Added conversion for BGE Quaternion WXYZ (Blender/C) -> XYZW (Moto C++). BGE Python API now uses WXYZ following mathutils (break script warning).
		
			
				
	
	
		
			1260 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1260 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* 
 | |
|  * $Id$
 | |
|  *
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 59 Temple Place - Suite 330, Boston, MA	02111-1307, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This is a new part of Blender.
 | |
|  *
 | |
|  * Contributor(s): Joseph Gilbert, Campbell Barton
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "Mathutils.h"
 | |
| 
 | |
| #include "BLI_arithb.h"
 | |
| #include "PIL_time.h"
 | |
| #include "BLI_rand.h"
 | |
| #include "BKE_utildefines.h"
 | |
| 
 | |
| //-------------------------DOC STRINGS ---------------------------
 | |
| static char M_Mathutils_doc[] = "The Blender Mathutils module\n\n";
 | |
| static char M_Mathutils_Rand_doc[] = "() - return a random number";
 | |
| static char M_Mathutils_AngleBetweenVecs_doc[] = "() - returns the angle between two vectors in degrees";
 | |
| static char M_Mathutils_MidpointVecs_doc[] = "() - return the vector to the midpoint between two vectors";
 | |
| static char M_Mathutils_ProjectVecs_doc[] =	"() - returns the projection vector from the projection of vecA onto vecB";
 | |
| static char M_Mathutils_RotationMatrix_doc[] = "() - construct a rotation matrix from an angle and axis of rotation";
 | |
| static char M_Mathutils_ScaleMatrix_doc[] =	"() - construct a scaling matrix from a scaling factor";
 | |
| static char M_Mathutils_OrthoProjectionMatrix_doc[] = "() - construct a orthographic projection matrix from a selected plane";
 | |
| static char M_Mathutils_ShearMatrix_doc[] = "() - construct a shearing matrix from a plane of shear and a shear factor";
 | |
| static char M_Mathutils_TranslationMatrix_doc[] = "(vec) - create a translation matrix from a vector";
 | |
| static char M_Mathutils_Slerp_doc[] = "() - returns the interpolation between two quaternions";
 | |
| static char M_Mathutils_DifferenceQuats_doc[] = "() - return the angular displacment difference between two quats";
 | |
| static char M_Mathutils_Intersect_doc[] = "(v1, v2, v3, ray, orig, clip=1) - returns the intersection between a ray and a triangle, if possible, returns None otherwise";
 | |
| static char M_Mathutils_TriangleArea_doc[] = "(v1, v2, v3) - returns the area size of the 2D or 3D triangle defined";
 | |
| static char M_Mathutils_TriangleNormal_doc[] = "(v1, v2, v3) - returns the normal of the 3D triangle defined";
 | |
| static char M_Mathutils_QuadNormal_doc[] = "(v1, v2, v3, v4) - returns the normal of the 3D quad defined";
 | |
| static char M_Mathutils_LineIntersect_doc[] = "(v1, v2, v3, v4) - returns a tuple with the points on each line respectively closest to the other";
 | |
| //-----------------------METHOD DEFINITIONS ----------------------
 | |
| 
 | |
| static PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args);
 | |
| static PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args);
 | |
| static PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args);
 | |
| static PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args);
 | |
| static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args);
 | |
| static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * value);
 | |
| static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args);
 | |
| static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args);
 | |
| static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args);
 | |
| static PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args);
 | |
| static PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args);
 | |
| static PyObject *M_Mathutils_Intersect( PyObject * self, PyObject * args );
 | |
| static PyObject *M_Mathutils_TriangleArea( PyObject * self, PyObject * args );
 | |
| static PyObject *M_Mathutils_TriangleNormal( PyObject * self, PyObject * args );
 | |
| static PyObject *M_Mathutils_QuadNormal( PyObject * self, PyObject * args );
 | |
| static PyObject *M_Mathutils_LineIntersect( PyObject * self, PyObject * args );
 | |
| 
 | |
| struct PyMethodDef M_Mathutils_methods[] = {
 | |
| 	{"Rand", (PyCFunction) M_Mathutils_Rand, METH_VARARGS, M_Mathutils_Rand_doc},
 | |
| 	{"AngleBetweenVecs", (PyCFunction) M_Mathutils_AngleBetweenVecs, METH_VARARGS, M_Mathutils_AngleBetweenVecs_doc},
 | |
| 	{"MidpointVecs", (PyCFunction) M_Mathutils_MidpointVecs, METH_VARARGS, M_Mathutils_MidpointVecs_doc},
 | |
| 	{"ProjectVecs", (PyCFunction) M_Mathutils_ProjectVecs, METH_VARARGS, M_Mathutils_ProjectVecs_doc},
 | |
| 	{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
 | |
| 	{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
 | |
| 	{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
 | |
| 	{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
 | |
| 	{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix,  METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
 | |
| 	{"DifferenceQuats", (PyCFunction) M_Mathutils_DifferenceQuats, METH_VARARGS,M_Mathutils_DifferenceQuats_doc},
 | |
| 	{"Slerp", (PyCFunction) M_Mathutils_Slerp, METH_VARARGS, M_Mathutils_Slerp_doc},
 | |
| 	{"Intersect", ( PyCFunction ) M_Mathutils_Intersect, METH_VARARGS, M_Mathutils_Intersect_doc},
 | |
| 	{"TriangleArea", ( PyCFunction ) M_Mathutils_TriangleArea, METH_VARARGS, M_Mathutils_TriangleArea_doc},
 | |
| 	{"TriangleNormal", ( PyCFunction ) M_Mathutils_TriangleNormal, METH_VARARGS, M_Mathutils_TriangleNormal_doc},
 | |
| 	{"QuadNormal", ( PyCFunction ) M_Mathutils_QuadNormal, METH_VARARGS, M_Mathutils_QuadNormal_doc},
 | |
| 	{"LineIntersect", ( PyCFunction ) M_Mathutils_LineIntersect, METH_VARARGS, M_Mathutils_LineIntersect_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| 
 | |
| /*----------------------------MODULE INIT-------------------------*/
 | |
| /* from can be Blender.Mathutils or GameLogic.Mathutils for the BGE */
 | |
| 
 | |
| #if (PY_VERSION_HEX >= 0x03000000)
 | |
| static struct PyModuleDef M_Mathutils_module_def = {
 | |
| 	PyModuleDef_HEAD_INIT,
 | |
| 	"Mathutils",  /* m_name */
 | |
| 	M_Mathutils_doc,  /* m_doc */
