1945 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1945 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: some of this file.
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
/** \file blender/blenlib/intern/math_matrix.c
 | 
						|
 *  \ingroup bli
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include "BLI_math.h"
 | 
						|
 | 
						|
/********************************* Init **************************************/
 | 
						|
 | 
						|
void zero_m3(float m[3][3])
 | 
						|
{
 | 
						|
	memset(m, 0, 3 * 3 * sizeof(float));
 | 
						|
}
 | 
						|
 | 
						|
void zero_m4(float m[4][4])
 | 
						|
{
 | 
						|
	memset(m, 0, 4 * 4 * sizeof(float));
 | 
						|
}
 | 
						|
 | 
						|
void unit_m3(float m[3][3])
 | 
						|
{
 | 
						|
	m[0][0] = m[1][1] = m[2][2] = 1.0;
 | 
						|
	m[0][1] = m[0][2] = 0.0;
 | 
						|
	m[1][0] = m[1][2] = 0.0;
 | 
						|
	m[2][0] = m[2][1] = 0.0;
 | 
						|
}
 | 
						|
 | 
						|
void unit_m4(float m[4][4])
 | 
						|
{
 | 
						|
	m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0;
 | 
						|
	m[0][1] = m[0][2] = m[0][3] = 0.0;
 | 
						|
	m[1][0] = m[1][2] = m[1][3] = 0.0;
 | 
						|
	m[2][0] = m[2][1] = m[2][3] = 0.0;
 | 
						|
	m[3][0] = m[3][1] = m[3][2] = 0.0;
 | 
						|
}
 | 
						|
 | 
						|
void copy_m3_m3(float m1[3][3], float m2[3][3])
 | 
						|
{
 | 
						|
	/* destination comes first: */
 | 
						|
	memcpy(&m1[0], &m2[0], 9 * sizeof(float));
 | 
						|
}
 | 
						|
 | 
						|
void copy_m4_m4(float m1[4][4], float m2[4][4])
 | 
						|
{
 | 
						|
	memcpy(m1, m2, 4 * 4 * sizeof(float));
 | 
						|
}
 | 
						|
 | 
						|
void copy_m3_m4(float m1[3][3], float m2[4][4])
 | 
						|
{
 | 
						|
	m1[0][0] = m2[0][0];
 | 
						|
	m1[0][1] = m2[0][1];
 | 
						|
	m1[0][2] = m2[0][2];
 | 
						|
 | 
						|
	m1[1][0] = m2[1][0];
 | 
						|
	m1[1][1] = m2[1][1];
 | 
						|
	m1[1][2] = m2[1][2];
 | 
						|
 | 
						|
	m1[2][0] = m2[2][0];
 | 
						|
	m1[2][1] = m2[2][1];
 | 
						|
	m1[2][2] = m2[2][2];
 | 
						|
}
 | 
						|
 | 
						|
void copy_m4_m3(float m1[4][4], float m2[3][3]) /* no clear */
 | 
						|
{
 | 
						|
	m1[0][0] = m2[0][0];
 | 
						|
	m1[0][1] = m2[0][1];
 | 
						|
	m1[0][2] = m2[0][2];
 | 
						|
 | 
						|
	m1[1][0] = m2[1][0];
 | 
						|
	m1[1][1] = m2[1][1];
 | 
						|
	m1[1][2] = m2[1][2];
 | 
						|
 | 
						|
	m1[2][0] = m2[2][0];
 | 
						|
	m1[2][1] = m2[2][1];
 | 
						|
	m1[2][2] = m2[2][2];
 | 
						|
 | 
						|
	/*	Reevan's Bugfix */
 | 
						|
	m1[0][3] = 0.0F;
 | 
						|
	m1[1][3] = 0.0F;
 | 
						|
	m1[2][3] = 0.0F;
 | 
						|
 | 
						|
	m1[3][0] = 0.0F;
 | 
						|
	m1[3][1] = 0.0F;
 | 
						|
	m1[3][2] = 0.0F;
 | 
						|
	m1[3][3] = 1.0F;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void swap_m3m3(float m1[3][3], float m2[3][3])
 | 
						|
{
 | 
						|
	float t;
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 3; i++) {
 | 
						|
		for (j = 0; j < 3; j++) {
 | 
						|
			t = m1[i][j];
 | 
						|
			m1[i][j] = m2[i][j];
 | 
						|
			m2[i][j] = t;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void swap_m4m4(float m1[4][4], float m2[4][4])
 | 
						|
{
 | 
						|
	float t;
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 4; i++) {
 | 
						|
		for (j = 0; j < 4; j++) {
 | 
						|
			t = m1[i][j];
 | 
						|
			m1[i][j] = m2[i][j];
 | 
						|
			m2[i][j] = t;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/******************************** Arithmetic *********************************/
 | 
						|
 | 
						|
void mult_m4_m4m4(float m1[4][4], float m3_[4][4], float m2_[4][4])
 | 
						|
{
 | 
						|
	float m2[4][4], m3[4][4];
 | 
						|
 | 
						|
	/* copy so it works when m1 is the same pointer as m2 or m3 */
 | 
						|
	copy_m4_m4(m2, m2_);
 | 
						|
	copy_m4_m4(m3, m3_);
 | 
						|
 | 
						|
	/* matrix product: m1[j][k] = m2[j][i].m3[i][k] */
 | 
						|
	m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0] + m2[0][3] * m3[3][0];
 | 
						|
	m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1] + m2[0][3] * m3[3][1];
 | 
						|
	m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2] + m2[0][3] * m3[3][2];
 | 
						|
	m1[0][3] = m2[0][0] * m3[0][3] + m2[0][1] * m3[1][3] + m2[0][2] * m3[2][3] + m2[0][3] * m3[3][3];
 | 
						|
 | 
						|
	m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0] + m2[1][3] * m3[3][0];
 | 
						|
	m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1] + m2[1][3] * m3[3][1];
 | 
						|
	m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2] + m2[1][3] * m3[3][2];
 | 
						|
	m1[1][3] = m2[1][0] * m3[0][3] + m2[1][1] * m3[1][3] + m2[1][2] * m3[2][3] + m2[1][3] * m3[3][3];
 | 
						|
 | 
						|
	m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0] + m2[2][3] * m3[3][0];
 | 
						|
	m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1] + m2[2][3] * m3[3][1];
 | 
						|
	m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2] + m2[2][3] * m3[3][2];
 | 
						|
	m1[2][3] = m2[2][0] * m3[0][3] + m2[2][1] * m3[1][3] + m2[2][2] * m3[2][3] + m2[2][3] * m3[3][3];
 | 
						|
 | 
						|
	m1[3][0] = m2[3][0] * m3[0][0] + m2[3][1] * m3[1][0] + m2[3][2] * m3[2][0] + m2[3][3] * m3[3][0];
 | 
						|
	m1[3][1] = m2[3][0] * m3[0][1] + m2[3][1] * m3[1][1] + m2[3][2] * m3[2][1] + m2[3][3] * m3[3][1];
 | 
						|
	m1[3][2] = m2[3][0] * m3[0][2] + m2[3][1] * m3[1][2] + m2[3][2] * m3[2][2] + m2[3][3] * m3[3][2];
 | 
						|
	m1[3][3] = m2[3][0] * m3[0][3] + m2[3][1] * m3[1][3] + m2[3][2] * m3[2][3] + m2[3][3] * m3[3][3];
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void mul_m3_m3m3(float m1[3][3], float m3_[3][3], float m2_[3][3])
 | 
						|
{
 | 
						|
	float m2[3][3], m3[3][3];
 | 
						|
 | 
						|
	/* copy so it works when m1 is the same pointer as m2 or m3 */
 | 
						|
	copy_m3_m3(m2, m2_);
 | 
						|
	copy_m3_m3(m3, m3_);
 | 
						|
 | 
						|
	/* m1[i][j] = m2[i][k] * m3[k][j], args are flipped!  */
 | 
						|
	m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
 | 
						|
	m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
 | 
						|
	m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
 | 
						|
 | 
						|
	m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
 | 
						|
	m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
 | 
						|
	m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
 | 
						|
 | 
						|
	m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
 | 
						|
	m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
 | 
						|
	m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
 | 
						|
}
 | 
						|
 | 
						|
void mul_m4_m4m3(float m1[4][4], float m3_[4][4], float m2_[3][3])
 | 
						|
{
 | 
						|
	float m2[3][3], m3[4][4];
 | 
						|
 | 
						|
	/* copy so it works when m1 is the same pointer as m2 or m3 */
 | 
						|
	copy_m3_m3(m2, m2_);
 | 
						|
	copy_m4_m4(m3, m3_);
 | 
						|
 | 
						|
	m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
 | 
						|
	m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
 | 
						|
	m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
 | 
						|
	m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
 | 
						|
	m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
 | 
						|
	m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
 | 
						|
	m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
 | 
						|
	m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
 | 
						|
	m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
 | 
						|
}
 | 
						|
 | 
						|
/* m1 = m2 * m3, ignore the elements on the 4th row/column of m3 */
 | 
						|
void mult_m3_m3m4(float m1[3][3], float m3_[4][4], float m2_[3][3])
 | 
						|
{
 | 
						|
	float m2[3][3], m3[4][4];
 | 
						|
 | 
						|
	/* copy so it works when m1 is the same pointer as m2 or m3 */
 | 
						|
	copy_m3_m3(m2, m2_);
 | 
						|
	copy_m4_m4(m3, m3_);
 | 
						|
 | 
						|
	/* m1[i][j] = m2[i][k] * m3[k][j] */
 | 
						|
	m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
 | 
						|
	m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
 | 
						|
	m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
 | 
						|
 | 
						|
	m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
 | 
						|
	m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
 | 
						|
	m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
 | 
						|
 | 
						|
	m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
 | 
