This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/raytrace/rayobject_vbvh.cpp
2009-08-04 18:03:04 +00:00

455 lines
11 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2009 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): André Pinto.
*
* ***** END GPL LICENSE BLOCK *****
*/
extern "C"
{
#include <assert.h>
#include "MEM_guardedalloc.h"
#include "BKE_utildefines.h"
#include "BLI_arithb.h"
#include "BLI_memarena.h"
#include "RE_raytrace.h"
#include "rayobject_rtbuild.h"
#include "rayobject.h"
};
#include "reorganize.h"
#include "bvh.h"
#include <queue>
#define BVHNode VBVHNode
#define BVHTree VBVHTree
#define RAY_BB_TEST_COST (0.2f)
#define DFS_STACK_SIZE 256
#define DYNAMIC_ALLOC
//#define rtbuild_split rtbuild_mean_split_largest_axis /* objects mean split on the longest axis, childs BB are allowed to overlap */
//#define rtbuild_split rtbuild_median_split_largest_axis /* space median split on the longest axis, childs BB are allowed to overlap */
#define rtbuild_split rtbuild_heuristic_object_split /* split objects using heuristic */
struct BVHNode
{
BVHNode *child;
BVHNode *sibling;
float bb[6];
};
struct BVHTree
{
RayObject rayobj;
BVHNode *root;
MemArena *node_arena;
float cost;
RTBuilder *builder;
};
/*
* Push nodes (used on dfs)
*/
template<class Node>
inline static void bvh_node_push_childs(Node *node, Isect *isec, Node **stack, int &stack_pos)
{
Node *child = node->child;
if(!RayObject_isAligned(child))
{
stack[stack_pos++] = child;
}
else
{
while(child)
{
//Skips BB tests on primitives
if(!RayObject_isAligned(child->child))
stack[stack_pos++] = child->child;
else
stack[stack_pos++] = child;
child = child->sibling;
}
}
}
/*
* BVH done
*/
static BVHNode *bvh_new_node(BVHTree *tree)
{
BVHNode *node = (BVHNode*)BLI_memarena_alloc(tree->node_arena, sizeof(BVHNode));
node->sibling = NULL;
node->child = NULL;
assert(RayObject_isAligned(node));
return node;
}
template<class Builder>
float rtbuild_area(Builder *builder)
{
float min[3], max[3];
INIT_MINMAX(min, max);
rtbuild_merge_bb(builder, min, max);
return bb_area(min, max);
}
template<class Node>
void bvh_update_bb(Node *node)
{
INIT_MINMAX(node->bb, node->bb+3);
Node *child = node->child;
while(child)
{
bvh_node_merge_bb(child, node->bb, node->bb+3);
if(RayObject_isAligned(child))
child = child->sibling;
else
child = 0;
}
}
static int tot_pushup = 0;
static int tot_pushdown = 0;
static int tot_hints = 0;
template<class Node>
void pushdown(Node *parent)
{
Node **s_child = &parent->child;
Node * child = parent->child;
while(child && RayObject_isAligned(child))
{
Node *next = child->sibling;
Node **next_s_child = &child->sibling;
//assert(bb_fits_inside(parent->bb, parent->bb+3, child->bb, child->bb+3));
for(Node *i = parent->child; RayObject_isAligned(i) && i; i = i->sibling)
if(child != i && bb_fits_inside(i->bb, i->bb+3, child->bb, child->bb+3) && RayObject_isAligned(i->child))
{
// todo optimize (should the one with the smallest area?)