 | |
| 	0,  /* m_size */
 | |
| 	M_Mathutils_methods,  /* m_methods */
 | |
| 	0,  /* m_reload */
 | |
| 	0,  /* m_traverse */
 | |
| 	0,  /* m_clear */
 | |
| 	0,  /* m_free */
 | |
| };
 | |
| #endif
 | |
| 
 | |
| PyObject *Mathutils_Init(const char *from)
 | |
| {
 | |
| 	PyObject *submodule;
 | |
| 
 | |
| 	//seed the generator for the rand function
 | |
| 	BLI_srand((unsigned int) (PIL_check_seconds_timer() * 0x7FFFFFFF));
 | |
| 	
 | |
| 	if( PyType_Ready( &vector_Type ) < 0 )
 | |
| 		return NULL;
 | |
| 	if( PyType_Ready( &matrix_Type ) < 0 )
 | |
| 		return NULL;	
 | |
| 	if( PyType_Ready( &euler_Type ) < 0 )
 | |
| 		return NULL;
 | |
| 	if( PyType_Ready( &quaternion_Type ) < 0 )
 | |
| 		return NULL;
 | |
| 	
 | |
| #if (PY_VERSION_HEX >= 0x03000000)
 | |
| 	submodule = PyModule_Create(&M_Mathutils_module_def);
 | |
| 	PyDict_SetItemString(PySys_GetObject("modules"), M_Mathutils_module_def.m_name, submodule);
 | |
| #else
 | |
| 	submodule = Py_InitModule3(from, M_Mathutils_methods, M_Mathutils_doc);
 | |
| #endif
 | |
| 	
 | |
| 	/* each type has its own new() function */
 | |
| 	PyModule_AddObject( submodule, "Vector",		(PyObject *)&vector_Type );
 | |
| 	PyModule_AddObject( submodule, "Matrix",		(PyObject *)&matrix_Type );
 | |
| 	PyModule_AddObject( submodule, "Euler",			(PyObject *)&euler_Type );
 | |
| 	PyModule_AddObject( submodule, "Quaternion",	(PyObject *)&quaternion_Type );
 | |
| 	
 | |
| 	mathutils_matrix_vector_cb_index= Mathutils_RegisterCallback(&mathutils_matrix_vector_cb);
 | |
| 
 | |
| 	return (submodule);
 | |
| }
 | |
| 
 | |
| //-----------------------------METHODS----------------------------
 | |
| //-----------------quat_rotation (internal)-----------
 | |
| //This function multiplies a vector/point * quat or vice versa
 | |
| //to rotate the point/vector by the quaternion
 | |
| //arguments should all be 3D
 | |
| PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
 | |
| {
 | |
| 	float rot[3];
 | |
| 	QuaternionObject *quat = NULL;
 | |
| 	VectorObject *vec = NULL;
 | |
| 
 | |
| 	if(QuaternionObject_Check(arg1)){
 | |
| 		quat = (QuaternionObject*)arg1;
 | |
| 		if(!BaseMath_ReadCallback(quat))
 | |
| 			return NULL;
 | |
| 
 | |
| 		if(VectorObject_Check(arg2)){
 | |
| 			vec = (VectorObject*)arg2;
 | |
| 			
 | |
| 			if(!BaseMath_ReadCallback(vec))
 | |
| 				return NULL;
 | |
| 			
 | |
| 			rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] - 
 | |
| 				2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] + 
 | |
| 				2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] - 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
 | |
| 			rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] + 
 | |
| 				2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] - 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] - 
 | |
| 				2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
 | |
| 			rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] + 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] - 
 | |
| 				quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] - 
 | |
| 				quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
 | |
| 			return newVectorObject(rot, 3, Py_NEW);
 | |
| 		}
 | |
| 	}else if(VectorObject_Check(arg1)){
 | |
| 		vec = (VectorObject*)arg1;
 | |
| 		
 | |
| 		if(!BaseMath_ReadCallback(vec))
 | |
| 			return NULL;
 | |
| 		
 | |
| 		if(QuaternionObject_Check(arg2)){
 | |
| 			quat = (QuaternionObject*)arg2;
 | |
| 			if(!BaseMath_ReadCallback(quat))
 | |
| 				return NULL;
 | |
| 
 | |
| 			rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] - 
 | |
| 				2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] + 
 | |
| 				2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] - 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
 | |
| 			rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] + 
 | |
| 				2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] - 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] - 
 | |
| 				2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
 | |
| 			rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] + 
 | |
| 				quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] - 
 | |
| 				quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] - 
 | |
| 				quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
 | |
| 			return newVectorObject(rot, 3, Py_NEW);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	PyErr_SetString(PyExc_RuntimeError, "quat_rotation(internal): internal problem rotating vector/point\n");
 | |
| 	return NULL;
 | |
| 	
 | |
| }
 | |
| 
 | |
| //----------------------------------Mathutils.Rand() --------------------
 | |
| //returns a random number between a high and low value
 | |
| static PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	float high, low, range;
 | |
| 	double drand;
 | |
| 	//initializers
 | |
| 	high = 1.0;
 | |
| 	low = 0.0;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "|ff", &low, &high)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "Mathutils.Rand(): expected nothing or optional (float, float)\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if((high < low) || (high < 0 && low > 0)) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "Mathutils.Rand(): high value should be larger than low value\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	//get the random number 0 - 1
 | |
| 	drand = BLI_drand();
 | |
| 
 | |
| 	//set it to range
 | |
| 	range = high - low;
 | |
| 	drand = drand * range;
 | |
| 	drand = drand + low;
 | |
| 
 | |
| 	return PyFloat_FromDouble(drand);
 | |
| }
 | |
| //----------------------------------VECTOR FUNCTIONS---------------------
 | |
| //----------------------------------Mathutils.AngleBetweenVecs() ---------
 | |
| //calculates the angle between 2 vectors
 | |
| static PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	double dot = 0.0f, angleRads, test_v1 = 0.0f, test_v2 = 0.0f;
 | |
| 	int x, size;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
 | |
| 		goto AttributeError1; //not vectors
 | |
| 	if(vec1->size != vec2->size)
 | |
| 		goto AttributeError1; //bad sizes
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	//since size is the same....
