int)mi->center[1] - mi->imval[1]) < 0)
|
|
{
|
|
output[0] *= -1.0f;
|
|
}
|
|
}
|
|
|
|
static void InputSpringDelta(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
InputSpring(t, mi, mval, output);
|
|
output[0] -= 1.0f;
|
|
}
|
|
|
|
static void InputTrackBall(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
output[0] = (float)(mi->imval[1] - mval[1]);
|
|
output[1] = (float)(mval[0] - mi->imval[0]);
|
|
|
|
output[0] *= mi->factor;
|
|
output[1] *= mi->factor;
|
|
}
|
|
|
|
static void InputHorizontalRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
const int winx = t->ar ? t->ar->winx : 1;
|
|
|
|
output[0] = ((mval[0] - mi->imval[0]) / winx) * 2.0f;
|
|
}
|
|
|
|
static void InputHorizontalAbsolute(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
float vec[3];
|
|
|
|
InputVector(t, mi, mval, vec);
|
|
project_v3_v3v3(vec, vec, t->viewinv[0]);
|
|
|
|
output[0] = dot_v3v3(t->viewinv[0], vec) * 2.0f;
|
|
}
|
|
|
|
static void InputVerticalRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
const int winy = t->ar ? t->ar->winy : 1;
|
|
|
|
output[0] = ((mval[1] - mi->imval[1]) / winy) * 2.0f;
|
|
}
|
|
|
|
static void InputVerticalAbsolute(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
float vec[3];
|
|
|
|
InputVector(t, mi, mval, vec);
|
|
project_v3_v3v3(vec, vec, t->viewinv[1]);
|
|
|
|
output[0] = dot_v3v3(t->viewinv[1], vec) * 2.0f;
|
|
}
|
|
|
|
void setCustomPoints(TransInfo *UNUSED(t), MouseInput *mi, const int mval_start[2], const int mval_end[2])
|
|
{
|
|
int *data;
|
|
|
|
mi->data = MEM_reallocN(mi->data, sizeof(int) * 4);
|
|
|
|
data = mi->data;
|
|
|
|
data[0] = mval_start[0];
|
|
data[1] = mval_start[1];
|
|
data[2] = mval_end[0];
|
|
data[3] = mval_end[1];
|
|
}
|
|
|
|
void setCustomPointsFromDirection(TransInfo *t, MouseInput *mi, const float dir[2])
|
|
{
|
|
BLI_ASSERT_UNIT_V2(dir);
|
|
const int win_axis = t->ar ? ((abs((int)(t->ar->winx * dir[0])) + abs((int)(t->ar->winy * dir[1]))) / 2) : 1;
|
|
const int mval_start[2] = {
|
|
mi->imval[0] + dir[0] * win_axis,
|
|
mi->imval[1] + dir[1] * win_axis,
|
|
};
|
|
const int mval_end[2] = {mi->imval[0], mi->imval[1]};
|
|
setCustomPoints(t, mi, mval_start, mval_end);
|
|
}
|
|
|
|
static void InputCustomRatioFlip(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
double length;
|
|
double distance;
|
|
double dx, dy;
|
|
const int *data = mi->data;
|
|
|
|
if (data) {
|
|
int mdx, mdy;
|
|
dx = data[2] - data[0];
|
|
dy = data[3] - data[1];
|
|
|
|
length = hypot(dx, dy);
|
|
|
|
mdx = mval[0] - data[2];
|
|
mdy = mval[1] - data[3];
|
|
|
|
distance = (length != 0.0) ? (mdx * dx + mdy * dy) / length : 0.0;
|
|
|
|
output[0] = (length != 0.0) ? (double)(distance / length) : 0.0;