// float ia = bb_area(i->bb, i->bb+3)
// if(child->i)
*s_child = child->sibling;
child->sibling = i->child;
i->child = child;
next_s_child = s_child;
tot_pushdown++;
break;
}
child = next;
s_child = next_s_child;
}
for(Node *i = parent->child; RayObject_isAligned(i) && i; i = i->sibling)
pushdown( i );
}
template<class Node>
int count_childs(Node *parent)
{
int n = 0;
for(Node *i = parent->child; i; i = i->sibling)
{
n++;
if(!RayObject_isAligned(i))
break;
}
return n;
}
template<class Node>
void append_sibling(Node *node, Node *sibling)
{
while(node->sibling)
node = node->sibling;
node->sibling = sibling;
}
template<class Node>
void pushup(Node *parent)
{
float p_area = bb_area(parent->bb, parent->bb+3);
Node **prev = &parent->child;
for(Node *child = parent->child; RayObject_isAligned(child) && child; )
{
float c_area = bb_area(child->bb, child->bb+3) ;
int nchilds = count_childs(child);
float original_cost = (c_area / p_area)*nchilds + 1;
float flatten_cost = nchilds;
if(flatten_cost < original_cost && nchilds >= 2)
{
append_sibling(child, child->child);
child = child->sibling;
*prev = child;
// *prev = child->child;
// append_sibling( *prev, child->sibling );
// child = *prev;
tot_pushup++;
}
else
{
*prev = child;
prev = &(*prev)->sibling;
child = *prev;
}
}
for(Node *child = parent->child; RayObject_isAligned(child) && child; child = child->sibling)
pushup(child);
}
template<class Tree, class Node, class Builder>
Node *bvh_rearrange(Tree *tree, Builder *builder)
{
int size = rtbuild_size(builder);
if(size == 1)
{
Node *node = bvh_new_node(tree);
INIT_MINMAX(node->bb, node->bb+3);
rtbuild_merge_bb(builder, node->bb, node->bb+3);
node->child = (BVHNode*) rtbuild_get_primitive( builder, 0 );
return node;
}
else
{
Node *node = bvh_new_node(tree);
INIT_MINMAX(node->bb, node->bb+3);
rtbuild_merge_bb(builder, node->bb, node->bb+3);
Node **child = &node->child;
int nc = rtbuild_split(builder, 2);
assert(nc == 2);
for(int i=0; i<nc; i++)
{
Builder tmp;
rtbuild_get_child(builder, i, &tmp);
*child = bvh_rearrange<Tree,Node,Builder>(tree, &tmp);
child = &((*child)->sibling);
}
*child = 0;
return node;
}
}
template<>
void bvh_done<BVHTree>(BVHTree *obj)
{
rtbuild_done(obj->builder);
int needed_nodes = (rtbuild_size(obj->builder)+1)*2;
if(needed_nodes > BLI_MEMARENA_STD_BUFSIZE)
needed_nodes = BLI_MEMARENA_STD_BUFSIZE;
obj->node_arena = BLI_memarena_new(needed_nodes);
BLI_memarena_use_malloc(obj->node_arena);
obj->root = bvh_rearrange<BVHTree,BVHNode,RTBuilder>( obj, obj->builder );
reorganize(obj->root);
remove_useless(obj->root, &obj->root);
pushup(obj->root);
pushdown(obj->root);
// obj->root = memory_rearrange(obj->root);
obj->cost = 1.0;
rtbuild_free( obj->builder );
obj->builder = NULL;
}
template<int StackSize>
int intersect(BVHTree *obj, Isect* isec)
{
if(isec->hint)
{
LCTSHint *lcts = (LCTSHint*)isec->hint;
isec->hint = 0;
int hit = 0;
for(int i=0; i<lcts->size; i++)
{
BVHNode *node = (BVHNode*)lcts->stack[i];
if(RayObject_isAligned(node))
hit |= bvh_node_stack_raycast<BVHNode,StackSize,true>(node, isec);
else
hit |= RE_rayobject_intersect( (RayObject*)node, isec );
if(hit && isec->mode == RE_RAY_SHADOW)
break;
}
isec->hint = (RayHint*)lcts;
return hit;
}
else
{
if(RayObject_isAligned(obj->root))
return bvh_node_stack_raycast<BVHNode,StackSize,false>(obj->root, isec);
else
return RE_rayobject_intersect( (RayObject*) obj->root, isec );
}
}
template<class Node>