 | |
| 	size = vec1->size;
 | |
| 
 | |
| 	for(x = 0; x < size; x++) {
 | |
| 		test_v1 += vec1->vec[x] * vec1->vec[x];
 | |
| 		test_v2 += vec2->vec[x] * vec2->vec[x];
 | |
| 	}
 | |
| 	if (!test_v1 || !test_v2){
 | |
| 		goto AttributeError2; //zero-length vector
 | |
| 	}
 | |
| 
 | |
| 	//dot product
 | |
| 	for(x = 0; x < size; x++) {
 | |
| 		dot += vec1->vec[x] * vec2->vec[x];
 | |
| 	}
 | |
| 	dot /= (sqrt(test_v1) * sqrt(test_v2));
 | |
| 
 | |
| 	angleRads = (double)saacos(dot);
 | |
| 
 | |
| #ifdef USE_MATHUTILS_DEG
 | |
| 	return PyFloat_FromDouble(angleRads * (180/ Py_PI));
 | |
| #else
 | |
| 	return PyFloat_FromDouble(angleRads);
 | |
| #endif
 | |
| AttributeError1:
 | |
| 	PyErr_SetString(PyExc_AttributeError, "Mathutils.AngleBetweenVecs(): expects (2) VECTOR objects of the same size\n");
 | |
| 	return NULL;
 | |
| 
 | |
| AttributeError2:
 | |
| 	PyErr_SetString(PyExc_AttributeError, "Mathutils.AngleBetweenVecs(): zero length vectors are not acceptable arguments\n");
 | |
| 	return NULL;
 | |
| }
 | |
| //----------------------------------Mathutils.MidpointVecs() -------------
 | |
| //calculates the midpoint between 2 vectors
 | |
| static PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	float vec[4];
 | |
| 	int x;
 | |
| 	
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec1->size != vec2->size) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2))
 | |
| 		return NULL;
 | |
| 
 | |
| 	for(x = 0; x < vec1->size; x++) {
 | |
| 		vec[x] = 0.5f * (vec1->vec[x] + vec2->vec[x]);
 | |
| 	}
 | |
| 	return newVectorObject(vec, vec1->size, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.ProjectVecs() -------------
 | |
| //projects vector 1 onto vector 2
 | |
| static PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	float vec[4]; 
 | |
| 	double dot = 0.0f, dot2 = 0.0f;
 | |
| 	int x, size;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec1->size != vec2->size) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2))
 | |
| 		return NULL;
 | |
| 
 | |
| 	
 | |
| 	//since they are the same size...