						|
	m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
 | 
						|
	m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
 | 
						|
}
 | 
						|
 | 
						|
void mul_m4_m3m4(float m1[4][4], float m3_[3][3], float m2_[4][4])
 | 
						|
{
 | 
						|
	float m2[4][4], m3[3][3];
 | 
						|
 | 
						|
	/* copy so it works when m1 is the same pointer as m2 or m3 */
 | 
						|
	copy_m4_m4(m2, m2_);
 | 
						|
	copy_m3_m3(m3, m3_);
 | 
						|
 | 
						|
	m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
 | 
						|
	m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
 | 
						|
	m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
 | 
						|
	m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
 | 
						|
	m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
 | 
						|
	m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
 | 
						|
	m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
 | 
						|
	m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
 | 
						|
	m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
 | 
						|
}
 | 
						|
 | 
						|
void mul_serie_m3(float answ[3][3],
 | 
						|
                  float m1[3][3], float m2[3][3], float m3[3][3],
 | 
						|
                  float m4[3][3], float m5[3][3], float m6[3][3],
 | 
						|
                  float m7[3][3], float m8[3][3])
 | 
						|
{
 | 
						|
	float temp[3][3];
 | 
						|
 | 
						|
	if (m1 == NULL || m2 == NULL) return;
 | 
						|
 | 
						|
	mul_m3_m3m3(answ, m2, m1);
 | 
						|
	if (m3) {
 | 
						|
		mul_m3_m3m3(temp, m3, answ);
 | 
						|
		if (m4) {
 | 
						|
			mul_m3_m3m3(answ, m4, temp);
 | 
						|
			if (m5) {
 | 
						|
				mul_m3_m3m3(temp, m5, answ);
 | 
						|
				if (m6) {
 | 
						|
					mul_m3_m3m3(answ, m6, temp);
 | 
						|
					if (m7) {
 | 
						|
						mul_m3_m3m3(temp, m7, answ);
 | 
						|
						if (m8) {
 | 
						|
							mul_m3_m3m3(answ, m8, temp);
 | 
						|
						}
 | 
						|
						else copy_m3_m3(answ, temp);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				else copy_m3_m3(answ, temp);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else copy_m3_m3(answ, temp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void mul_serie_m4(float answ[4][4], float m1[4][4],
 | 
						|
                  float m2[4][4], float m3[4][4], float m4[4][4],
 | 
						|
                  float m5[4][4], float m6[4][4], float m7[4][4],
 | 
						|
                  float m8[4][4])
 | 
						|
{
 | 
						|
	float temp[4][4];
 | 
						|
 | 
						|
	if (m1 == NULL || m2 == NULL) return;
 | 
						|
 | 
						|
	mult_m4_m4m4(answ, m1, m2);
 | 
						|
	if (m3) {
 | 
						|
		mult_m4_m4m4(temp, answ, m3);
 | 
						|
		if (m4) {
 | 
						|
			mult_m4_m4m4(answ, temp, m4);
 | 
						|
			if (m5) {
 | 
						|
				mult_m4_m4m4(temp, answ, m5);
 | 
						|
				if (m6) {
 | 
						|
					mult_m4_m4m4(answ, temp, m6);
 | 
						|
					if (m7) {
 | 
						|
						mult_m4_m4m4(temp, answ, m7);
 | 
						|
						if (m8) {
 | 
						|
							mult_m4_m4m4(answ, temp, m8);
 | 
						|
						}
 | 
						|
						else copy_m4_m4(answ, temp);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				else copy_m4_m4(answ, temp);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else copy_m4_m4(answ, temp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void mul_m4_v3(float mat[4][4], float vec[3])
 | 
						|
{
 | 
						|
	float x, y;
 | 
						|
 | 
						|
	x = vec[0];
 | 
						|
	y = vec[1];
 | 
						|
	vec[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
 | 
						|
	vec[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
 | 
						|
	vec[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2] + mat[3][2];
 | 
						|
}
 | 
						|
 | 
						|
void mul_v3_m4v3(float in[3], float mat[4][4], const float vec[3])
 | 
						|
{
 | 
						|
	float x, y;
 | 
						|
 | 
						|
	x = vec[0];
 | 
						|
	y = vec[1];
 | 
						|
	in[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
 | 
						|
	in[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
 | 
						|
	in[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2] + mat[3][2];
 | 
						|
}
 | 
						|
 | 
						|
/* same as mul_m4_v3() but doesnt apply translation component */
 | 
						|
void mul_mat3_m4_v3(float mat[4][4], float vec[3])
 | 
						|
{
 | 
						|
	float x, y;
 | 
						|
 | 
						|
	x = vec[0];
 | 
						|
	y = vec[1];
 | 
						|
	vec[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2];
 | 
						|
	vec[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2];
 | 
						|
	vec[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2];
 | 
						|
}
 | 
						|
 | 
						|
void mul_project_m4_v3(float mat[4][4], float vec[3])
 | 
						|
{
 | 
						|
	const float w = vec[0] * mat[0][3] + vec[1] * mat[1][3] + vec[2] * mat[2][3] + mat[3][3];
 | 
						|
	mul_m4_v3(mat, vec);
 | 
						|
 | 
						|
	vec[0] /= w;
 | 
						|
	vec[1] /= w;
 | 
						|
	vec[2] /= w;
 | 
						|
}
 | 
						|
 | 
						|
void mul_v4_m4v4(float r[4], float mat[4][4], float v[4])
 | 
						|
{
 | 
						|
	float x, y, z;
 | 
						|
 | 
						|
	x = v[0];
 | 
						|
	y = v[1];
 | 
						|
	z = v[2];
 | 
						|
 | 
						|
	r[0] = x * mat[0][0] + y * mat[1][0] + z * mat[2][0] + mat[3][0] * v[3];
 | 
						|
	r[1] = x * mat[0][1] + y * mat[1][1] + z * mat[2][1] + mat[3][1] * v[3];
 | 
						|
	r[2] = x * mat[0][2] + y * mat[1][2] + z * mat[2][2] + mat[3][2] * v[3];
 | 
						|
	r[3] = x * mat[0][3] + y * mat[1][3] + z * mat[2][3] + mat[3][3] * v[3];
 | 
						|
}
 | 
						|
 | 
						|
void mul_m4_v4(float mat[4][4], float r[4])
 | 
						|
{
 | 
						|
	mul_v4_m4v4(r, mat, r);
 | 
						|
}
 | 
						|
 | 
						|
void mul_v4d_m4v4d(double r[4], float mat[4][4], double v[4])
 | 
						|
{
 | 
						|
	double x, y, z;
 | 
						|
 | 
						|
	x = v[0];
 | 
						|
	y = v[1];
 | 
						|
	z = v[2];
 | 
						|
 | 
						|
	r[0] = x * (double)mat[0][0] + y * (double)mat[1][0] + z * (double)mat[2][0] + (double)mat[3][0] * v[3];
 | 
						|
	r[1] = x * (double)mat[0][1] + y * (double)mat[1][1] + z * (double)mat[2][1] + (double)mat[3][1] * v[3];
 | 
						|
	r[2] = x * (double)mat[0][2] + y * (double)mat[1][2] + z * (double)mat[2][2] + (double)mat[3][2] * v[3];
 | 
						|
	r[3] = x * (double)mat[0][3] + y * (double)mat[1][3] + z * (double)mat[2][3] + (double)mat[3][3] * v[3];
 | 
						|
}
 | 
						|
 | 
						|
void mul_m4_v4d(float mat[4][4], double r[4])
 | 
						|
{
 | 
						|
	mul_v4d_m4v4d(r, mat, r);
 | 
						|
}
 | 
						|
 | 
						|
void mul_v3_m3v3(float r[3], float M[3][3], float a[3])
 | 
						|
{
 | 
						|
	r[0] = M[0][0] * a[0] + M[1][0] * a[1] + M[2][0] * a[2];
 | 
						|
	r[1] = M[0][1] * a[0] + M[1][1] * a[1] + M[2][1] * a[2];
 | 
						|
	r[2] = M[0][2] * a[0] + M[1][2] * a[1] + M[2][2] * a[2];
 | 
						|
}
 | 
						|
 | 
						|
void mul_v2_m3v3(float r[2], float M[3][3], float a[3])
 | 
						|
{
 | 
						|
	r[0] = M[0][0] * a[0] + M[1][0] * a[1] + M[2][0] * a[2];
 | 
						|
	r[1] = M[0][1] * a[0] + M[1][1] * a[1] + M[2][1] * a[2];
 | 
						|
}
 | 
						|
 | 
						|
void mul_m3_v3(float M[3][3], float r[3])
 | 
						|
{
 | 
						|
	float tmp[3];
 | 
						|
 | 
						|
	mul_v3_m3v3(tmp, M, r);
 | 
						|
	copy_v3_v3(r, tmp);
 | 
						|
}
 | 
						|
 | 
						|
void mul_transposed_m3_v3(float mat[3][3], float vec[3])
 | 
						|
{
 | 
						|
	float x, y;
 | 
						|
 | 
						|
	x = vec[0];
 | 
						|
	y = vec[1];
 | 
						|
	vec[0] = x * mat[0][0] + y * mat[0][1] + mat[0][2] * vec[2];
 | 
						|
	vec[1] = x * mat[1][0] + y * mat[1][1] + mat[1][2] * vec[2];
 | 
						|
	vec[2] = x * mat[2][0] + y * mat[2][1] + mat[2][2] * vec[2];
 | 
						|
}
 | 
						|
 | 
						|
void mul_m3_fl(float m[3][3], float f)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 3; i++)
 | 
						|
		for (j = 0; j < 3; j++)
 | 
						|
			m[i][j] *= f;
 | 
						|
}
 | 
						|
 | 
						|
void mul_m4_fl(float m[4][4], float f)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 4; i++)
 | 
						|
		for (j = 0; j < 4; j++)
 | 
						|
			m[i][j] *= f;
 | 
						|
}
 | 
						|
 | 
						|
void mul_mat3_m4_fl(float m[4][4], float f)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 3; i++)
 | 
						|
		for (j = 0; j < 3; j++)
 | 
						|
			m[i][j] *= f;
 | 
						|
}
 | 
						|
 | 
						|
void mul_m3_v3_double(float mat[3][3], double vec[3])
 | 
						|
{
 | 
						|
	double x, y;
 | 
						|
 | 
						|
	x = vec[0];
 | 
						|
	y = vec[1];
 | 