|
|
}
|
|
}
|
|
|
|
static void InputCustomRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
InputCustomRatioFlip(t, mi, mval, output);
|
|
output[0] = -output[0];
|
|
}
|
|
|
|
struct InputAngle_Data {
|
|
double angle;
|
|
double mval_prev[2];
|
|
};
|
|
|
|
static void InputAngle(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
struct InputAngle_Data *data = mi->data;
|
|
double dx2 = mval[0] - (double)mi->center[0];
|
|
double dy2 = mval[1] - (double)mi->center[1];
|
|
double B = sqrt(dx2 * dx2 + dy2 * dy2);
|
|
|
|
double dx1 = data->mval_prev[0] - (double)mi->center[0];
|
|
double dy1 = data->mval_prev[1] - (double)mi->center[1];
|
|
double A = sqrt(dx1 * dx1 + dy1 * dy1);
|
|
|
|
double dx3 = mval[0] - data->mval_prev[0];
|
|
double dy3 = mval[1] - data->mval_prev[1];
|
|
|
|
/* use doubles here, to make sure a "1.0" (no rotation)
|
|
* doesn't become 9.999999e-01, which gives 0.02 for acos */
|
|
double deler = (((dx1 * dx1 + dy1 * dy1) +
|
|
(dx2 * dx2 + dy2 * dy2) -
|
|
(dx3 * dx3 + dy3 * dy3)) / (2.0 * (((A * B) != 0.0) ? (A * B) : 1.0)));
|
|
/* ((A * B) ? (A * B) : 1.0) this takes care of potential divide by zero errors */
|
|
|
|
float dphi;
|
|
|
|
dphi = saacos((float)deler);
|
|
if ((dx1 * dy2 - dx2 * dy1) > 0.0) dphi = -dphi;
|
|
|
|
/* If the angle is zero, because of lack of precision close to the 1.0 value in acos
|
|
* approximate the angle with the opposite side of the normalized triangle
|
|
* This is a good approximation here since the smallest acos value seems to be around
|
|
* 0.02 degree and lower values don't even have a 0.01% error compared to the approximation
|
|
*/
|
|
if (dphi == 0) {
|
|
double dx, dy;
|
|
|
|
dx2 /= A;
|
|
dy2 /= A;
|
|
|
|
dx1 /= B;
|
|
dy1 /= B;
|
|
|
|
dx = dx1 - dx2;
|
|
dy = dy1 - dy2;
|
|
|
|
dphi = sqrt(dx * dx + dy * dy);
|
|
if ((dx1 * dy2 - dx2 * dy1) > 0.0) dphi = -dphi;
|
|
}
|
|
|
|
data->angle += ((double)dphi) * (mi->precision ? (double)mi->precision_factor : 1.0);
|
|
|
|
data->mval_prev[0] = mval[0];
|
|
data->mval_prev[1] = mval[1];
|
|
|
|
output[0] = data->angle;
|
|
}
|
|
|
|
static void InputAngleSpring(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
|
|
{
|
|
float toutput[3];
|
|
|
|
InputAngle(t, mi, mval, output);
|
|
InputSpring(t, mi, mval, toutput);
|
|
|
|
output[1] = toutput[0];
|
|
}
|
|
|
|
void initMouseInput(TransInfo *UNUSED(t), MouseInput *mi, const float center[2], const int mval[2], const bool precision)
|
|
{
|
|
mi->factor = 0;
|
|
mi->precision = precision;
|
|
|
|
mi->center[0] = center[0];
|
|
mi->center[1] = center[1];
|
|
|
|
mi->imval[0] = mval[0];
|
|
mi->imval[1] = mval[1];
|
|
|
|
mi->post = NULL;
|
|
}
|
|
|
|
static void calcSpringFactor(MouseInput *mi)
|
|
{
|
|