 | |
| 	size = vec1->size;
 | |
| 
 | |
| 	//get dot products
 | |
| 	for(x = 0; x < size; x++) {
 | |
| 		dot += vec1->vec[x] * vec2->vec[x];
 | |
| 		dot2 += vec2->vec[x] * vec2->vec[x];
 | |
| 	}
 | |
| 	//projection
 | |
| 	dot /= dot2;
 | |
| 	for(x = 0; x < size; x++) {
 | |
| 		vec[x] = (float)(dot * vec2->vec[x]);
 | |
| 	}
 | |
| 	return newVectorObject(vec, size, Py_NEW);
 | |
| }
 | |
| //----------------------------------MATRIX FUNCTIONS--------------------
 | |
| //----------------------------------Mathutils.RotationMatrix() ----------
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| //creates a rotation matrix
 | |
| static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec = NULL;
 | |
| 	char *axis = NULL;
 | |
| 	int matSize;
 | |
| 	float angle = 0.0f, norm = 0.0f, cosAngle = 0.0f, sinAngle = 0.0f;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(): expected float int and optional string and vector\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| #ifdef USE_MATHUTILS_DEG
 | |
| 	/* Clamp to -360:360 */
 | |
| 	while (angle<-360.0f)
 | |
| 		angle+=360.0;
 | |
| 	while (angle>360.0f)
 | |
| 		angle-=360.0;
 | |
| #else
 | |
| 	while (angle<-(Py_PI*2))
 | |
| 		angle+=(Py_PI*2);
 | |
| 	while (angle>(Py_PI*2))
 | |
| 		angle-=(Py_PI*2);
 | |
| #endif
 | |
| 	
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize == 2 && (axis != NULL || vec != NULL)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if((matSize == 3 || matSize == 4) && axis == NULL) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(axis) {
 | |
| 		if(((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) && vec == NULL) {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): please define the arbitrary axis of rotation\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if(vec) {
 | |
| 		if(vec->size != 3) {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): the arbitrary axis must be a 3D vector\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		
 | |
| 		if(!BaseMath_ReadCallback(vec))
 | |
| 			return NULL;
 | |
| 		
 | |
| 	}
 | |
| #ifdef USE_MATHUTILS_DEG
 | |
| 	//convert to radians
 | |
| 	angle = angle * (float) (Py_PI / 180);
 | |
| #endif
 | |
| 
 | |
| 	if(axis == NULL && matSize == 2) {
 | |
| 		//2D rotation matrix
 | |
| 		mat[0] = (float) cos (angle);
 | |
| 		mat[1] = (float) sin (angle);
 | |
| 		mat[2] = -((float) sin(angle));
 | |
| 		mat[3] = (float) cos(angle);
 | |
| 	} else if((strcmp(axis, "x") == 0) || (strcmp(axis, "X") == 0)) {
 | |
| 		//rotation around X
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[4] = (float) cos(angle);
 | |
| 		mat[5] = (float) sin(angle);
 | |
| 		mat[7] = -((float) sin(angle));
 | |
| 		mat[8] = (float) cos(angle);
 | |
| 	} else if((strcmp(axis, "y") == 0) || (strcmp(axis, "Y") == 0)) {
 | |
| 		//rotation around Y
 | |
| 		mat[0] = (float) cos(angle);
 | |
| 		mat[2] = -((float) sin(angle));
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[6] = (float) sin(angle);
 | |
| 		mat[8] = (float) cos(angle);
 | |
| 	} else if((strcmp(axis, "z") == 0) || (strcmp(axis, "Z") == 0)) {
 | |
| 		//rotation around Z
 | |
| 		mat[0] = (float) cos(angle);
 | |
| 		mat[1] = (float) sin(angle);
 | |
| 		mat[3] = -((float) sin(angle));
 | |
| 		mat[4] = (float) cos(angle);
 | |
| 		mat[8] = 1.0f;
 | |
| 	} else if((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) {
 | |
| 		//arbitrary rotation
 | |
| 		//normalize arbitrary axis
 | |
| 		norm = (float) sqrt(vec->vec[0] * vec->vec[0] +
 | |
| 				       vec->vec[1] * vec->vec[1] +
 | |
| 				       vec->vec[2] * vec->vec[2]);
 | |
| 		vec->vec[0] /= norm;
 | |
| 		vec->vec[1] /= norm;
 | |
| 		vec->vec[2] /= norm;
 | |
| 		
 | |
| 		if (isnan(vec->vec[0]) || isnan(vec->vec[1]) || isnan(vec->vec[2])) {
 | |
| 			/* zero length vector, return an identity matrix, could also return an error */
 | |
| 			mat[0]= mat[4] = mat[8] = 1.0f;
 | |
| 		} else {	
 | |
| 			/* create matrix */
 | |
| 			cosAngle = (float) cos(angle);
 | |
| 			sinAngle = (float) sin(angle);
 | |
| 			mat[0] = ((vec->vec[0] * vec->vec[0]) * (1 - cosAngle)) +
 | |
| 				cosAngle;
 | |
| 			mat[1] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) +
 | |
| 				(vec->vec[2] * sinAngle);
 | |
| 			mat[2] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) -
 | |
| 				(vec->vec[1] * sinAngle);
 | |
| 			mat[3] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) -
 | |
| 				(vec->vec[2] * sinAngle);
 | |
| 			mat[4] = ((vec->vec[1] * vec->vec[1]) * (1 - cosAngle)) +
 | |
| 				cosAngle;
 | |
| 			mat[5] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) +
 | |
| 				(vec->vec[0] * sinAngle);
 | |
| 			mat[6] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) +
 | |
| 				(vec->vec[1] * sinAngle);
 | |
| 			mat[7] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) -
 | |
| 				(vec->vec[0] * sinAngle);
 | |
| 			mat[8] = ((vec->vec[2] * vec->vec[2]) * (1 - cosAngle)) +
 | |
| 				cosAngle;
 | |
| 		}
 | |
| 	} else {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): unrecognizable axis of rotation type - expected x,y,z or r\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.TranslationMatrix() -------
 | |
| //creates a translation matrix
 | |
| static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