						|
	vec[0] = x * (double)mat[0][0] + y * (double)mat[1][0] + (double)mat[2][0] * vec[2];
 | 
						|
	vec[1] = x * (double)mat[0][1] + y * (double)mat[1][1] + (double)mat[2][1] * vec[2];
 | 
						|
	vec[2] = x * (double)mat[0][2] + y * (double)mat[1][2] + (double)mat[2][2] * vec[2];
 | 
						|
}
 | 
						|
 | 
						|
void add_m3_m3m3(float m1[3][3], float m2[3][3], float m3[3][3])
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 3; i++)
 | 
						|
		for (j = 0; j < 3; j++)
 | 
						|
			m1[i][j] = m2[i][j] + m3[i][j];
 | 
						|
}
 | 
						|
 | 
						|
void add_m4_m4m4(float m1[4][4], float m2[4][4], float m3[4][4])
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 4; i++)
 | 
						|
		for (j = 0; j < 4; j++)
 | 
						|
			m1[i][j] = m2[i][j] + m3[i][j];
 | 
						|
}
 | 
						|
 | 
						|
void sub_m3_m3m3(float m1[3][3], float m2[3][3], float m3[3][3])
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 3; i++)
 | 
						|
		for (j = 0; j < 3; j++)
 | 
						|
			m1[i][j] = m2[i][j] - m3[i][j];
 | 
						|
}
 | 
						|
 | 
						|
void sub_m4_m4m4(float m1[4][4], float m2[4][4], float m3[4][4])
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 4; i++)
 | 
						|
		for (j = 0; j < 4; j++)
 | 
						|
			m1[i][j] = m2[i][j] - m3[i][j];
 | 
						|
}
 | 
						|
 | 
						|
float determinant_m3_array(float m[3][3])
 | 
						|
{
 | 
						|
	return (m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) -
 | 
						|
	        m[1][0] * (m[0][1] * m[2][2] - m[0][2] * m[2][1]) +
 | 
						|
	        m[2][0] * (m[0][1] * m[1][2] - m[0][2] * m[1][1]));
 | 
						|
}
 | 
						|
 | 
						|
int invert_m3_ex(float m[3][3], const float epsilon)
 | 
						|
{
 | 
						|
	float tmp[3][3];
 | 
						|
	int success;
 | 
						|
 | 
						|
	success = invert_m3_m3_ex(tmp, m, epsilon);
 | 
						|
	copy_m3_m3(m, tmp);
 | 
						|
 | 
						|
	return success;
 | 
						|
}
 | 
						|
 | 
						|
int invert_m3_m3_ex(float m1[3][3], float m2[3][3], const float epsilon)
 | 
						|
{
 | 
						|
	float det;
 | 
						|
	int a, b, success;
 | 
						|
 | 
						|
	BLI_assert(epsilon >= 0.0f);
 | 
						|
 | 
						|
	/* calc adjoint */
 | 
						|
	adjoint_m3_m3(m1, m2);
 | 
						|
 | 
						|
	/* then determinant old matrix! */
 | 
						|
	det = determinant_m3_array(m2);
 | 
						|
 | 
						|
	success = (fabsf(det) > epsilon);
 | 
						|
 | 
						|
	if (LIKELY(det != 0.0f)) {
 | 
						|
		det = 1.0f / det;
 | 
						|
		for (a = 0; a < 3; a++) {
 | 
						|
			for (b = 0; b < 3; b++) {
 | 
						|
				m1[a][b] *= det;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return success;
 | 
						|
}
 | 
						|
 | 
						|
int invert_m3(float m[3][3])
 | 
						|
{
 | 
						|
	float tmp[3][3];
 | 
						|
	int success;
 | 
						|
 | 
						|
	success = invert_m3_m3(tmp, m);
 | 
						|
	copy_m3_m3(m, tmp);
 | 
						|
 | 
						|
	return success;
 | 
						|
}
 | 
						|
 | 
						|
int invert_m3_m3(float m1[3][3], float m2[3][3])
 | 
						|
{
 | 
						|
	float det;
 | 
						|
	int a, b, success;
 | 
						|
 | 
						|
	/* calc adjoint */
 | 
						|
	adjoint_m3_m3(m1, m2);
 | 
						|
 | 
						|
	/* then determinant old matrix! */
 | 
						|
	det = determinant_m3_array(m2);
 | 
						|
 | 
						|
	success = (det != 0.0f);
 | 
						|
 | 
						|
	if (LIKELY(det != 0.0f)) {
 | 
						|
		det = 1.0f / det;
 | 
						|
		for (a = 0; a < 3; a++) {
 | 
						|
			for (b = 0; b < 3; b++) {
 | 
						|
				m1[a][b] *= det;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return success;
 | 
						|
}
 | 
						|
 | 
						|
int invert_m4(float m[4][4])
 | 
						|
{
 | 
						|
	float tmp[4][4];
 | 
						|
	int success;
 | 
						|
 | 
						|
	success = invert_m4_m4(tmp, m);
 | 
						|
	copy_m4_m4(m, tmp);
 | 
						|
 | 
						|
	return success;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * invertmat -
 | 
						|
 *      computes the inverse of mat and puts it in inverse.  Returns
 | 
						|
 *  TRUE on success (i.e. can always find a pivot) and FALSE on failure.
 | 
						|
 *  Uses Gaussian Elimination with partial (maximal column) pivoting.
 | 
						|
 *
 | 
						|
 *					Mark Segal - 1992
 | 
						|
 */
 | 
						|
 | 
						|
int invert_m4_m4(float inverse[4][4], float mat[4][4])
 | 
						|
{
 | 
						|
	int i, j, k;
 | 
						|
	double temp;
 | 
						|
	float tempmat[4][4];
 | 
						|
	float max;
 | 
						|
	int maxj;
 | 
						|
 | 
						|
	BLI_assert(inverse != mat);
 | 
						|
 | 
						|
	/* Set inverse to identity */
 | 
						|
	for (i = 0; i < 4; i++)
 | 
						|
		for (j = 0; j < 4; j++)
 | 
						|
			inverse[i][j] = 0;
 | 
						|
	for (i = 0; i < 4; i++)
 | 
						|
		inverse[i][i] = 1;
 | 
						|
 | 
						|
	/* Copy original matrix so we don't mess it up */
 | 
						|
	for (i = 0; i < 4; i++)
 | 
						|
		for (j = 0; j < 4; j++)
 | 
						|
			tempmat[i][j] = mat[i][j];
 | 
						|
 | 
						|
	for (i = 0; i < 4; i++) {
 | 
						|
		/* Look for row with max pivot */
 | 
						|
		max = fabs(tempmat[i][i]);
 | 
						|
		maxj = i;
 | 
						|
		for (j = i + 1; j < 4; j++) {
 | 
						|
			if (fabsf(tempmat[j][i]) > max) {
 | 
						|
				max = fabs(tempmat[j][i]);
 | 
						|
				maxj = j;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* Swap rows if necessary */
 | 
						|
		if (maxj != i) {
 | 
						|
			for (k = 0; k < 4; k++) {
 | 
						|
				SWAP(float, tempmat[i][k], tempmat[maxj][k]);
 | 
						|
				SWAP(float, inverse[i][k], inverse[maxj][k]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		temp = tempmat[i][i];
 | 
						|
		if (temp == 0)
 | 
						|
			return 0;  /* No non-zero pivot */
 | 
						|
		for (k = 0; k < 4; k++) {
 | 
						|
			tempmat[i][k] = (float)((double)tempmat[i][k] / temp);
 | 
						|
			inverse[i][k] = (float)((double)inverse[i][k] / temp);
 | 
						|
		}
 | 
						|
		for (j = 0; j < 4; j++) {
 | 
						|
			if (j != i) {
 | 
						|
				temp = tempmat[j][i];
 | 
						|
				for (k = 0; k < 4; k++) {
 | 
						|
					tempmat[j][k] -= (float)((double)tempmat[i][k] * temp);
 | 
						|
					inverse[j][k] -= (float)((double)inverse[i][k] * temp);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/****************************** Linear Algebra *******************************/
 | 
						|
 | 
						|
void transpose_m3(float mat[3][3])
 | 
						|
{
 | 
						|
	float t;
 | 
						|
 | 
						|
	t = mat[0][1];
 | 
						|
	mat[0][1] = mat[1][0];
 | 
						|
	mat[1][0] = t;
 | 
						|
	t = mat[0][2];
 | 
						|
	mat[0][2] = mat[2][0];
 | 
						|
	mat[2][0] = t;
 | 
						|
	t = mat[1][2];
 | 
						|
	mat[1][2] = mat[2][1];
 | 
						|
	mat[2][1] = t;
 | 
						|
}
 | 
						|
 | 
						|
void transpose_m4(float mat[4][4])
 | 
						|
{
 | 
						|
	float t;
 | 
						|
 | 
						|
	t = mat[0][1];
 | 
						|
	mat[0][1] = mat[1][0];
 | 
						|
	mat[1][0] = t;
 | 
						|
	t = mat[0][2];
 | 
						|
	mat[0][2] = mat[2][0];
 | 
						|
	mat[2][0] = t;
 | 
						|
	t = mat[0][3];
 | 
						|
	mat[0][3] = mat[3][0];
 | 
						|
	mat[3][0] = t;
 | 
						|
 | 
						|
	t = mat[1][2];
 | 
						|
	mat[1][2] = mat[2][1];
 | 
						|
	mat[2][1] = t;
 | 
						|
	t = mat[1][3];
 | 
						|
	mat[1][3] = mat[3][1];
 | 
						|
	mat[3][1] = t;
 | 
						|
 | 
						|
	t = mat[2][3];
 | 
						|
	mat[2][3] = mat[3][2];
 | 
						|
	mat[3][2] = t;
 | 
						|
}
 | 
						|
 | 
						|
void orthogonalize_m3(float mat[3][3], int axis)
 | 
						|
{
 | 
						|
	float size[3];
 | 
						|
	mat3_to_size(size, mat);
 | 
						|
	normalize_v3(mat[axis]);
 | 
						|
	switch (axis) {
 | 
						|
		case 0:
 | 
						|
			if (dot_v3v3(mat[0], mat[1]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], mat[1]);
 | 
						|
				normalize_v3(mat[2]);
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
			}
 | 
						|
			else if (dot_v3v3(mat[0], mat[2]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
				normalize_v3(mat[1]);
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], mat[1]);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				float vec[3];
 | 
						|
 | 
						|
				vec[0] = mat[0][1];
 | 
						|
				vec[1] = mat[0][2];
 | 
						|
				vec[2] = mat[0][0];
 | 
						|
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], vec);
 | 
						|
				normalize_v3(mat[2]);
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
			}
 | 
						|
		case 1:
 | 
						|
			if (dot_v3v3(mat[1], mat[0]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], mat[1]);
 | 
