This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/transform/transform_input.c
Germano Cavalcante b926c9f345 Transform: Expose the hardcoded Precision Key
As shown on the T85383, attempts are made to edit the precision mode key.

But that key was hardcoded.

That key now appears among the custom modal keymap items.
2021-02-09 12:29:00 -03:00

503 lines
14 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup edtransform
*/
#include <math.h>
#include <stdlib.h>
#include "DNA_screen_types.h"
#include "BKE_context.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "WM_api.h"
#include "WM_types.h"
#include "transform.h"
#include "MEM_guardedalloc.h"
/* -------------------------------------------------------------------- */
/** \name Callbacks for #MouseInput.apply
* \{ */
/** Callback for #INPUT_VECTOR */
static void InputVector(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
convertViewVec(t, output, mval[0] - mi->imval[0], mval[1] - mi->imval[1]);
}
/** Callback for #INPUT_SPRING */
static void InputSpring(TransInfo *UNUSED(t),
MouseInput *mi,
const double mval[2],
float output[3])
{
double dx, dy;
float ratio;
dx = ((double)mi->center[0] - mval[0]);
dy = ((double)mi->center[1] - mval[1]);
ratio = hypot(dx, dy) / (double)mi->factor;
output[0] = ratio;
}
/** Callback for #INPUT_SPRING_FLIP */
static void InputSpringFlip(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputSpring(t, mi, mval, output);
/* flip scale */
/* values can become really big when zoomed in so use longs T26598. */
if (((int64_t)((int)mi->center[0] - mval[0]) * (int64_t)((int)mi->center[0] - mi->imval[0]) +
(int64_t)((int)mi->center[1] - mval[1]) * (int64_t)((int)mi->center[1] - mi->imval[1])) <
0) {
output[0] *= -1.0f;
}
}
/** Callback for #INPUT_SPRING_DELTA */
static void InputSpringDelta(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputSpring(t, mi, mval, output);
output[0] -= 1.0f;
}
/** Callback for #INPUT_TRACKBALL */
static void InputTrackBall(TransInfo *UNUSED(t),
MouseInput *mi,
const double mval[2],
float output[3])
{
output[0] = (float)(mi->imval[1] - mval[1]);
output[1] = (float)(mval[0] - mi->imval[0]);
output[0] *= mi->factor;
output[1] *= mi->factor;
}
/** Callback for #INPUT_HORIZONTAL_RATIO */
static void InputHorizontalRatio(TransInfo *t,
MouseInput *mi,
const double mval[2],
float output[3])
{
const int winx = t->region ? t->region->winx : 1;
output[0] = ((mval[0] - mi->imval[0]) / winx) * 2.0f;
}
/** Callback for #INPUT_HORIZONTAL_ABSOLUTE */
static void InputHorizontalAbsolute(TransInfo *t,
MouseInput *mi,
const double mval[2],
float output[3])
{
float vec[3];
InputVector(t, mi, mval, vec);
project_v3_v3v3(vec, vec, t->viewinv[0]);
output[0] = dot_v3v3(t->viewinv[0], vec) * 2.0f;
}
static void InputVerticalRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
const int winy = t->region ? t->region->winy : 1;
/* Dragging up increases (matching viewport zoom). */
output[0] = ((mval[1] - mi->imval[1]) / winy) * 2.0f;
}
/** Callback for #INPUT_VERTICAL_ABSOLUTE */
static void InputVerticalAbsolute(TransInfo *t,
MouseInput *mi,
const double mval[2],
float output[3])
{
float vec[3];
InputVector(t, mi, mval, vec);
project_v3_v3v3(vec, vec, t->viewinv[1]);
/* Dragging up increases (matching viewport zoom). */
output[0] = dot_v3v3(t->viewinv[1], vec) * 2.0f;
}
/** Callback for #INPUT_CUSTOM_RATIO_FLIP */
static void InputCustomRatioFlip(TransInfo *UNUSED(t),
MouseInput *mi,
const double mval[2],
float output[3])
{
double length;
double distance;
double dx, dy;
const int *data = mi->data;
if (data) {
int mdx, mdy;
dx = data[2] - data[0];
dy = data[3] - data[1];
length = hypot(dx, dy);
mdx = mval[0] - data[2];
mdy = mval[1] - data[3];
distance = (length != 0.0) ? (mdx * dx + mdy * dy) / length : 0.0;