 | |
| {
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	
 | |
| 	if(!VectorObject_Check(vec)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): expected vector\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec->size != 3 && vec->size != 4) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(vec))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	//create a identity matrix and add translation
 | |
| 	Mat4One((float(*)[4]) mat);
 | |
| 	mat[12] = vec->vec[0];
 | |
| 	mat[13] = vec->vec[1];
 | |
| 	mat[14] = vec->vec[2];
 | |
| 
 | |
| 	return newMatrixObject(mat, 4, 4, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.ScaleMatrix() -------------
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| //creates a scaling matrix
 | |
| static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec = NULL;
 | |
| 	float norm = 0.0f, factor;
 | |
| 	int matSize, x;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "Mathutils.ScaleMatrix(): expected float int and optional vector\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec) {
 | |
| 		if(vec->size > 2 && matSize == 2) {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		
 | |
| 		if(!BaseMath_ReadCallback(vec))
 | |
| 			return NULL;
 | |
| 		
 | |
| 	}
 | |
| 	if(vec == NULL) {	//scaling along axis
 | |
| 		if(matSize == 2) {
 | |
| 			mat[0] = factor;
 | |
| 			mat[3] = factor;
 | |
| 		} else {
 | |
| 			mat[0] = factor;
 | |
| 			mat[4] = factor;
 | |
| 			mat[8] = factor;
 | |
| 		}
 | |
| 	} else { //scaling in arbitrary direction
 | |
| 		//normalize arbitrary axis
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			norm += vec->vec[x] * vec->vec[x];
 | |
| 		}
 | |
| 		norm = (float) sqrt(norm);
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			vec->vec[x] /= norm;
 | |
| 		}
 | |
| 		if(matSize == 2) {
 | |
| 			mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
 | |
| 			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
 | |
| 		} else {
 | |
| 			mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
 | |
| 			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
 | |
| 			mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
 | |
| 			mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
 | |
| 			mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
 | |
| 			mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
 | |
| 			mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
 | |
| 		}
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.OrthoProjectionMatrix() ---
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| //creates an ortho projection matrix
 | |
| static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	VectorObject *vec = NULL;
 | |
| 	char *plane;
 | |
| 	int matSize, x;
 | |
| 	float norm = 0.0f;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	
 | |
| 	if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError,"Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec) {
 | |
| 		if(vec->size > 2 && matSize == 2) {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		
 | |
| 		if(!BaseMath_ReadCallback(vec))
 | |
| 			return NULL;
 | |
| 		
 | |
| 	}
 | |
| 	if(vec == NULL) {	//ortho projection onto cardinal plane
 | |
| 		if(((strcmp(plane, "x") == 0)
 | |
| 		      || (strcmp(plane, "X") == 0)) && matSize == 2) {
 | |
| 			mat[0] = 1.0f;
 | |
| 		} else if(((strcmp(plane, "y") == 0) 
 | |
| 			|| (strcmp(plane, "Y") == 0))
 | |
| 			   && matSize == 2) {
 | |
| 			mat[3] = 1.0f;
 | |
| 		} else if(((strcmp(plane, "xy") == 0)
 | |
| 			     || (strcmp(plane, "XY") == 0))
 | |
| 			   && matSize > 2) {
 | |
| 			mat[0] = 1.0f;
 | |
| 			mat[4] = 1.0f;
 | |
| 		} else if(((strcmp(plane, "xz") == 0)
 | |
| 			     || (strcmp(plane, "XZ") == 0))
 | |
| 			   && matSize > 2) {
 | |
| 			mat[0] = 1.0f;
 | |
| 			mat[8] = 1.0f;
 | |
| 		} else if(((strcmp(plane, "yz") == 0)
 | |
| 			     || (strcmp(plane, "YZ") == 0))
 | |
| 			   && matSize > 2) {
 | |
| 			mat[4] = 1.0f;
 | |
| 			mat[8] = 1.0f;
 | |
| 		} else {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: x, y, xy, xz, yz\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	} else { //arbitrary plane
 | |
| 		//normalize arbitrary axis
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			norm += vec->vec[x] * vec->vec[x];
 | |
| 		}
 | |
| 		norm = (float) sqrt(norm);
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			vec->vec[x] /= norm;
 | |
| 		}
 | |
| 		if(((strcmp(plane, "r") == 0)
 | |
| 		      || (strcmp(plane, "R") == 0)) && matSize == 2) {
 | |
| 			mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
 | |
| 			mat[1] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[2] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
 | |
| 		} else if(((strcmp(plane, "r") == 0)
 | |
| 			     || (strcmp(plane, "R") == 0))
 | |
| 			   && matSize > 2) {
 | |
| 			mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
 | |
| 			mat[1] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[2] = -(vec->vec[0] * vec->vec[2]);
 | |
| 			mat[3] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
 | |
| 			mat[5] = -(vec->vec[1] * vec->vec[2]);
 | |
| 			mat[6] = -(vec->vec[0] * vec->vec[2]);
 | |
| 			mat[7] = -(vec->vec[1] * vec->vec[2]);
 | |
| 			mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
 | |