						|
				normalize_v3(mat[2]);
 | 
						|
				cross_v3_v3v3(mat[0], mat[1], mat[2]);
 | 
						|
			}
 | 
						|
			else if (dot_v3v3(mat[0], mat[2]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[0], mat[1], mat[2]);
 | 
						|
				normalize_v3(mat[0]);
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], mat[1]);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				float vec[3];
 | 
						|
 | 
						|
				vec[0] = mat[1][1];
 | 
						|
				vec[1] = mat[1][2];
 | 
						|
				vec[2] = mat[1][0];
 | 
						|
 | 
						|
				cross_v3_v3v3(mat[0], mat[1], vec);
 | 
						|
				normalize_v3(mat[0]);
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], mat[1]);
 | 
						|
			}
 | 
						|
		case 2:
 | 
						|
			if (dot_v3v3(mat[2], mat[0]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
				normalize_v3(mat[1]);
 | 
						|
				cross_v3_v3v3(mat[0], mat[1], mat[2]);
 | 
						|
			}
 | 
						|
			else if (dot_v3v3(mat[2], mat[1]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[0], mat[1], mat[2]);
 | 
						|
				normalize_v3(mat[0]);
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				float vec[3];
 | 
						|
 | 
						|
				vec[0] = mat[2][1];
 | 
						|
				vec[1] = mat[2][2];
 | 
						|
				vec[2] = mat[2][0];
 | 
						|
 | 
						|
				cross_v3_v3v3(mat[0], vec, mat[2]);
 | 
						|
				normalize_v3(mat[0]);
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
			}
 | 
						|
	}
 | 
						|
	mul_v3_fl(mat[0], size[0]);
 | 
						|
	mul_v3_fl(mat[1], size[1]);
 | 
						|
	mul_v3_fl(mat[2], size[2]);
 | 
						|
}
 | 
						|
 | 
						|
void orthogonalize_m4(float mat[4][4], int axis)
 | 
						|
{
 | 
						|
	float size[3];
 | 
						|
	mat4_to_size(size, mat);
 | 
						|
	normalize_v3(mat[axis]);
 | 
						|
	switch (axis) {
 | 
						|
		case 0:
 | 
						|
			if (dot_v3v3(mat[0], mat[1]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], mat[1]);
 | 
						|
				normalize_v3(mat[2]);
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
			}
 | 
						|
			else if (dot_v3v3(mat[0], mat[2]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
				normalize_v3(mat[1]);
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], mat[1]);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				float vec[3];
 | 
						|
 | 
						|
				vec[0] = mat[0][1];
 | 
						|
				vec[1] = mat[0][2];
 | 
						|
				vec[2] = mat[0][0];
 | 
						|
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], vec);
 | 
						|
				normalize_v3(mat[2]);
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
			}
 | 
						|
		case 1:
 | 
						|
			normalize_v3(mat[0]);
 | 
						|
			if (dot_v3v3(mat[1], mat[0]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], mat[1]);
 | 
						|
				normalize_v3(mat[2]);
 | 
						|
				cross_v3_v3v3(mat[0], mat[1], mat[2]);
 | 
						|
			}
 | 
						|
			else if (dot_v3v3(mat[0], mat[2]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[0], mat[1], mat[2]);
 | 
						|
				normalize_v3(mat[0]);
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], mat[1]);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				float vec[3];
 | 
						|
 | 
						|
				vec[0] = mat[1][1];
 | 
						|
				vec[1] = mat[1][2];
 | 
						|
				vec[2] = mat[1][0];
 | 
						|
 | 
						|
				cross_v3_v3v3(mat[0], mat[1], vec);
 | 
						|
				normalize_v3(mat[0]);
 | 
						|
				cross_v3_v3v3(mat[2], mat[0], mat[1]);
 | 
						|
			}
 | 
						|
		case 2:
 | 
						|
			if (dot_v3v3(mat[2], mat[0]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
				normalize_v3(mat[1]);
 | 
						|
				cross_v3_v3v3(mat[0], mat[1], mat[2]);
 | 
						|
			}
 | 
						|
			else if (dot_v3v3(mat[2], mat[1]) < 1) {
 | 
						|
				cross_v3_v3v3(mat[0], mat[1], mat[2]);
 | 
						|
				normalize_v3(mat[0]);
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				float vec[3];
 | 
						|
 | 
						|
				vec[0] = mat[2][1];
 | 
						|
				vec[1] = mat[2][2];
 | 
						|
				vec[2] = mat[2][0];
 | 
						|
 | 
						|
				cross_v3_v3v3(mat[0], vec, mat[2]);
 | 
						|
				normalize_v3(mat[0]);
 | 
						|
				cross_v3_v3v3(mat[1], mat[2], mat[0]);
 | 
						|
			}
 | 
						|
	}
 | 
						|
	mul_v3_fl(mat[0], size[0]);
 | 
						|
	mul_v3_fl(mat[1], size[1]);
 | 
						|
	mul_v3_fl(mat[2], size[2]);
 | 
						|
}
 | 
						|
 | 
						|
int is_orthogonal_m3(float m[3][3])
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 3; i++) {
 | 
						|
		for (j = 0; j < i; j++) {
 | 
						|
			if (fabsf(dot_v3v3(m[i], m[j])) > 1.5f * FLT_EPSILON)
 | 
						|
				return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
int is_orthogonal_m4(float m[4][4])
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < 4; i++) {
 | 
						|
		for (j = 0; j < i; j++) {
 | 
						|
			if (fabsf(dot_vn_vn(m[i], m[j], 4)) > 1.5f * FLT_EPSILON)
 | 
						|
				return 0;
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
int is_orthonormal_m3(float m[3][3])
 | 
						|
{
 | 
						|
	if (is_orthogonal_m3(m)) {
 | 
						|
		int i;
 | 
						|
 | 
						|
		for (i = 0; i < 3; i++)
 | 
						|
			if (fabsf(dot_v3v3(m[i], m[i]) - 1) > 1.5f * FLT_EPSILON)
 | 
						|
				return 0;
 | 
						|
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int is_orthonormal_m4(float m[4][4])
 | 
						|
{
 | 
						|
	if (is_orthogonal_m4(m)) {
 | 
						|
		int i;
 | 
						|
 | 
						|
		for (i = 0; i < 4; i++)
 | 
						|
			if (fabsf(dot_vn_vn(m[i], m[i], 4) - 1) > 1.5f * FLT_EPSILON)
 | 
						|
				return 0;
 | 
						|
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int is_uniform_scaled_m3(float m[3][3])
 | 
						|
{
 | 
						|
	const float eps = 1e-7;
 | 
						|
	float t[3][3];
 | 
						|
	float l1, l2, l3, l4, l5, l6;
 | 
						|
 | 
						|
	copy_m3_m3(t, m);
 | 
						|
	transpose_m3(t);
 | 
						|
 | 
						|
	l1 = len_squared_v3(m[0]);
 | 
						|
	l2 = len_squared_v3(m[1]);
 | 
						|
	l3 = len_squared_v3(m[2]);
 | 
						|
 | 
						|
	l4 = len_squared_v3(t[0]);
 | 
						|
	l5 = len_squared_v3(t[1]);
 | 
						|
	l6 = len_squared_v3(t[2]);
 | 
						|
 | 
						|
	if (fabsf(l2 - l1) <= eps &&
 | 
						|
	    fabsf(l3 - l1) <= eps &&
 | 
						|
	    fabsf(l4 - l1) <= eps &&
 | 
						|
	    fabsf(l5 - l1) <= eps &&
 | 
						|
	    fabsf(l6 - l1) <= eps)
 | 
						|
	{
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void normalize_m3(float mat[3][3])
 | 
						|
{
 | 
						|
	normalize_v3(mat[0]);
 | 
						|
	normalize_v3(mat[1]);
 | 
						|
	normalize_v3(mat[2]);
 | 
						|
}
 | 
						|
 | 
						|
void normalize_m3_m3(float rmat[3][3], float mat[3][3])
 | 
						|
{
 | 
						|
	normalize_v3_v3(rmat[0], mat[0]);
 | 
						|
	normalize_v3_v3(rmat[1], mat[1]);
 | 
						|
	normalize_v3_v3(rmat[2], mat[2]);
 | 
						|
}
 | 
						|
 | 
						|
void normalize_m4(float mat[4][4])
 | 
						|
{
 | 
						|
	float len;
 | 
						|
 | 
						|
	len = normalize_v3(mat[0]);
 | 
						|
	if (len != 0.0f) mat[0][3] /= len;
 | 
						|
	len = normalize_v3(mat[1]);
 | 
						|
	if (len != 0.0f) mat[1][3] /= len;
 | 
						|
	len = normalize_v3(mat[2]);
 | 
						|
	if (len != 0.0f) mat[2][3] /= len;
 | 
						|
}
 | 
						|
 | 
						|
void normalize_m4_m4(float rmat[4][4], float mat[4][4])
 | 
						|
{
 | 
						|
	copy_m4_m4(rmat, mat);
 | 
						|
	normalize_m4(rmat);
 | 
						|
}
 | 
						|
 | 
						|
void adjoint_m2_m2(float m1[2][2], float m[2][2])
 | 
						|
{
 | 
						|
	BLI_assert(m1 != m);
 | 
						|
	m1[0][0] =  m[1][1];
 | 
						|
	m1[0][1] = -m[1][0];
 | 
						|
	m1[1][0] = -m[0][1];
 | 
						|
	m1[1][1] =  m[0][0];
 | 
						|
}
 | 
						|
 | 
						|
void adjoint_m3_m3(float m1[3][3], float m[3][3])
 | 
						|
{
 | 
						|
	BLI_assert(m1 != m);
 | 
						|
	m1[0][0] = m[1][1] * m[2][2] - m[1][2] * m[2][1];
 | 
						|
	m1[0][1] = -m[0][1] * m[2][2] + m[0][2] * m[2][1];
 | 
						|
	m1[0][2] = m[0][1] * m[1][2] - m[0][2] * m[1][1];
 | 
						|
 | 
						|
	m1[1][0] = -m[1][0] * m[2][2] + m[1][2] * m[2][0];
 | 
						|
	m1[1][1] = m[0][0] * m[2][2] - m[0][2] * m[2][0];
 | 
						|
	m1[1][2] = -m[0][0] * m[1][2] + m[0][2] * m[1][0];
 | 
						|
 | 
						|
	m1[2][0] = m[1][0] * m[2][1] - m[1][1] * m[2][0];
 | 
						|
	m1[2][1] = -m[0][0] * m[2][1] + m[0][1] * m[2][0];
 | 
						|
	m1[2][2] = m[0][0] * m[1][1] - m[0][1] * m[1][0];
 | 
						|
}
 | 
						|
 | 
						|
void adjoint_m4_m4(float out[4][4], float in[4][4]) /* out = ADJ(in) */
 | 
						|
{
 | 
						|
	float a1, a2, a3, a4, b1, b2, b3, b4;
 | 
						|