mi->factor = sqrtf(((float)(mi->center[1] - mi->imval[1])) * ((float)(mi->center[1] - mi->imval[1])) +
|
|
((float)(mi->center[0] - mi->imval[0])) * ((float)(mi->center[0] - mi->imval[0])));
|
|
|
|
if (mi->factor == 0.0f) {
|
|
mi->factor = 1.0f; /* prevent Inf */
|
|
}
|
|
}
|
|
|
|
void initMouseInputMode(TransInfo *t, MouseInput *mi, MouseInputMode mode)
|
|
{
|
|
/* incase we allocate a new value */
|
|
void *mi_data_prev = mi->data;
|
|
|
|
mi->use_virtual_mval = true;
|
|
mi->precision_factor = 1.0f / 10.0f;
|
|
|
|
switch (mode) {
|
|
case INPUT_VECTOR:
|
|
mi->apply = InputVector;
|
|
t->helpline = HLP_NONE;
|
|
break;
|
|
case INPUT_SPRING:
|
|
calcSpringFactor(mi);
|
|
mi->apply = InputSpring;
|
|
t->helpline = HLP_SPRING;
|
|
break;
|
|
case INPUT_SPRING_FLIP:
|
|
calcSpringFactor(mi);
|
|
mi->apply = InputSpringFlip;
|
|
t->helpline = HLP_SPRING;
|
|
break;
|
|
case INPUT_SPRING_DELTA:
|
|
calcSpringFactor(mi);
|
|
mi->apply = InputSpringDelta;
|
|
t->helpline = HLP_SPRING;
|
|
break;
|
|
case INPUT_ANGLE:
|
|
case INPUT_ANGLE_SPRING:
|
|
{
|
|
struct InputAngle_Data *data;
|
|
mi->use_virtual_mval = false;
|
|
mi->precision_factor = 1.0f / 30.0f;
|
|
data = MEM_callocN(sizeof(struct InputAngle_Data), "angle accumulator");
|
|
data->mval_prev[0] = mi->imval[0];
|
|
data->mval_prev[1] = mi->imval[1];
|
|
mi->data = data;
|
|
if (mode == INPUT_ANGLE) {
|
|
mi->apply = InputAngle;
|
|
}
|
|
else {
|
|
calcSpringFactor(mi);
|
|
mi->apply = InputAngleSpring;
|
|
}
|
|
t->helpline = HLP_ANGLE;
|
|
break;
|
|
}
|
|
case INPUT_TRACKBALL:
|
|
mi->precision_factor = 1.0f / 30.0f;
|
|
/* factor has to become setting or so */
|
|
mi->factor = 0.01f;
|
|
mi->apply = InputTrackBall;
|
|
t->helpline = HLP_TRACKBALL;
|
|
break;
|
|
case INPUT_HORIZONTAL_RATIO:
|
|
mi->apply = InputHorizontalRatio;
|
|
t->helpline = HLP_HARROW;
|
|
break;
|
|
case INPUT_HORIZONTAL_ABSOLUTE:
|
|
mi->apply = InputHorizontalAbsolute;
|
|
t->helpline = HLP_HARROW;
|
|
break;
|
|
case INPUT_VERTICAL_RATIO:
|
|
mi->apply = InputVerticalRatio;
|
|
t->helpline = HLP_VARROW;
|
|
break;
|
|
case INPUT_VERTICAL_ABSOLUTE:
|
|
mi->apply = InputVerticalAbsolute;
|
|
t->helpline = HLP_VARROW;
|
|
break;
|
|
case INPUT_CUSTOM_RATIO:
|
|
mi->apply = InputCustomRatio;
|
|
t->helpline = HLP_CARROW;
|
|
break;
|
|
case INPUT_CUSTOM_RATIO_FLIP:
|
|
mi->apply = InputCustomRatioFlip;
|
|
t->helpline = HLP_CARROW;
|
|
break;
|
|
case INPUT_NONE:
|
|
default:
|
|
mi->apply = NULL;
|
|
break;
|
|
}
|
|
|
|
/* setup for the mouse cursor: either set a custom one,
|
|
* or hide it if it will be drawn with the helpline */
|
|
wmWindow *win = CTX_wm_window(t->context);
|
|
switch (t->helpline) {
|
|
case HLP_NONE:
|
|