void bvh_dfs_make_hint(Node *node, LCTSHint *hint, int reserve_space, float *min, float *max);
template<class Node>
void bvh_dfs_make_hint_push_siblings(Node *node, LCTSHint *hint, int reserve_space, float *min, float *max)
{
if(!RayObject_isAligned(node))
hint->stack[hint->size++] = (RayObject*)node;
else
{
if(node->sibling)
bvh_dfs_make_hint_push_siblings(node->sibling, hint, reserve_space+1, min, max);
bvh_dfs_make_hint(node, hint, reserve_space, min, max);
}
}
template<class Node>
void bvh_dfs_make_hint(Node *node, LCTSHint *hint, int reserve_space, float *min, float *max)
{
assert( hint->size + reserve_space + 1 <= RE_RAY_LCTS_MAX_SIZE );
if(!RayObject_isAligned(node))
{
hint->stack[hint->size++] = (RayObject*)node;
}
else
{
int childs = count_childs(node);
if(hint->size + reserve_space + childs <= RE_RAY_LCTS_MAX_SIZE)
{
/* We are 100% sure the ray will be pass inside this node */
if(bb_fits_inside(node->bb, node->bb+3, min, max) )
{
bvh_dfs_make_hint_push_siblings(node->child, hint, reserve_space, min, max);
}
else
{
hint->stack[hint->size++] = (RayObject*)node;
}
}
else
{
hint->stack[hint->size++] = (RayObject*)node;
}
}
}
template<class Tree>
void bvh_hint_bb(Tree *tree, LCTSHint *hint, float *min, float *max)
{
hint->size = 0;
bvh_dfs_make_hint( tree->root, hint, 0, min, max );
tot_hints++;
}
void bfree(BVHTree *tree)
{
if(tot_pushup + tot_pushdown + tot_hints + tot_moves)
{
printf("tot pushups: %d\n", tot_pushup);
printf("tot pushdowns: %d\n", tot_pushdown);
printf("tot moves: %d\n", tot_moves);
printf("tot hints created: %d\n", tot_hints);
tot_pushup = 0;
tot_pushdown = 0;
tot_hints = 0;
tot_moves = 0;
}
bvh_free(tree);
}
/* the cast to pointer function is needed to workarround gcc bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11407 */
template<int STACK_SIZE>
static RayObjectAPI make_api()
{
static RayObjectAPI api =
{
(RE_rayobject_raycast_callback) ((int(*)(BVHTree*,Isect*)) &intersect<STACK_SIZE>),
(RE_rayobject_add_callback) ((void(*)(BVHTree*,RayObject*)) &bvh_add<BVHTree>),
(RE_rayobject_done_callback) ((void(*)(BVHTree*)) &bvh_done<BVHTree>),
// (RE_rayobject_free_callback) ((void(*)(BVHTree*)) &bvh_free<BVHTree>),
(RE_rayobject_free_callback) ((void(*)(BVHTree*)) &bfree),
(RE_rayobject_merge_bb_callback)((void(*)(BVHTree*,float*,float*)) &bvh_bb<BVHTree>),
(RE_rayobject_cost_callback) ((float(*)(BVHTree*)) &bvh_cost<BVHTree>),
(RE_rayobject_hint_bb_callback) ((void(*)(BVHTree*,LCTSHint*,float*,float*)) &bvh_hint_bb<BVHTree>)
};
return api;
}
static RayObjectAPI* get_api(int maxstacksize)
{
// static RayObjectAPI bvh_api16 = make_api<16>();
// static RayObjectAPI bvh_api32 = make_api<32>();
// static RayObjectAPI bvh_api64 = make_api<64>();
static RayObjectAPI bvh_api128 = make_api<128>();
static RayObjectAPI bvh_api256 = make_api<256>();
// if(maxstacksize <= 16 ) return &bvh_api16;
// if(maxstacksize <= 32 ) return &bvh_api32;
// if(maxstacksize <= 64 ) return &bvh_api64;
if(maxstacksize <= 128) return &bvh_api128;
if(maxstacksize <= 256) return &bvh_api256;
assert(maxstacksize <= 256);
return 0;
}
RayObject *RE_rayobject_vbvh_create(int size)
{
BVHTree *obj= (BVHTree*)MEM_callocN(sizeof(BVHTree), "BVHTree");
assert( RayObject_isAligned(obj) ); /* RayObject API assumes real data to be 4-byte aligned */
obj->rayobj.api = get_api(DFS_STACK_SIZE);
obj->root = NULL;
obj->node_arena = NULL;
obj->builder = rtbuild_create( size );
return RayObject_unalignRayAPI((RayObject*) obj);
}