	float c1, c2, c3, c4, d1, d2, d3, d4;
 | 
						|
 | 
						|
	a1 = in[0][0];
 | 
						|
	b1 = in[0][1];
 | 
						|
	c1 = in[0][2];
 | 
						|
	d1 = in[0][3];
 | 
						|
 | 
						|
	a2 = in[1][0];
 | 
						|
	b2 = in[1][1];
 | 
						|
	c2 = in[1][2];
 | 
						|
	d2 = in[1][3];
 | 
						|
 | 
						|
	a3 = in[2][0];
 | 
						|
	b3 = in[2][1];
 | 
						|
	c3 = in[2][2];
 | 
						|
	d3 = in[2][3];
 | 
						|
 | 
						|
	a4 = in[3][0];
 | 
						|
	b4 = in[3][1];
 | 
						|
	c4 = in[3][2];
 | 
						|
	d4 = in[3][3];
 | 
						|
 | 
						|
 | 
						|
	out[0][0] = determinant_m3(b2, b3, b4, c2, c3, c4, d2, d3, d4);
 | 
						|
	out[1][0] = -determinant_m3(a2, a3, a4, c2, c3, c4, d2, d3, d4);
 | 
						|
	out[2][0] = determinant_m3(a2, a3, a4, b2, b3, b4, d2, d3, d4);
 | 
						|
	out[3][0] = -determinant_m3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
 | 
						|
 | 
						|
	out[0][1] = -determinant_m3(b1, b3, b4, c1, c3, c4, d1, d3, d4);
 | 
						|
	out[1][1] = determinant_m3(a1, a3, a4, c1, c3, c4, d1, d3, d4);
 | 
						|
	out[2][1] = -determinant_m3(a1, a3, a4, b1, b3, b4, d1, d3, d4);
 | 
						|
	out[3][1] = determinant_m3(a1, a3, a4, b1, b3, b4, c1, c3, c4);
 | 
						|
 | 
						|
	out[0][2] = determinant_m3(b1, b2, b4, c1, c2, c4, d1, d2, d4);
 | 
						|
	out[1][2] = -determinant_m3(a1, a2, a4, c1, c2, c4, d1, d2, d4);
 | 
						|
	out[2][2] = determinant_m3(a1, a2, a4, b1, b2, b4, d1, d2, d4);
 | 
						|
	out[3][2] = -determinant_m3(a1, a2, a4, b1, b2, b4, c1, c2, c4);
 | 
						|
 | 
						|
	out[0][3] = -determinant_m3(b1, b2, b3, c1, c2, c3, d1, d2, d3);
 | 
						|
	out[1][3] = determinant_m3(a1, a2, a3, c1, c2, c3, d1, d2, d3);
 | 
						|
	out[2][3] = -determinant_m3(a1, a2, a3, b1, b2, b3, d1, d2, d3);
 | 
						|
	out[3][3] = determinant_m3(a1, a2, a3, b1, b2, b3, c1, c2, c3);
 | 
						|
}
 | 
						|
 | 
						|
float determinant_m2(float a, float b, float c, float d)
 | 
						|
{
 | 
						|
 | 
						|
	return a * d - b * c;
 | 
						|
}
 | 
						|
 | 
						|
float determinant_m3(float a1, float a2, float a3,
 | 
						|
                     float b1, float b2, float b3,
 | 
						|
                     float c1, float c2, float c3)
 | 
						|
{
 | 
						|
	float ans;
 | 
						|
 | 
						|
	ans = (a1 * determinant_m2(b2, b3, c2, c3) -
 | 
						|
	       b1 * determinant_m2(a2, a3, c2, c3) +
 | 
						|
	       c1 * determinant_m2(a2, a3, b2, b3));
 | 
						|
 | 
						|
	return ans;
 | 
						|
}
 | 
						|
 | 
						|
float determinant_m4(float m[4][4])
 | 
						|
{
 | 
						|
	float ans;
 | 
						|
	float a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4;
 | 
						|
 | 
						|
	a1 = m[0][0];
 | 
						|
	b1 = m[0][1];
 | 
						|
	c1 = m[0][2];
 | 
						|
	d1 = m[0][3];
 | 
						|
 | 
						|
	a2 = m[1][0];
 | 
						|
	b2 = m[1][1];
 | 
						|
	c2 = m[1][2];
 | 
						|
	d2 = m[1][3];
 | 
						|
 | 
						|
	a3 = m[2][0];
 | 
						|
	b3 = m[2][1];
 | 
						|
	c3 = m[2][2];
 | 
						|
	d3 = m[2][3];
 | 
						|
 | 
						|
	a4 = m[3][0];
 | 
						|
	b4 = m[3][1];
 | 
						|
	c4 = m[3][2];
 | 
						|
	d4 = m[3][3];
 | 
						|
 | 
						|
	ans = (a1 * determinant_m3(b2, b3, b4, c2, c3, c4, d2, d3, d4) -
 | 
						|
	       b1 * determinant_m3(a2, a3, a4, c2, c3, c4, d2, d3, d4) +
 | 
						|
	       c1 * determinant_m3(a2, a3, a4, b2, b3, b4, d2, d3, d4) -
 | 
						|
	       d1 * determinant_m3(a2, a3, a4, b2, b3, b4, c2, c3, c4));
 | 
						|
 | 
						|
	return ans;
 | 
						|
}
 | 
						|
 | 
						|
/****************************** Transformations ******************************/
 | 
						|
 | 
						|
void size_to_mat3(float mat[3][3], const float size[3])
 | 
						|
{
 | 
						|
	mat[0][0] = size[0];
 | 
						|
	mat[0][1] = 0.0f;
 | 
						|
	mat[0][2] = 0.0f;
 | 
						|
	mat[1][1] = size[1];
 | 
						|
	mat[1][0] = 0.0f;
 | 
						|
	mat[1][2] = 0.0f;
 | 
						|
	mat[2][2] = size[2];
 | 
						|
	mat[2][1] = 0.0f;
 | 
						|
	mat[2][0] = 0.0f;
 | 
						|
}
 | 
						|
 | 
						|
void size_to_mat4(float mat[4][4], const float size[3])
 | 
						|
{
 | 
						|
	float tmat[3][3];
 | 
						|
 | 
						|
	size_to_mat3(tmat, size);
 | 
						|
	unit_m4(mat);
 | 
						|
	copy_m4_m3(mat, tmat);
 | 
						|
}
 | 
						|
 | 
						|
void mat3_to_size(float size[3], float mat[3][3])
 | 
						|
{
 | 
						|
	size[0] = len_v3(mat[0]);
 | 
						|
	size[1] = len_v3(mat[1]);
 | 
						|
	size[2] = len_v3(mat[2]);
 | 
						|
}
 | 
						|
 | 
						|
void mat4_to_size(float size[3], float mat[4][4])
 | 
						|
{
 | 
						|
	size[0] = len_v3(mat[0]);
 | 
						|
	size[1] = len_v3(mat[1]);
 | 
						|
	size[2] = len_v3(mat[2]);
 | 
						|
}
 | 
						|
 | 
						|
/* this gets the average scale of a matrix, only use when your scaling
 | 
						|
 * data that has no idea of scale axis, examples are bone-envelope-radius
 | 
						|
 * and curve radius */
 | 
						|
float mat3_to_scale(float mat[3][3])
 | 
						|
{
 | 
						|
	/* unit length vector */
 | 
						|
	float unit_vec[3] = {0.577350269189626f, 0.577350269189626f, 0.577350269189626f};
 | 
						|
	mul_m3_v3(mat, unit_vec);
 | 
						|
	return len_v3(unit_vec);
 | 
						|
}
 | 
						|
 | 
						|
float mat4_to_scale(float mat[4][4])
 | 
						|
{
 | 
						|
	float tmat[3][3];
 | 
						|
	copy_m3_m4(tmat, mat);
 | 
						|
	return mat3_to_scale(tmat);
 | 
						|
}
 | 
						|
 | 
						|
void mat3_to_rot_size(float rot[3][3], float size[3], float mat3[3][3])
 | 
						|
{
 | 
						|
	float mat3_n[3][3]; /* mat3 -> normalized, 3x3 */
 | 
						|
	float imat3_n[3][3]; /* mat3 -> normalized & inverted, 3x3 */
 | 
						|
 | 
						|
	/* rotation & scale are linked, we need to create the mat's
 | 
						|
	 * for these together since they are related. */
 | 
						|
 | 
						|
	/* so scale doesn't interfere with rotation [#24291] */
 | 
						|
	/* note: this is a workaround for negative matrix not working for rotation conversion, FIXME */
 | 
						|
	normalize_m3_m3(mat3_n, mat3);
 | 
						|
	if (is_negative_m3(mat3)) {
 | 
						|
		negate_v3(mat3_n[0]);
 | 
						|
		negate_v3(mat3_n[1]);
 | 
						|
		negate_v3(mat3_n[2]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* rotation */
 | 
						|
	/* keep rot as a 3x3 matrix, the caller can convert into a quat or euler */
 | 
						|
	copy_m3_m3(rot, mat3_n);
 | 
						|
 | 
						|
	/* scale */
 | 
						|
	/* note: mat4_to_size(ob->size, mat) fails for negative scale */
 | 
						|
	invert_m3_m3(imat3_n, mat3_n);
 | 
						|
	mul_m3_m3m3(mat3, imat3_n, mat3);
 | 
						|
 | 
						|
	size[0] = mat3[0][0];
 | 
						|
	size[1] = mat3[1][1];
 | 
						|
	size[2] = mat3[2][2];
 | 
						|
}
 | 
						|
 | 
						|
void mat4_to_loc_rot_size(float loc[3], float rot[3][3], float size[3], float wmat[4][4])
 | 
						|
{
 | 
						|
	float mat3[3][3]; /* wmat -> 3x3 */
 | 
						|
 | 
						|
	copy_m3_m4(mat3, wmat);
 | 
						|
	mat3_to_rot_size(rot, size, mat3);
 | 
						|
 | 
						|
	/* location */
 | 
						|
	copy_v3_v3(loc, wmat[3]);
 | 
						|
}
 | 
						|
 | 
						|
void mat4_to_loc_quat(float loc[3], float quat[4], float wmat[4][4])
 | 
						|
{
 | 
						|
	float mat3[3][3];
 | 
						|
	float mat3_n[3][3]; /* normalized mat3 */
 | 
						|
 | 
						|
	copy_m3_m4(mat3, wmat);
 | 
						|
	normalize_m3_m3(mat3_n, mat3);
 | 
						|
 | 
						|
	/* so scale doesn't interfere with rotation [#24291] */
 | 
						|
	/* note: this is a workaround for negative matrix not working for rotation conversion, FIXME */
 | 
						|
	if (is_negative_m3(mat3)) {
 | 
						|
		negate_v3(mat3_n[0]);
 | 
						|
		negate_v3(mat3_n[1]);
 | 
						|
		negate_v3(mat3_n[2]);
 | 
						|
	}
 | 
						|
 | 
						|
	mat3_to_quat(quat, mat3_n);
 | 
						|
	copy_v3_v3(loc, wmat[3]);
 | 
						|
}
 | 
						|
 | 
						|
void mat4_decompose(float loc[3], float quat[4], float size[3], float wmat[4][4])
 | 
						|
{
 | 
						|
	float rot[3][3];
 | 
						|
	mat4_to_loc_rot_size(loc, rot, size, wmat);
 | 
						|
	mat3_to_quat(quat, rot);
 | 
						|
}
 | 
						|
 | 
						|
void scale_m3_fl(float m[3][3], float scale)
 | 
						|
{
 | 
						|
	m[0][0] = m[1][1] = m[2][2] = scale;
 | 
						|
	m[0][1] = m[0][2] = 0.0;
 | 
						|
	m[1][0] = m[1][2] = 0.0;
 | 
						|
	m[2][0] = m[2][1] = 0.0;
 | 
						|
}
 | 
						|
 | 
						|
void scale_m4_fl(float m[4][4], float scale)
 | 
						|
{
 | 
						|
	m[0][0] = m[1][1] = m[2][2] = scale;
 | 
						|
	m[3][3] = 1.0;
 | 
						|
	m[0][1] = m[0][2] = m[0][3] = 0.0;