| 		} else {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.ShearMatrix() -------------
 | |
| //creates a shear matrix
 | |
| static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	int matSize;
 | |
| 	char *plane;
 | |
| 	float factor;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,"Mathutils.ShearMatrix(): expected string float and int\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError,"Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0))
 | |
| 	    && matSize == 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[2] = factor;
 | |
| 		mat[3] = 1.0f;
 | |
| 	} else if(((strcmp(plane, "y") == 0)
 | |
| 		     || (strcmp(plane, "Y") == 0)) && matSize == 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[1] = factor;
 | |
| 		mat[3] = 1.0f;
 | |
| 	} else if(((strcmp(plane, "xy") == 0)
 | |
| 		     || (strcmp(plane, "XY") == 0)) && matSize > 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[6] = factor;
 | |
| 		mat[7] = factor;
 | |
| 	} else if(((strcmp(plane, "xz") == 0)
 | |
| 		     || (strcmp(plane, "XZ") == 0)) && matSize > 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[3] = factor;
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[5] = factor;
 | |
| 		mat[8] = 1.0f;
 | |
| 	} else if(((strcmp(plane, "yz") == 0)
 | |
| 		     || (strcmp(plane, "YZ") == 0)) && matSize > 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[1] = factor;
 | |
| 		mat[2] = factor;
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[8] = 1.0f;
 | |
| 	} else {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW);
 | |
| }
 | |
| //----------------------------------QUATERNION FUNCTIONS-----------------
 | |
| 
 | |
| //----------------------------------Mathutils.DifferenceQuats() ---------
 | |
| //returns the difference between 2 quaternions
 | |
| static PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	QuaternionObject *quatU = NULL, *quatV = NULL;
 | |
| 	float quat[4], tempQuat[4];
 | |
| 	double dot = 0.0f;
 | |
| 	int x;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU, &quaternion_Type, &quatV)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "Mathutils.DifferenceQuats(): expected Quaternion types");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(quatU) || !BaseMath_ReadCallback(quatV))
 | |
| 		return NULL;
 | |
| 
 | |
| 	tempQuat[0] = quatU->quat[0];
 | |
| 	tempQuat[1] = -quatU->quat[1];
 | |
| 	tempQuat[2] = -quatU->quat[2];
 | |
| 	tempQuat[3] = -quatU->quat[3];
 | |
| 
 | |
| 	dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] *  tempQuat[1] +
 | |
| 			       tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]);
 | |
| 
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		tempQuat[x] /= (float)(dot * dot);
 | |
| 	}
 | |
| 	QuatMul(quat, tempQuat, quatV->quat);
 | |
| 	return newQuaternionObject(quat, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.Slerp() ------------------
 | |
| //attemps to interpolate 2 quaternions and return the result
 | |
| static PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args)
 | |
| {
 | |
| 	QuaternionObject *quatU = NULL, *quatV = NULL;
 | |
| 	float quat[4], quat_u[4], quat_v[4], param;
 | |
| 	double x, y, dot, sinT, angle, IsinT;
 | |
| 	int z;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!f", &quaternion_Type, &quatU, &quaternion_Type, &quatV, ¶m)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "Mathutils.Slerp(): expected Quaternion types and float");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(quatU) || !BaseMath_ReadCallback(quatV))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if(param > 1.0f || param < 0.0f) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Mathutils.Slerp(): interpolation factor must be between 0.0 and 1.0");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	//copy quats
 | |
| 	for(z = 0; z < 4; z++){
 | |
| 		quat_u[z] = quatU->quat[z];
 | |
| 		quat_v[z] = quatV->quat[z];
 | |
| 	}
 | |
| 
 | |
| 	//dot product
 | |
| 	dot = quat_u[0] * quat_v[0] + quat_u[1] * quat_v[1] +
 | |
| 		quat_u[2] * quat_v[2] + quat_u[3] * quat_v[3];
 | |
| 
 | |
| 	//if negative negate a quat (shortest arc)
 | |
| 	if(dot < 0.0f) {
 | |
| 		quat_v[0] = -quat_v[0];
 | |
| 		quat_v[1] = -quat_v[1];
 | |
| 		quat_v[2] = -quat_v[2];
 | |
| 		quat_v[3] = -quat_v[3];
 | |
| 		dot = -dot;
 | |
| 	}
 | |
| 	if(dot > .99999f) { //very close
 | |
| 		x = 1.0f - param;
 | |
| 		y = param;
 | |
| 	} else {
 | |
| 		//calculate sin of angle
 | |
| 		sinT = sqrt(1.0f - (dot * dot));
 | |
| 		//calculate angle
 | |
| 		angle = atan2(sinT, dot);
 | |
| 		//caluculate inverse of sin(theta)
 | |
| 		IsinT = 1.0f / sinT;
 | |
| 		x = sin((1.0f - param) * angle) * IsinT;
 | |
| 		y = sin(param * angle) * IsinT;
 | |
| 	}
 | |
| 	//interpolate
 | |
| 	quat[0] = (float)(quat_u[0] * x + quat_v[0] * y);
 | |
| 	quat[1] = (float)(quat_u[1] * x + quat_v[1] * y);
 | |
| 	quat[2] = (float)(quat_u[2] * x + quat_v[2] * y);
 | |
| 	quat[3] = (float)(quat_u[3] * x + quat_v[3] * y);
 | |
| 
 | |
| 	return newQuaternionObject(quat, Py_NEW);
 | |
| }
 | |
| //----------------------------------EULER FUNCTIONS----------------------
 | |
| //---------------------------------INTERSECTION FUNCTIONS--------------------
 | |
| //----------------------------------Mathutils.Intersect() -------------------