/* INPUT_VECTOR, INPUT_CUSTOM_RATIO, INPUT_CUSTOM_RATIO_FLIP */
|
|
if (t->flag & T_MODAL) {
|
|
t->flag |= T_MODAL_CURSOR_SET;
|
|
WM_cursor_modal_set(win, BC_NSEW_SCROLLCURSOR);
|
|
}
|
|
break;
|
|
case HLP_SPRING:
|
|
case HLP_ANGLE:
|
|
case HLP_TRACKBALL:
|
|
case HLP_HARROW:
|
|
case HLP_VARROW:
|
|
case HLP_CARROW:
|
|
if (t->flag & T_MODAL) {
|
|
t->flag |= T_MODAL_CURSOR_SET;
|
|
WM_cursor_modal_set(win, CURSOR_NONE);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* if we've allocated new data, free the old data
|
|
* less hassle then checking before every alloc above */
|
|
if (mi_data_prev && (mi_data_prev != mi->data)) {
|
|
MEM_freeN(mi_data_prev);
|
|
}
|
|
}
|
|
|
|
void setInputPostFct(MouseInput *mi, void (*post)(struct TransInfo *t, float values[3]))
|
|
{
|
|
mi->post = post;
|
|
}
|
|
|
|
void applyMouseInput(TransInfo *t, MouseInput *mi, const int mval[2], float output[3])
|
|
{
|
|
double mval_db[2];
|
|
|
|
if (mi->use_virtual_mval) {
|
|
/* update accumulator */
|
|
double mval_delta[2];
|
|
|
|
mval_delta[0] = (mval[0] - mi->imval[0]) - mi->virtual_mval.prev[0];
|
|
mval_delta[1] = (mval[1] - mi->imval[1]) - mi->virtual_mval.prev[1];
|
|
|
|
mi->virtual_mval.prev[0] += mval_delta[0];
|
|
mi->virtual_mval.prev[1] += mval_delta[1];
|
|
|
|
if (mi->precision) {
|
|
mval_delta[0] *= (double)mi->precision_factor;
|
|
mval_delta[1] *= (double)mi->precision_factor;
|
|
}
|
|
|
|
mi->virtual_mval.accum[0] += mval_delta[0];
|
|
mi->virtual_mval.accum[1] += mval_delta[1];
|
|
|
|
mval_db[0] = mi->imval[0] + mi->virtual_mval.accum[0];
|
|
mval_db[1] = mi->imval[1] + mi->virtual_mval.accum[1];
|
|
}
|
|
else {
|
|
mval_db[0] = mval[0];
|
|
mval_db[1] = mval[1];
|
|
}
|
|
|
|
|
|
if (mi->apply != NULL) {
|
|
mi->apply(t, mi, mval_db, output);
|
|
}
|
|
|
|
if (!is_zero_v3(t->values_modal_offset)) {
|
|
float values_ofs[3];
|
|
if (t->con.mode & CON_APPLY) {
|
|
mul_v3_m3v3(values_ofs, t->spacemtx, t->values_modal_offset);
|
|
}
|
|
else {
|
|
copy_v3_v3(values_ofs, t->values_modal_offset);
|
|
}
|
|
add_v3_v3(t->values, values_ofs);
|
|
}
|
|
|
|
if (mi->post) {
|
|
mi->post(t, output);
|
|
}
|
|
}
|
|
|
|
eRedrawFlag handleMouseInput(TransInfo *t, MouseInput *mi, const wmEvent *event)
|
|
{
|
|
eRedrawFlag redraw = TREDRAW_NOTHING;
|
|
|
|
switch (event->type) {
|
|
case LEFTSHIFTKEY:
|
|
case RIGHTSHIFTKEY:
|
|
if (event->val == KM_PRESS) {
|
|
t->modifiers |= MOD_PRECISION;
|
|
/* shift is modifier for higher precision transforn */
|
|
mi->precision = 1;
|
|
redraw = TREDRAW_HARD;
|
|
}
|
|
else if (event->val == KM_RELEASE) {
|
|
t->modifiers &= ~MOD_PRECISION;
|
|
mi->precision = 0;
|
|
redraw = TREDRAW_HARD;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return redraw;
|
|
}
|