 | 
						|
	m[1][0] = m[1][2] = m[1][3] = 0.0;
 | 
						|
	m[2][0] = m[2][1] = m[2][3] = 0.0;
 | 
						|
	m[3][0] = m[3][1] = m[3][2] = 0.0;
 | 
						|
}
 | 
						|
 | 
						|
void translate_m4(float mat[4][4], float Tx, float Ty, float Tz)
 | 
						|
{
 | 
						|
	mat[3][0] += (Tx * mat[0][0] + Ty * mat[1][0] + Tz * mat[2][0]);
 | 
						|
	mat[3][1] += (Tx * mat[0][1] + Ty * mat[1][1] + Tz * mat[2][1]);
 | 
						|
	mat[3][2] += (Tx * mat[0][2] + Ty * mat[1][2] + Tz * mat[2][2]);
 | 
						|
}
 | 
						|
 | 
						|
void rotate_m4(float mat[4][4], const char axis, const float angle)
 | 
						|
{
 | 
						|
	int col;
 | 
						|
	float temp[4] = {0.0f, 0.0f, 0.0f, 0.0f};
 | 
						|
	float cosine, sine;
 | 
						|
 | 
						|
	assert(axis >= 'X' && axis <= 'Z');
 | 
						|
 | 
						|
	cosine = cosf(angle);
 | 
						|
	sine   = sinf(angle);
 | 
						|
	switch (axis) {
 | 
						|
		case 'X':
 | 
						|
			for (col = 0; col < 4; col++)
 | 
						|
				temp[col] = cosine * mat[1][col] + sine * mat[2][col];
 | 
						|
			for (col = 0; col < 4; col++) {
 | 
						|
				mat[2][col] = -sine * mat[1][col] + cosine * mat[2][col];
 | 
						|
				mat[1][col] = temp[col];
 | 
						|
			}
 | 
						|
			break;
 | 
						|
 | 
						|
		case 'Y':
 | 
						|
			for (col = 0; col < 4; col++)
 | 
						|
				temp[col] = cosine * mat[0][col] - sine * mat[2][col];
 | 
						|
			for (col = 0; col < 4; col++) {
 | 
						|
				mat[2][col] = sine * mat[0][col] + cosine * mat[2][col];
 | 
						|
				mat[0][col] = temp[col];
 | 
						|
			}
 | 
						|
			break;
 | 
						|
 | 
						|
		case 'Z':
 | 
						|
			for (col = 0; col < 4; col++)
 | 
						|
				temp[col] = cosine * mat[0][col] + sine * mat[1][col];
 | 
						|
			for (col = 0; col < 4; col++) {
 | 
						|
				mat[1][col] = -sine * mat[0][col] + cosine * mat[1][col];
 | 
						|
				mat[0][col] = temp[col];
 | 
						|
			}
 | 
						|
			break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void blend_m3_m3m3(float out[3][3], float dst[3][3], float src[3][3], const float srcweight)
 | 
						|
{
 | 
						|
	float srot[3][3], drot[3][3];
 | 
						|
	float squat[4], dquat[4], fquat[4];
 | 
						|
	float sscale[3], dscale[3], fsize[3];
 | 
						|
	float rmat[3][3], smat[3][3];
 | 
						|
 | 
						|
	mat3_to_rot_size(drot, dscale, dst);
 | 
						|
	mat3_to_rot_size(srot, sscale, src);
 | 
						|
 | 
						|
	mat3_to_quat(dquat, drot);
 | 
						|
	mat3_to_quat(squat, srot);
 | 
						|
 | 
						|
	/* do blending */
 | 
						|
	interp_qt_qtqt(fquat, dquat, squat, srcweight);
 | 
						|
	interp_v3_v3v3(fsize, dscale, sscale, srcweight);
 | 
						|
 | 
						|
	/* compose new matrix */
 | 
						|
	quat_to_mat3(rmat, fquat);
 | 
						|
	size_to_mat3(smat, fsize);
 | 
						|
	mul_m3_m3m3(out, rmat, smat);
 | 
						|
}
 | 
						|
 | 
						|
void blend_m4_m4m4(float out[4][4], float dst[4][4], float src[4][4], const float srcweight)
 | 
						|
{
 | 
						|
	float sloc[3], dloc[3], floc[3];
 | 
						|
	float srot[3][3], drot[3][3];
 | 
						|
	float squat[4], dquat[4], fquat[4];
 | 
						|
	float sscale[3], dscale[3], fsize[3];
 | 
						|
 | 
						|
	mat4_to_loc_rot_size(dloc, drot, dscale, dst);
 | 
						|
	mat4_to_loc_rot_size(sloc, srot, sscale, src);
 | 
						|
 | 
						|
	mat3_to_quat(dquat, drot);
 | 
						|
	mat3_to_quat(squat, srot);
 | 
						|
 | 
						|
	/* do blending */
 | 
						|
	interp_v3_v3v3(floc, dloc, sloc, srcweight);
 | 
						|
	interp_qt_qtqt(fquat, dquat, squat, srcweight);
 | 
						|
	interp_v3_v3v3(fsize, dscale, sscale, srcweight);
 | 
						|
 | 
						|
	/* compose new matrix */
 | 
						|
	loc_quat_size_to_mat4(out, floc, fquat, fsize);
 | 
						|
}
 | 
						|
 | 
						|
int is_negative_m3(float mat[3][3])
 | 
						|
{
 | 
						|
	float vec[3];
 | 
						|
	cross_v3_v3v3(vec, mat[0], mat[1]);
 | 
						|
	return (dot_v3v3(vec, mat[2]) < 0.0f);
 | 
						|
}
 | 
						|
 | 
						|
int is_negative_m4(float mat[4][4])
 | 
						|
{
 | 
						|
	float vec[3];
 | 
						|
	cross_v3_v3v3(vec, mat[0], mat[1]);
 | 
						|
	return (dot_v3v3(vec, mat[2]) < 0.0f);
 | 
						|
}
 | 
						|
 | 
						|
/* make a 4x4 matrix out of 3 transform components */
 | 
						|
/* matrices are made in the order: scale * rot * loc */
 | 
						|
/* TODO: need to have a version that allows for rotation order... */
 | 
						|
 | 
						|
void loc_eul_size_to_mat4(float mat[4][4], const float loc[3], const float eul[3], const float size[3])
 | 
						|
{
 | 
						|
	float rmat[3][3], smat[3][3], tmat[3][3];
 | 
						|
 | 
						|
	/* initialize new matrix */
 | 
						|
	unit_m4(mat);
 | 
						|
 | 
						|
	/* make rotation + scaling part */
 | 
						|
	eul_to_mat3(rmat, eul);
 | 
						|
	size_to_mat3(smat, size);
 | 
						|
	mul_m3_m3m3(tmat, rmat, smat);
 | 
						|
 | 
						|
	/* copy rot/scale part to output matrix*/
 | 
						|
	copy_m4_m3(mat, tmat);
 | 
						|
 | 
						|
	/* copy location to matrix */
 | 
						|
	mat[3][0] = loc[0];
 | 
						|
	mat[3][1] = loc[1];
 | 
						|
	mat[3][2] = loc[2];
 | 
						|
}
 | 
						|
 | 
						|
/* make a 4x4 matrix out of 3 transform components */
 | 
						|
 | 
						|
/* matrices are made in the order: scale * rot * loc */
 | 
						|
void loc_eulO_size_to_mat4(float mat[4][4], const float loc[3], const float eul[3], const float size[3], const short rotOrder)
 | 
						|
{
 | 
						|
	float rmat[3][3], smat[3][3], tmat[3][3];
 | 
						|
 | 
						|
	/* initialize new matrix */
 | 
						|
	unit_m4(mat);
 | 
						|
 | 
						|
	/* make rotation + scaling part */
 | 
						|
	eulO_to_mat3(rmat, eul, rotOrder);
 | 
						|
	size_to_mat3(smat, size);
 | 
						|
	mul_m3_m3m3(tmat, rmat, smat);
 | 
						|
 | 
						|
	/* copy rot/scale part to output matrix*/
 | 
						|
	copy_m4_m3(mat, tmat);
 | 
						|
 | 
						|
	/* copy location to matrix */
 | 
						|
	mat[3][0] = loc[0];
 | 
						|
	mat[3][1] = loc[1];
 | 
						|
	mat[3][2] = loc[2];
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* make a 4x4 matrix out of 3 transform components */
 | 
						|
 | 
						|
/* matrices are made in the order: scale * rot * loc */
 | 
						|
void loc_quat_size_to_mat4(float mat[4][4], const float loc[3], const float quat[4], const float size[3])
 | 
						|
{
 | 
						|
	float rmat[3][3], smat[3][3], tmat[3][3];
 | 
						|
 | 
						|
	/* initialize new matrix */
 | 
						|
	unit_m4(mat);
 | 
						|
 | 
						|
	/* make rotation + scaling part */
 | 
						|
	quat_to_mat3(rmat, quat);
 | 
						|
	size_to_mat3(smat, size);
 | 
						|
	mul_m3_m3m3(tmat, rmat, smat);
 | 
						|
 | 
						|
	/* copy rot/scale part to output matrix*/
 | 
						|
	copy_m4_m3(mat, tmat);
 | 
						|
 | 
						|
	/* copy location to matrix */
 | 
						|
	mat[3][0] = loc[0];
 | 
						|
	mat[3][1] = loc[1];
 | 
						|
	mat[3][2] = loc[2];
 | 
						|
}
 | 
						|
 | 
						|
void loc_axisangle_size_to_mat4(float mat[4][4], const float loc[3], const float axis[3], const float angle, const float size[3])
 | 
						|
{
 | 
						|
	float q[4];
 | 
						|
	axis_angle_to_quat(q, axis, angle);
 | 
						|
	loc_quat_size_to_mat4(mat, loc, q, size);
 | 
						|
}
 | 
						|
 | 
						|
/*********************************** Other ***********************************/
 | 
						|
 | 
						|
void print_m3(const char *str, float m[3][3])
 | 
						|
{
 | 
						|
	printf("%s\n", str);
 | 
						|
	printf("%f %f %f\n", m[0][0], m[1][0], m[2][0]);
 | 
						|
	printf("%f %f %f\n", m[0][1], m[1][1], m[2][1]);
 | 
						|
	printf("%f %f %f\n", m[0][2], m[1][2], m[2][2]);
 | 
						|
	printf("\n");
 | 
						|
}
 | 
						|
 | 
						|
void print_m4(const char *str, float m[4][4])
 | 
						|
{
 | 
						|
	printf("%s\n", str);
 | 
						|
	printf("%f %f %f %f\n", m[0][0], m[1][0], m[2][0], m[3][0]);
 | 
						|
	printf("%f %f %f %f\n", m[0][1], m[1][1], m[2][1], m[3][1]);
 | 
						|
	printf("%f %f %f %f\n", m[0][2], m[1][2], m[2][2], m[3][2]);
 | 
						|
	printf("%f %f %f %f\n", m[0][3], m[1][3], m[2][3], m[3][3]);
 | 
						|
	printf("\n");
 | 
						|
}
 | 
						|
 | 
						|
/*********************************** SVD ************************************
 | 
						|
 * from TNT matrix library
 | 
						|
 *
 | 
						|
 * Compute the Single Value Decomposition of an arbitrary matrix A
 | 
						|
 * That is compute the 3 matrices U,W,V with U column orthogonal (m,n)
 | 
						|
 * ,W a diagonal matrix and V an orthogonal square matrix s.t.