 | |
| static PyObject *M_Mathutils_Intersect( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
 | |
| 	float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
 | |
| 	float det, inv_det, u, v, t;
 | |
| 	int clip = 1;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 5 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "only 3D vectors for all parameters\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(ray) || !BaseMath_ReadCallback(ray_off))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	VECCOPY(v1, vec1->vec);
 | |
| 	VECCOPY(v2, vec2->vec);
 | |
| 	VECCOPY(v3, vec3->vec);
 | |
| 
 | |
| 	VECCOPY(dir, ray->vec);
 | |
| 	Normalize(dir);
 | |
| 
 | |
| 	VECCOPY(orig, ray_off->vec);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v1 */
 | |
| 	VecSubf(e1, v2, v1);
 | |
| 	VecSubf(e2, v3, v1);
 | |
| 
 | |
| 	/* begin calculating determinant - also used to calculated U parameter */
 | |
| 	Crossf(pvec, dir, e2);	
 | |
| 
 | |
| 	/* if determinant is near zero, ray lies in plane of triangle */
 | |
| 	det = Inpf(e1, pvec);
 | |
| 
 | |
| 	if (det > -0.000001 && det < 0.000001) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	inv_det = 1.0f / det;
 | |
| 
 | |
| 	/* calculate distance from v1 to ray origin */
 | |
| 	VecSubf(tvec, orig, v1);
 | |
| 
 | |
| 	/* calculate U parameter and test bounds */
 | |
| 	u = Inpf(tvec, pvec) * inv_det;
 | |
| 	if (clip && (u < 0.0f || u > 1.0f)) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* prepare to test the V parameter */
 | |
| 	Crossf(qvec, tvec, e1);
 | |
| 
 | |
| 	/* calculate V parameter and test bounds */
 | |
| 	v = Inpf(dir, qvec) * inv_det;
 | |
| 
 | |
| 	if (clip && (v < 0.0f || u + v > 1.0f)) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* calculate t, ray intersects triangle */
 | |
| 	t = Inpf(e2, qvec) * inv_det;
 | |
| 
 | |
| 	VecMulf(dir, t);
 | |
| 	VecAddf(pvec, orig, dir);
 | |
| 
 | |
| 	return newVectorObject(pvec, 3, Py_NEW);
 | |
| }
 | |
| //----------------------------------Mathutils.LineIntersect() -------------------
 | |
| /* Line-Line intersection using algorithm from mathworld.wolfram.com */
 | |
| static PyObject *M_Mathutils_LineIntersect( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	PyObject * tuple;
 | |
| 	VectorObject *vec1, *vec2, *vec3, *vec4;
 | |
| 	float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec2->size) {
 | |
| 		PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if( vec1->size == 3 || vec1->size == 2) {
 | |
| 		int result;
 | |
| 		
 | |
| 		if (vec1->size == 3) {
 | |
| 			VECCOPY(v1, vec1->vec);
 | |
| 			VECCOPY(v2, vec2->vec);
 | |
| 			VECCOPY(v3, vec3->vec);
 | |
| 			VECCOPY(v4, vec4->vec);
 | |
| 		}
 | |
| 		else {
 | |
| 			v1[0] = vec1->vec[0];
 | |
| 			v1[1] = vec1->vec[1];
 | |
| 			v1[2] = 0.0f;
 | |
| 
 | |
| 			v2[0] = vec2->vec[0];
 | |
| 			v2[1] = vec2->vec[1];
 | |
| 			v2[2] = 0.0f;
 | |
| 
 | |
| 			v3[0] = vec3->vec[0];
 | |
| 			v3[1] = vec3->vec[1];
 | |
| 			v3[2] = 0.0f;
 | |
| 
 | |
| 			v4[0] = vec4->vec[0];
 | |
| 			v4[1] = vec4->vec[1];
 | |
| 			v4[2] = 0.0f;
 | |
| 		}
 | |
| 		
 | |
| 		result = LineIntersectLine(v1, v2, v3, v4, i1, i2);
 | |
| 
 | |
| 		if (result == 0) {
 | |
| 			/* colinear */
 | |
| 			Py_RETURN_NONE;
 | |
| 		}
 | |
| 		else {
 | |
| 			tuple = PyTuple_New( 2 );
 | |
| 			PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW) );
 | |
| 			PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW) );
 | |
| 			return tuple;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString( PyExc_TypeError, "2D/3D vectors only\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //---------------------------------NORMALS FUNCTIONS--------------------
 | |
| //----------------------------------Mathutils.QuadNormal() -------------------
 | |
| static PyObject *M_Mathutils_QuadNormal( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *vec1;
 | |
| 	VectorObject *vec2;
 | |
| 	VectorObject *vec3;
 | |
| 	VectorObject *vec4;
 | |
| 	float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
 | |
| 		PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != 3 ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	VECCOPY(v1, vec1->vec);
 | |
| 	VECCOPY(v2, vec2->vec);
 | |
| 	VECCOPY(v3, vec3->vec);
 | |
| 	VECCOPY(v4, vec4->vec);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v2 */
 | |
| 	VecSubf(e1, v1, v2);
 | |
| 	VecSubf(e2, v3, v2);
 | |
| 
 | |
| 	Crossf(n1, e2, e1);
 | |
| 	Normalize(n1);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v4 */
 | |
| 	VecSubf(e1, v3, v4);
 | |
| 	VecSubf(e2, v1, v4);
 | |
| 
 | |
| 	Crossf(n2, e2, e1);
 | |
| 	Normalize(n2);
 | |
| 
 | |
| 	/* adding and averaging the normals of both triangles */
 | |
| 	VecAddf(n1, n2, n1);
 | |
| 	Normalize(n1);
 | |
| 
 | |
| 	return newVectorObject(n1, 3, Py_NEW);
 | |
| }
 | |
| 
 | |
| //----------------------------Mathutils.TriangleNormal() -------------------
 | |
| static PyObject *M_Mathutils_TriangleNormal( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *vec1, *vec2, *vec3;
 | |
| 	float v1[3], v2[3], v3[3], e1[3], e2[3], n[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3 ) ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != 3 ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
 | |
| 		return NULL;
