This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/nodes/geometry/nodes/node_geo_bounding_box.cc
Hans Goudey 22ee056c3a Geometry Nodes: Rename bounding box mesh output to "Bounding Box"
This was decided by the geometry nodes team, because the
important part of this output is not that it's a mesh.
2021-06-08 11:11:49 -05:00

178 lines
6.3 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "BKE_spline.hh"
#include "BKE_volume.h"
#include "node_geometry_util.hh"
static bNodeSocketTemplate geo_node_bounding_box_in[] = {
{SOCK_GEOMETRY, N_("Geometry")},
{-1, ""},
};
static bNodeSocketTemplate geo_node_bounding_box_out[] = {
{SOCK_GEOMETRY, N_("Bounding Box")},
{SOCK_VECTOR, N_("Min")},
{SOCK_VECTOR, N_("Max")},
{-1, ""},
};
namespace blender::nodes {
using bke::GeometryInstanceGroup;
static void compute_min_max_from_position_and_transform(const GeometryComponent &component,
Span<float4x4> transforms,
float3 &r_min,
float3 &r_max)
{
GVArray_Typed<float3> positions = component.attribute_get_for_read<float3>(
"position", ATTR_DOMAIN_POINT, {0, 0, 0});
for (const float4x4 &transform : transforms) {
for (const int i : positions.index_range()) {
const float3 position = positions[i];
const float3 transformed_position = transform * position;
minmax_v3v3_v3(r_min, r_max, transformed_position);
}
}
}
static void compute_min_max_from_volume_and_transforms(const VolumeComponent &volume_component,
Span<float4x4> transforms,
float3 &r_min,
float3 &r_max)
{
#ifdef WITH_OPENVDB
const Volume *volume = volume_component.get_for_read();
if (volume == nullptr) {
return;
}
for (const int i : IndexRange(BKE_volume_num_grids(volume))) {
const VolumeGrid *volume_grid = BKE_volume_grid_get_for_read(volume, i);
openvdb::GridBase::ConstPtr grid = BKE_volume_grid_openvdb_for_read(volume, volume_grid);
for (const float4x4 &transform : transforms) {
openvdb::GridBase::ConstPtr instance_grid = BKE_volume_grid_shallow_transform(grid,
transform);
float3 grid_min = float3(FLT_MAX);
float3 grid_max = float3(-FLT_MAX);
if (BKE_volume_grid_bounds(instance_grid, grid_min, grid_max)) {
DO_MIN(grid_min, r_min);
DO_MAX(grid_max, r_max);
}
}
}
#else
UNUSED_VARS(volume_component, transforms, r_min, r_max);
#endif
}
static void compute_min_max_from_curve_and_transforms(const CurveComponent &curve_component,
Span<float4x4> transforms,
float3 &r_min,
float3 &r_max)
{
const CurveEval *curve = curve_component.get_for_read();
if (curve == nullptr) {
return;
}
for (const SplinePtr &spline : curve->splines()) {
Span<float3> positions = spline->evaluated_positions();
for (const float4x4 &transform : transforms) {
for (const int i : positions.index_range()) {
const float3 position = positions[i];
const float3 transformed_position = transform * position;
minmax_v3v3_v3(r_min, r_max, transformed_position);
}
}
}
}
static void compute_geometry_set_instances_boundbox(const GeometrySet &geometry_set,
float3 &r_min,
float3 &r_max)
{
Vector<GeometryInstanceGroup> set_groups;
bke::geometry_set_gather_instances(geometry_set, set_groups);
for (const GeometryInstanceGroup &set_group : set_groups) {
const GeometrySet &set = set_group.geometry_set;
Span<float4x4> transforms = set_group.transforms;
if (set.has<PointCloudComponent>()) {
compute_min_max_from_position_and_transform(
*set.get_component_for_read<PointCloudComponent>(), transforms, r_min, r_max);
}
if (set.has<MeshComponent>()) {
compute_min_max_from_position_and_transform(
*set.get_component_for_read<MeshComponent>(), transforms, r_min, r_max);
}
if (set.has<VolumeComponent>()) {
compute_min_max_from_volume_and_transforms(
*set.get_component_for_read<VolumeComponent>(), transforms, r_min, r_max);
}
if (set.has<CurveComponent>()) {
compute_min_max_from_curve_and_transforms(
*set.get_component_for_read<CurveComponent>(), transforms, r_min, r_max);
}
}
}
static void geo_node_bounding_box_exec(GeoNodeExecParams params)
{
GeometrySet geometry_set = params.extract_input<GeometrySet>("Geometry");
float3 min = float3(FLT_MAX);
float3 max = float3(-FLT_MAX);
if (geometry_set.has_instances()) {
compute_geometry_set_instances_boundbox(geometry_set, min, max);
}
else {
geometry_set.compute_boundbox_without_instances(&min, &max);
}
if (min == float3(FLT_MAX)) {
params.set_output("Bounding Box", GeometrySet());
params.set_output("Min", float3(0));
params.set_output("Max", float3(0));
}
else {
const float3 scale = max - min;
const float3 center = min + scale / 2.0f;
Mesh *mesh = create_cube_mesh(1.0f);
transform_mesh(mesh, center, float3(0), scale);
params.set_output("Bounding Box", GeometrySet::create_with_mesh(mesh));
params.set_output("Min", min);
params.set_output("Max", max);
}
}
} // namespace blender::nodes
void register_node_type_geo_bounding_box()
{
static bNodeType ntype;
geo_node_type_base(&ntype, GEO_NODE_BOUNDING_BOX, "Bounding Box", NODE_CLASS_GEOMETRY, 0);
node_type_socket_templates(&ntype, geo_node_bounding_box_in, geo_node_bounding_box_out);
ntype.geometry_node_execute = blender::nodes::geo_node_bounding_box_exec;
nodeRegisterType(&ntype);
}