 | 
						|
 * A = U.W.Vt. From this decomposition it is trivial to compute the
 | 
						|
 * (pseudo-inverse) of A as Ainv = V.Winv.tranpose(U).
 | 
						|
 */
 | 
						|
 | 
						|
void svd_m4(float U[4][4], float s[4], float V[4][4], float A_[4][4])
 | 
						|
{
 | 
						|
	float A[4][4];
 | 
						|
	float work1[4], work2[4];
 | 
						|
	int m = 4;
 | 
						|
	int n = 4;
 | 
						|
	int maxiter = 200;
 | 
						|
	int nu = min_ff(m, n);
 | 
						|
 | 
						|
	float *work = work1;
 | 
						|
	float *e = work2;
 | 
						|
	float eps;
 | 
						|
 | 
						|
	int i = 0, j = 0, k = 0, p, pp, iter;
 | 
						|
 | 
						|
	/* Reduce A to bidiagonal form, storing the diagonal elements
 | 
						|
	 * in s and the super-diagonal elements in e. */
 | 
						|
 | 
						|
	int nct = min_ff(m - 1, n);
 | 
						|
	int nrt = max_ff(0, min_ff(n - 2, m));
 | 
						|
 | 
						|
	copy_m4_m4(A, A_);
 | 
						|
	zero_m4(U);
 | 
						|
	zero_v4(s);
 | 
						|
 | 
						|
	for (k = 0; k < max_ff(nct, nrt); k++) {
 | 
						|
		if (k < nct) {
 | 
						|
 | 
						|
			/* Compute the transformation for the k-th column and
 | 
						|
			 * place the k-th diagonal in s[k].
 | 
						|
			 * Compute 2-norm of k-th column without under/overflow. */
 | 
						|
			s[k] = 0;
 | 
						|
			for (i = k; i < m; i++) {
 | 
						|
				s[k] = hypotf(s[k], A[i][k]);
 | 
						|
			}
 | 
						|
			if (s[k] != 0.0f) {
 | 
						|
				float invsk;
 | 
						|
				if (A[k][k] < 0.0f) {
 | 
						|
					s[k] = -s[k];
 | 
						|
				}
 | 
						|
				invsk = 1.0f / s[k];
 | 
						|
				for (i = k; i < m; i++) {
 | 
						|
					A[i][k] *= invsk;
 | 
						|
				}
 | 
						|
				A[k][k] += 1.0f;
 | 
						|
			}
 | 
						|
			s[k] = -s[k];
 | 
						|
		}
 | 
						|
		for (j = k + 1; j < n; j++) {
 | 
						|
			if ((k < nct) && (s[k] != 0.0f)) {
 | 
						|
 | 
						|
				/* Apply the transformation. */
 | 
						|
 | 
						|
				float t = 0;
 | 
						|
				for (i = k; i < m; i++) {
 | 
						|
					t += A[i][k] * A[i][j];
 | 
						|
				}
 | 
						|
				t = -t / A[k][k];
 | 
						|
				for (i = k; i < m; i++) {
 | 
						|
					A[i][j] += t * A[i][k];
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* Place the k-th row of A into e for the */
 | 
						|
			/* subsequent calculation of the row transformation. */
 | 
						|
 | 
						|
			e[j] = A[k][j];
 | 
						|
		}
 | 
						|
		if (k < nct) {
 | 
						|
 | 
						|
			/* Place the transformation in U for subsequent back
 | 
						|
			 * multiplication. */
 | 
						|
 | 
						|
			for (i = k; i < m; i++)
 | 
						|
				U[i][k] = A[i][k];
 | 
						|
		}
 | 
						|
		if (k < nrt) {
 | 
						|
 | 
						|
			/* Compute the k-th row transformation and place the
 | 
						|
			 * k-th super-diagonal in e[k].
 | 
						|
			 * Compute 2-norm without under/overflow. */
 | 
						|
			e[k] = 0;
 | 
						|
			for (i = k + 1; i < n; i++) {
 | 
						|
				e[k] = hypotf(e[k], e[i]);
 | 
						|
			}
 | 
						|
			if (e[k] != 0.0f) {
 | 
						|
				float invek;
 | 
						|
				if (e[k + 1] < 0.0f) {
 | 
						|
					e[k] = -e[k];
 | 
						|
				}
 | 
						|
				invek = 1.0f / e[k];
 | 
						|
				for (i = k + 1; i < n; i++) {
 | 
						|
					e[i] *= invek;
 | 
						|
				}
 | 
						|
				e[k + 1] += 1.0f;
 | 
						|
			}
 | 
						|
			e[k] = -e[k];
 | 
						|
			if ((k + 1 < m) & (e[k] != 0.0f)) {
 | 
						|
				float invek1;
 | 
						|
 | 
						|
				/* Apply the transformation. */
 | 
						|
 | 
						|
				for (i = k + 1; i < m; i++) {
 | 
						|
					work[i] = 0.0f;
 | 
						|
				}
 | 
						|
				for (j = k + 1; j < n; j++) {
 | 
						|
					for (i = k + 1; i < m; i++) {
 | 
						|
						work[i] += e[j] * A[i][j];
 | 
						|
					}
 | 
						|
				}
 | 
						|
				invek1 = 1.0f / e[k + 1];
 | 
						|
				for (j = k + 1; j < n; j++) {
 | 
						|
					float t = -e[j] * invek1;
 | 
						|
					for (i = k + 1; i < m; i++) {
 | 
						|
						A[i][j] += t * work[i];
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* Place the transformation in V for subsequent
 | 
						|
			 * back multiplication. */
 | 
						|
 | 
						|
			for (i = k + 1; i < n; i++)
 | 
						|
				V[i][k] = e[i];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set up the final bidiagonal matrix or order p. */
 | 
						|
 | 
						|
	p = min_ff(n, m + 1);
 | 
						|
	if (nct < n) {
 | 
						|
		s[nct] = A[nct][nct];
 | 
						|
	}
 | 
						|
	if (m < p) {
 | 
						|
		s[p - 1] = 0.0f;
 | 
						|
	}
 | 
						|
	if (nrt + 1 < p) {
 | 
						|
		e[nrt] = A[nrt][p - 1];
 | 
						|
	}
 | 
						|
	e[p - 1] = 0.0f;
 | 
						|
 | 
						|
	/* If required, generate U. */
 | 
						|
 | 
						|
	for (j = nct; j < nu; j++) {
 | 
						|
		for (i = 0; i < m; i++) {
 | 
						|
			U[i][j] = 0.0f;
 | 
						|
		}
 | 
						|
		U[j][j] = 1.0f;
 | 
						|
	}
 | 
						|
	for (k = nct - 1; k >= 0; k--) {
 | 
						|
		if (s[k] != 0.0f) {
 | 
						|
			for (j = k + 1; j < nu; j++) {
 | 
						|
				float t = 0;
 | 
						|
				for (i = k; i < m; i++) {
 | 
						|
					t += U[i][k] * U[i][j];
 | 
						|
				}
 | 
						|
				t = -t / U[k][k];
 | 
						|
				for (i = k; i < m; i++) {
 | 
						|
					U[i][j] += t * U[i][k];
 | 
						|
				}
 | 
						|
			}
 | 
						|
			for (i = k; i < m; i++) {
 | 
						|
				U[i][k] = -U[i][k];
 | 
						|
			}
 | 
						|
			U[k][k] = 1.0f + U[k][k];
 | 
						|
			for (i = 0; i < k - 1; i++) {
 | 
						|
				U[i][k] = 0.0f;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			for (i = 0; i < m; i++) {
 | 
						|
				U[i][k] = 0.0f;
 | 
						|
			}
 | 
						|
			U[k][k] = 1.0f;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* If required, generate V. */
 | 
						|
 | 
						|
	for (k = n - 1; k >= 0; k--) {
 | 
						|
		if ((k < nrt) & (e[k] != 0.0f)) {
 | 
						|
			for (j = k + 1; j < nu; j++) {
 | 
						|
				float t = 0;
 | 
						|
				for (i = k + 1; i < n; i++) {
 | 
						|
					t += V[i][k] * V[i][j];
 | 
						|
				}
 | 
						|
				t = -t / V[k + 1][k];
 | 
						|
				for (i = k + 1; i < n; i++) {
 | 
						|
					V[i][j] += t * V[i][k];
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		for (i = 0; i < n; i++) {
 | 
						|
			V[i][k] = 0.0f;
 | 
						|
		}
 | 
						|
		V[k][k] = 1.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Main iteration loop for the singular values. */
 | 
						|
 | 
						|
	pp = p - 1;
 | 
						|
	iter = 0;
 | 
						|
	eps = powf(2.0f, -52.0f);
 | 
						|
	while (p > 0) {
 | 
						|
		int kase = 0;
 | 
						|
 | 
						|
		/* Test for maximum iterations to avoid infinite loop */
 | 
						|
		if (maxiter == 0)
 | 
						|
			break;
 | 
						|
		maxiter--;
 | 
						|
 | 
						|
		/* This section of the program inspects for
 | 
						|
		 * negligible elements in the s and e arrays.  On
 | 
						|
		 * completion the variables kase and k are set as follows.