 | |
| 
 | |
| 	VECCOPY(v1, vec1->vec);
 | |
| 	VECCOPY(v2, vec2->vec);
 | |
| 	VECCOPY(v3, vec3->vec);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v2 */
 | |
| 	VecSubf(e1, v1, v2);
 | |
| 	VecSubf(e2, v3, v2);
 | |
| 
 | |
| 	Crossf(n, e2, e1);
 | |
| 	Normalize(n);
 | |
| 
 | |
| 	return newVectorObject(n, 3, Py_NEW);
 | |
| }
 | |
| 
 | |
| //--------------------------------- AREA FUNCTIONS--------------------
 | |
| //----------------------------------Mathutils.TriangleArea() -------------------
 | |
| static PyObject *M_Mathutils_TriangleArea( PyObject * self, PyObject * args )
 | |
| {
 | |
| 	VectorObject *vec1, *vec2, *vec3;
 | |
| 	float v1[3], v2[3], v3[3];
 | |
| 
 | |
| 	if( !PyArg_ParseTuple
 | |
| 	    ( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
 | |
| 		, &vector_Type, &vec3 ) ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if( vec1->size != vec2->size || vec1->size != vec3->size ) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (vec1->size == 3) {
 | |
| 		VECCOPY(v1, vec1->vec);
 | |
| 		VECCOPY(v2, vec2->vec);
 | |
| 		VECCOPY(v3, vec3->vec);
 | |
| 
 | |
| 		return PyFloat_FromDouble( AreaT3Dfl(v1, v2, v3) );
 | |
| 	}
 | |
| 	else if (vec1->size == 2) {
 | |
| 		v1[0] = vec1->vec[0];
 | |
| 		v1[1] = vec1->vec[1];
 | |
| 
 | |
| 		v2[0] = vec2->vec[0];
 | |
| 		v2[1] = vec2->vec[1];
 | |
| 
 | |
| 		v3[0] = vec3->vec[0];
 | |
| 		v3[1] = vec3->vec[1];
 | |
| 
 | |
| 		return PyFloat_FromDouble( AreaF2Dfl(v1, v2, v3) );
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString( PyExc_TypeError, "only 2D,3D vectors are supported\n" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Utility functions */
 | |
| 
 | |
| /*---------------------- EXPP_FloatsAreEqual -------------------------
 | |
|   Floating point comparisons 
 | |
|   floatStep = number of representable floats allowable in between
 | |
|    float A and float B to be considered equal. */
 | |
| int EXPP_FloatsAreEqual(float A, float B, int floatSteps)
 | |
| {
 | |
| 	int a, b, delta;
 | |
|     assert(floatSteps > 0 && floatSteps < (4 * 1024 * 1024));
 | |
|     a = *(int*)&A;
 | |
|     if (a < 0)	
 | |
| 		a = 0x80000000 - a;
 | |
|     b = *(int*)&B;
 | |
|     if (b < 0)	
 | |
| 		b = 0x80000000 - b;
 | |
|     delta = abs(a - b);
 | |
|     if (delta <= floatSteps)	
 | |
| 		return 1;
 | |
|     return 0;
 | |
| }
 | |
| /*---------------------- EXPP_VectorsAreEqual -------------------------
 | |
|   Builds on EXPP_FloatsAreEqual to test vectors */
 | |
| int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps)
 | |
| {
 | |
| 	int x;
 | |
| 	for (x=0; x< size; x++){
 | |
| 		if (EXPP_FloatsAreEqual(vecA[x], vecB[x], floatSteps) == 0)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Mathutils Callbacks */
 | |
| 
 | |
| /* for mathutils internal use only, eventually should re-alloc but to start with we only have a few users */
 | |
| Mathutils_Callback *mathutils_callbacks[8] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
 | |
| 
 | |
| int Mathutils_RegisterCallback(Mathutils_Callback *cb)
 | |
| {
 | |
| 	int i;
 | |
| 	
 | |
| 	/* find the first free slot */
 | |
| 	for(i= 0; mathutils_callbacks[i]; i++) {
 | |
| 		if(mathutils_callbacks[i]==cb) /* alredy registered? */
 | |
| 			return i;
 | |
| 	}
 | |
| 	
 | |
| 	mathutils_callbacks[i] = cb;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /* use macros to check for NULL */
 | |
| int _BaseMathObject_ReadCallback(BaseMathObject *self)
 | |
| {
 | |
| 	Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
 | |
| 	if(cb->get(self->cb_user, self->cb_subtype, self->data))
 | |
| 		return 1;
 | |
| 
 | |
| 	PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int _BaseMathObject_WriteCallback(BaseMathObject *self)
 | |
| {
 | |
| 	Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
 | |
| 	if(cb->set(self->cb_user, self->cb_subtype, self->data))
 | |
| 		return 1;
 | |
| 
 | |
| 	PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int _BaseMathObject_ReadIndexCallback(BaseMathObject *self, int index)
 | |
| {
 | |
| 	Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
 | |
| 	if(cb->get_index(self->cb_user, self->cb_subtype, self->data, index))
 | |
| 		return 1;
 | |
| 
 | |
| 	PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int _BaseMathObject_WriteIndexCallback(BaseMathObject *self, int index)
 | |
| {
 | |
| 	Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
 | |
| 	if(cb->set_index(self->cb_user, self->cb_subtype, self->data, index))
 | |
| 		return 1;
 | |
| 
 | |
| 	PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* BaseMathObject generic functions for all mathutils types */
 | |
| PyObject *BaseMathObject_getOwner( BaseMathObject * self, void *type )
 | |
| {
 | |
| 	PyObject *ret= self->cb_user ? self->cb_user : Py_None;
 | |
| 	Py_INCREF(ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| PyObject *BaseMathObject_getWrapped( BaseMathObject *self, void *type )
 | |
| {
 | |
| 	PyBool_FromLong((self->wrapped == Py_WRAP) ? 1:0);
 | |
| }
 | |
| 
 | |
| void BaseMathObject_dealloc(BaseMathObject * self)
 | |
| {
 | |
| 	/* only free non wrapped */
 | |
| 	if(self->wrapped != Py_WRAP)
 | |
| 		PyMem_Free(self->data);
 | |
| 
 | |
| 	Py_XDECREF(self->cb_user);
 | |
| 	PyObject_DEL(self);
 | |
| }
 | |
| 
 |