output[0] = (length != 0.0) ? (double)(distance / length) : 0.0;
}
}
/** Callback for #INPUT_CUSTOM_RATIO */
static void InputCustomRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputCustomRatioFlip(t, mi, mval, output);
output[0] = -output[0];
}
struct InputAngle_Data {
double angle;
double mval_prev[2];
};
/** Callback for #INPUT_ANGLE */
static void InputAngle(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3])
{
struct InputAngle_Data *data = mi->data;
double dx2 = mval[0] - (double)mi->center[0];
double dy2 = mval[1] - (double)mi->center[1];
double B = sqrt(dx2 * dx2 + dy2 * dy2);
double dx1 = data->mval_prev[0] - (double)mi->center[0];
double dy1 = data->mval_prev[1] - (double)mi->center[1];
double A = sqrt(dx1 * dx1 + dy1 * dy1);
double dx3 = mval[0] - data->mval_prev[0];
double dy3 = mval[1] - data->mval_prev[1];
/* use doubles here, to make sure a "1.0" (no rotation)
* doesn't become 9.999999e-01, which gives 0.02 for acos */
double deler = (((dx1 * dx1 + dy1 * dy1) + (dx2 * dx2 + dy2 * dy2) - (dx3 * dx3 + dy3 * dy3)) /
(2.0 * (((A * B) != 0.0) ? (A * B) : 1.0)));
/* ((A * B) ? (A * B) : 1.0) this takes care of potential divide by zero errors */
float dphi;
dphi = saacos((float)deler);
if ((dx1 * dy2 - dx2 * dy1) > 0.0) {
dphi = -dphi;
}
/* If the angle is zero, because of lack of precision close to the 1.0 value in acos
* approximate the angle with the opposite side of the normalized triangle
* This is a good approximation here since the smallest acos value seems to be around
* 0.02 degree and lower values don't even have a 0.01% error compared to the approximation
*/
if (dphi == 0) {
double dx, dy;
dx2 /= A;
dy2 /= A;
dx1 /= B;
dy1 /= B;
dx = dx1 - dx2;
dy = dy1 - dy2;
dphi = sqrt(dx * dx + dy * dy);
if ((dx1 * dy2 - dx2 * dy1) > 0.0) {
dphi = -dphi;
}
}
data->angle += ((double)dphi) * (mi->precision ? (double)mi->precision_factor : 1.0);
data->mval_prev[0] = mval[0];
data->mval_prev[1] = mval[1];
output[0] = data->angle;
}
static void InputAngleSpring(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
float toutput[3];
InputAngle(t, mi, mval, output);
InputSpring(t, mi, mval, toutput);
output[1] = toutput[0];
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Custom 2D Start/End Coordinate API
*
* - #INPUT_CUSTOM_RATIO
* - #INPUT_CUSTOM_RATIO_FLIP
* \{ */
void setCustomPoints(TransInfo *UNUSED(t),
MouseInput *mi,
const int mval_start[2],
const int mval_end[2])
{
int *data;
mi->data = MEM_reallocN(mi->data, sizeof(int[4]));
data = mi->data;
data[0] = mval_start[0];
data[1] = mval_start[1];
data[2] = mval_end[0];
data[3] = mval_end[1];
}
void setCustomPointsFromDirection(TransInfo *t, MouseInput *mi, const float dir[2])
{
BLI_ASSERT_UNIT_V2(dir);
const int win_axis = t->region ? ((abs((int)(t->region->winx * dir[0])) +
abs((int)(t->region->winy * dir[1]))) /
2) :
1;
const int mval_start[2] = {
mi->imval[0] + dir[0] * win_axis,
mi->imval[1] + dir[1] * win_axis,
};
const int mval_end[2] = {mi->imval[0], mi->imval[1]};
setCustomPoints(t, mi, mval_start, mval_end);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Setup & Handle Mouse Input
* \{ */
void initMouseInput(TransInfo *UNUSED(t),
MouseInput *mi,
const float center[2],
const int mval[2],
const bool precision)
{
mi->factor = 0;
mi->precision = precision;
mi->center[0] = center[0];
mi->center[1] = center[1];
mi->imval[0] = mval[0];
mi->imval[1] = mval[1];
mi->post = NULL;
}
static void calcSpringFactor(MouseInput *mi)
{
mi->factor = sqrtf(
((float)(mi->center[1] - mi->imval[1])) * ((float)(mi->center[1] - mi->imval[1])) +
((float)(mi->center[0] - mi->imval[0])) * ((float)(mi->center[0] - mi->imval[0])));
if (mi->factor == 0.0f) {
mi->factor = 1.0f; /* prevent Inf */
}
}
void initMouseInputMode(TransInfo *t, MouseInput *mi, MouseInputMode mode)
{
/* In case we allocate a new value. */