 | 
						|
		 *
 | 
						|
		 * kase = 1	  if s(p) and e[k - 1] are negligible and k<p
 | 
						|
		 * kase = 2	  if s(k) is negligible and k<p
 | 
						|
		 * kase = 3	  if e[k - 1] is negligible, k<p, and
 | 
						|
		 *               s(k), ..., s(p) are not negligible (qr step).
 | 
						|
		 * kase = 4	  if e(p - 1) is negligible (convergence). */
 | 
						|
 | 
						|
		for (k = p - 2; k >= -1; k--) {
 | 
						|
			if (k == -1) {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (fabsf(e[k]) <= eps * (fabsf(s[k]) + fabsf(s[k + 1]))) {
 | 
						|
				e[k] = 0.0f;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (k == p - 2) {
 | 
						|
			kase = 4;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			int ks;
 | 
						|
			for (ks = p - 1; ks >= k; ks--) {
 | 
						|
				float t;
 | 
						|
				if (ks == k) {
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				t = (ks != p ? fabsf(e[ks]) : 0.f) +
 | 
						|
				    (ks != k + 1 ? fabsf(e[ks - 1]) : 0.0f);
 | 
						|
				if (fabsf(s[ks]) <= eps * t) {
 | 
						|
					s[ks] = 0.0f;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if (ks == k) {
 | 
						|
				kase = 3;
 | 
						|
			}
 | 
						|
			else if (ks == p - 1) {
 | 
						|
				kase = 1;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				kase = 2;
 | 
						|
				k = ks;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		k++;
 | 
						|
 | 
						|
		/* Perform the task indicated by kase. */
 | 
						|
 | 
						|
		switch (kase) {
 | 
						|
 | 
						|
			/* Deflate negligible s(p). */
 | 
						|
 | 
						|
			case 1:
 | 
						|
			{
 | 
						|
				float f = e[p - 2];
 | 
						|
				e[p - 2] = 0.0f;
 | 
						|
				for (j = p - 2; j >= k; j--) {
 | 
						|
					float t = hypotf(s[j], f);
 | 
						|
					float invt = 1.0f / t;
 | 
						|
					float cs = s[j] * invt;
 | 
						|
					float sn = f * invt;
 | 
						|
					s[j] = t;
 | 
						|
					if (j != k) {
 | 
						|
						f = -sn * e[j - 1];
 | 
						|
						e[j - 1] = cs * e[j - 1];
 | 
						|
					}
 | 
						|
 | 
						|
					for (i = 0; i < n; i++) {
 | 
						|
						t = cs * V[i][j] + sn * V[i][p - 1];
 | 
						|
						V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
 | 
						|
						V[i][j] = t;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Split at negligible s(k). */
 | 
						|
 | 
						|
			case 2:
 | 
						|
			{
 | 
						|
				float f = e[k - 1];
 | 
						|
				e[k - 1] = 0.0f;
 | 
						|
				for (j = k; j < p; j++) {
 | 
						|
					float t = hypotf(s[j], f);
 | 
						|
					float invt = 1.0f / t;
 | 
						|
					float cs = s[j] * invt;
 | 
						|
					float sn = f * invt;
 | 
						|
					s[j] = t;
 | 
						|
					f = -sn * e[j];
 | 
						|
					e[j] = cs * e[j];
 | 
						|
 | 
						|
					for (i = 0; i < m; i++) {
 | 
						|
						t = cs * U[i][j] + sn * U[i][k - 1];
 | 
						|
						U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
 | 
						|
						U[i][j] = t;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Perform one qr step. */
 | 
						|
 | 
						|
			case 3:
 | 
						|
			{
 | 
						|
 | 
						|
				/* Calculate the shift. */
 | 
						|
 | 
						|
				float scale = max_ff(max_ff(max_ff(max_ff(
 | 
						|
				                   fabsf(s[p - 1]), fabsf(s[p - 2])), fabsf(e[p - 2])),
 | 
						|
				                   fabsf(s[k])), fabsf(e[k]));
 | 
						|
				float invscale = 1.0f / scale;
 | 
						|
				float sp = s[p - 1] * invscale;
 | 
						|
				float spm1 = s[p - 2] * invscale;
 | 
						|
				float epm1 = e[p - 2] * invscale;
 | 
						|
				float sk = s[k] * invscale;
 | 
						|
				float ek = e[k] * invscale;
 | 
						|
				float b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) * 0.5f;
 | 
						|
				float c = (sp * epm1) * (sp * epm1);
 | 
						|
				float shift = 0.0f;
 | 
						|
				float f, g;
 | 
						|
				if ((b != 0.0f) || (c != 0.0f)) {
 | 
						|
					shift = sqrtf(b * b + c);
 | 
						|
					if (b < 0.0f) {
 | 
						|
						shift = -shift;
 | 
						|
					}
 | 
						|
					shift = c / (b + shift);
 | 
						|
				}
 | 
						|
				f = (sk + sp) * (sk - sp) + shift;
 | 
						|
				g = sk * ek;
 | 
						|
 | 
						|
				/* Chase zeros. */
 | 
						|
 | 
						|
				for (j = k; j < p - 1; j++) {
 | 
						|
					float t = hypotf(f, g);
 | 
						|
					/* division by zero checks added to avoid NaN (brecht) */
 | 
						|
					float cs = (t == 0.0f) ? 0.0f : f / t;
 | 
						|
					float sn = (t == 0.0f) ? 0.0f : g / t;
 | 
						|
					if (j != k) {
 | 
						|
						e[j - 1] = t;
 | 
						|
					}
 | 
						|
					f = cs * s[j] + sn * e[j];
 | 
						|
					e[j] = cs * e[j] - sn * s[j];
 | 
						|
					g = sn * s[j + 1];
 | 
						|
					s[j + 1] = cs * s[j + 1];
 | 
						|
 | 
						|
					for (i = 0; i < n; i++) {
 | 
						|
						t = cs * V[i][j] + sn * V[i][j + 1];
 | 
						|
						V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
 | 
						|
						V[i][j] = t;
 | 
						|
					}
 | 
						|
 | 
						|
					t = hypotf(f, g);
 | 
						|
					/* division by zero checks added to avoid NaN (brecht) */
 | 
						|
					cs = (t == 0.0f) ? 0.0f : f / t;
 | 
						|
					sn = (t == 0.0f) ? 0.0f : g / t;
 | 
						|
					s[j] = t;
 | 
						|
					f = cs * e[j] + sn * s[j + 1];
 | 
						|
					s[j + 1] = -sn * e[j] + cs * s[j + 1];
 | 
						|
					g = sn * e[j + 1];
 | 
						|
					e[j + 1] = cs * e[j + 1];
 | 
						|
					if (j < m - 1) {
 | 
						|
						for (i = 0; i < m; i++) {
 | 
						|
							t = cs * U[i][j] + sn * U[i][j + 1];
 | 
						|
							U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
 | 
						|
							U[i][j] = t;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
				e[p - 2] = f;
 | 
						|
				iter = iter + 1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			/* Convergence. */
 | 
						|
 | 
						|
			case 4:
 | 
						|
			{
 | 
						|
 | 
						|
				/* Make the singular values positive. */
 | 
						|
 | 
						|
				if (s[k] <= 0.0f) {
 | 
						|
					s[k] = (s[k] < 0.0f ? -s[k] : 0.0f);
 | 
						|
 | 
						|
					for (i = 0; i <= pp; i++)
 | 
						|
						V[i][k] = -V[i][k];
 | 
						|
				}
 | 
						|
 | 
						|
				/* Order the singular values. */
 | 
						|
 | 
						|
				while (k < pp) {
 | 
						|
					float t;
 | 
						|
					if (s[k] >= s[k + 1]) {
 | 
						|
						break;
 | 
						|
					}
 | 
						|
					t = s[k];
 | 
						|
					s[k] = s[k + 1];
 | 
						|
					s[k + 1] = t;
 | 
						|
					if (k < n - 1) {
 | 
						|
						for (i = 0; i < n; i++) {
 | 
						|
							t = V[i][k + 1];
 | 
						|
							V[i][k + 1] = V[i][k];
 | 
						|
							V[i][k] = t;
 | 
						|
						}
 | 
						|
					}
 | 
						|
					if (k < m - 1) {
 | 
						|
						for (i = 0; i < m; i++) {
 | 
						|
							t = U[i][k + 1];
 | 
						|
							U[i][k + 1] = U[i][k];
 | 
						|
							U[i][k] = t;
 | 
						|
						}
 | 
						|
					}
 | 
						|
					k++;
 | 
						|
				}
 | 
						|
				iter = 0;
 | 
						|
				p--;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void pseudoinverse_m4_m4(float Ainv[4][4], float A[4][4], float epsilon)
 | 
						|
{
 | 
						|
	/* compute moon-penrose pseudo inverse of matrix, singular values
 | 
						|
	 * below epsilon are ignored for stability (truncated SVD) */
 | 
						|
	float V[4][4], W[4], Wm[4][4], U[4][4];
 | 
						|
	int i;
 | 
						|
 | 
						|
	transpose_m4(A);
 | 
						|
	svd_m4(V, W, U, A);
 | 
						|
	transpose_m4(U);
 | 
						|
	transpose_m4(V);
 | 
						|
 | 
						|
	zero_m4(Wm);
 | 
						|
	for (i = 0; i < 4; i++)
 | 
						|
		Wm[i][i] = (W[i] < epsilon) ? 0.0f : 1.0f / W[i];
 | 
						|
 | 
						|
	transpose_m4(V);
 | 
						|
 | 
						|
	mul_serie_m4(Ainv, U, Wm, V, NULL, NULL, NULL, NULL, NULL);
 | 
						|
}
 | 
						|
 | 
						|
void pseudoinverse_m3_m3(float Ainv[3][3], float A[3][3], float epsilon)
 | 
						|
{
 | 
						|
	/* try regular inverse when possible, otherwise fall back to slow svd */
 | 
						|
	if (!invert_m3_m3(Ainv, A)) {
 | 
						|
		float tmp[4][4], tmpinv[4][4];
 | 
						|
 | 
						|
		copy_m4_m3(tmp, A);
 | 
						|
		pseudoinverse_m4_m4(tmpinv, tmp, epsilon);
 | 
						|
		copy_m3_m4(Ainv, tmpinv);
 | 
						|
	}
 | 
						|
}
 | 
						|
 |