void *mi_data_prev = mi->data;
mi->use_virtual_mval = true;
mi->precision_factor = 1.0f / 10.0f;
switch (mode) {
case INPUT_VECTOR:
mi->apply = InputVector;
t->helpline = HLP_NONE;
break;
case INPUT_SPRING:
calcSpringFactor(mi);
mi->apply = InputSpring;
t->helpline = HLP_SPRING;
break;
case INPUT_SPRING_FLIP:
calcSpringFactor(mi);
mi->apply = InputSpringFlip;
t->helpline = HLP_SPRING;
break;
case INPUT_SPRING_DELTA:
calcSpringFactor(mi);
mi->apply = InputSpringDelta;
t->helpline = HLP_SPRING;
break;
case INPUT_ANGLE:
case INPUT_ANGLE_SPRING: {
struct InputAngle_Data *data;
mi->use_virtual_mval = false;
mi->precision_factor = 1.0f / 30.0f;
data = MEM_callocN(sizeof(struct InputAngle_Data), "angle accumulator");
data->mval_prev[0] = mi->imval[0];
data->mval_prev[1] = mi->imval[1];
mi->data = data;
if (mode == INPUT_ANGLE) {
mi->apply = InputAngle;
}
else {
calcSpringFactor(mi);
mi->apply = InputAngleSpring;
}
t->helpline = HLP_ANGLE;
break;
}
case INPUT_TRACKBALL:
mi->precision_factor = 1.0f / 30.0f;
/* factor has to become setting or so */
mi->factor = 0.01f;
mi->apply = InputTrackBall;
t->helpline = HLP_TRACKBALL;
break;
case INPUT_HORIZONTAL_RATIO:
mi->apply = InputHorizontalRatio;
t->helpline = HLP_HARROW;
break;
case INPUT_HORIZONTAL_ABSOLUTE:
mi->apply = InputHorizontalAbsolute;
t->helpline = HLP_HARROW;
break;
case INPUT_VERTICAL_RATIO:
mi->apply = InputVerticalRatio;
t->helpline = HLP_VARROW;
break;
case INPUT_VERTICAL_ABSOLUTE:
mi->apply = InputVerticalAbsolute;
t->helpline = HLP_VARROW;
break;
case INPUT_CUSTOM_RATIO:
mi->apply = InputCustomRatio;
t->helpline = HLP_CARROW;
break;
case INPUT_CUSTOM_RATIO_FLIP:
mi->apply = InputCustomRatioFlip;
t->helpline = HLP_CARROW;
break;
case INPUT_NONE:
default:
mi->apply = NULL;
break;
}
/* setup for the mouse cursor: either set a custom one,
* or hide it if it will be drawn with the helpline */
wmWindow *win = CTX_wm_window(t->context);
switch (t->helpline) {
case HLP_NONE:
/* INPUT_VECTOR, INPUT_CUSTOM_RATIO, INPUT_CUSTOM_RATIO_FLIP */
if (t->flag & T_MODAL) {
t->flag |= T_MODAL_CURSOR_SET;
WM_cursor_modal_set(win, WM_CURSOR_NSEW_SCROLL);
}
break;
case HLP_SPRING:
case HLP_ANGLE:
case HLP_TRACKBALL:
case HLP_HARROW:
case HLP_VARROW:
case HLP_CARROW:
if (t->flag & T_MODAL) {
t->flag |= T_MODAL_CURSOR_SET;
WM_cursor_modal_set(win, WM_CURSOR_NONE);
}
break;
default:
break;
}
/* if we've allocated new data, free the old data
* less hassle than checking before every alloc above */
if (mi_data_prev && (mi_data_prev != mi->data)) {
MEM_freeN(mi_data_prev);
}
}
void setInputPostFct(MouseInput *mi, void (*post)(struct TransInfo *t, float values[3]))
{
mi->post = post;
}
void applyMouseInput(TransInfo *t, MouseInput *mi, const int mval[2], float output[3])
{
double mval_db[2];
if (mi->use_virtual_mval) {
/* update accumulator */
double mval_delta[2];
mval_delta[0] = (mval[0] - mi->imval[0]) - mi->virtual_mval.prev[0];
mval_delta[1] = (mval[1] - mi->imval[1]) - mi->virtual_mval.prev[1];
mi->virtual_mval.prev[0] += mval_delta[0];
mi->virtual_mval.prev[1] += mval_delta[1];
if (mi->precision) {
mval_delta[0] *= (double)mi->precision_factor;
mval_delta[1] *= (double)mi->precision_factor;
}
mi->virtual_mval.accum[0] += mval_delta[0];
mi->virtual_mval.accum[1] += mval_delta[1];
mval_db[0] = mi->imval[0] + mi->virtual_mval.accum[0];
mval_db[1] = mi->imval[1] + mi->virtual_mval.accum[1];
}
else {
mval_db[0] = mval[0];
mval_db[1] = mval[1];
}
if (mi->apply != NULL) {
mi->apply(t, mi, mval_db, output);
}
if (!is_zero_v3(t->values_modal_offset)) {
float values_ofs[3];
if (t->con.mode & CON_APPLY) {
mul_v3_m3v3(values_ofs, t->spacemtx, t->values_modal_offset);
}
else {
copy_v3_v3(values_ofs, t->values_modal_offset);
}
add_v3_v3(t->values, values_ofs);
}
if (mi->post) {
mi->post(t, output);
}
}
/** \} */