This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/compositor/operations/COM_ScaleOperation.cc

315 lines
11 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include "COM_ScaleOperation.h"
namespace blender::compositor {
#define USE_FORCE_BILINEAR
/* XXX - ignore input and use default from old compositor,
* could become an option like the transform node - campbell
*
* note: use bilinear because bicubic makes fuzzy even when not scaling at all (1:1)
*/
BaseScaleOperation::BaseScaleOperation()
{
#ifdef USE_FORCE_BILINEAR
m_sampler = (int)PixelSampler::Bilinear;
#else
m_sampler = -1;
#endif
m_variable_size = false;
}
ScaleOperation::ScaleOperation() : BaseScaleOperation()
{
this->addInputSocket(DataType::Color);
this->addInputSocket(DataType::Value);
this->addInputSocket(DataType::Value);
this->addOutputSocket(DataType::Color);
this->setResolutionInputSocketIndex(0);
this->m_inputOperation = nullptr;
this->m_inputXOperation = nullptr;
this->m_inputYOperation = nullptr;
}
void ScaleOperation::initExecution()
{
this->m_inputOperation = this->getInputSocketReader(0);
this->m_inputXOperation = this->getInputSocketReader(1);
this->m_inputYOperation = this->getInputSocketReader(2);
this->m_centerX = this->getWidth() / 2.0;
this->m_centerY = this->getHeight() / 2.0;
}
void ScaleOperation::deinitExecution()
{
this->m_inputOperation = nullptr;
this->m_inputXOperation = nullptr;
this->m_inputYOperation = nullptr;
}
void ScaleOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler)
{
PixelSampler effective_sampler = getEffectiveSampler(sampler);
float scaleX[4];
float scaleY[4];
this->m_inputXOperation->readSampled(scaleX, x, y, effective_sampler);
this->m_inputYOperation->readSampled(scaleY, x, y, effective_sampler);
const float scx = scaleX[0];
const float scy = scaleY[0];
float nx = this->m_centerX + (x - this->m_centerX) / scx;
float ny = this->m_centerY + (y - this->m_centerY) / scy;
this->m_inputOperation->readSampled(output, nx, ny, effective_sampler);
}
bool ScaleOperation::determineDependingAreaOfInterest(rcti *input,
ReadBufferOperation *readOperation,
rcti *output)
{
rcti newInput;
if (!m_variable_size) {
float scaleX[4];
float scaleY[4];
this->m_inputXOperation->readSampled(scaleX, 0, 0, PixelSampler::Nearest);
this->m_inputYOperation->readSampled(scaleY, 0, 0, PixelSampler::Nearest);
const float scx = scaleX[0];
const float scy = scaleY[0];
newInput.xmax = this->m_centerX + (input->xmax - this->m_centerX) / scx + 1;
newInput.xmin = this->m_centerX + (input->xmin - this->m_centerX) / scx - 1;
newInput.ymax = this->m_centerY + (input->ymax - this->m_centerY) / scy + 1;
newInput.ymin = this->m_centerY + (input->ymin - this->m_centerY) / scy - 1;
}
else {
newInput.xmax = this->getWidth();
newInput.xmin = 0;
newInput.ymax = this->getHeight();
newInput.ymin = 0;
}
return BaseScaleOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
// SCALE ABSOLUTE
ScaleAbsoluteOperation::ScaleAbsoluteOperation() : BaseScaleOperation()
{
this->addInputSocket(DataType::Color);
this->addInputSocket(DataType::Value);
this->addInputSocket(DataType::Value);
this->addOutputSocket(DataType::Color);
this->setResolutionInputSocketIndex(0);
this->m_inputOperation = nullptr;
this->m_inputXOperation = nullptr;
this->m_inputYOperation = nullptr;
}
void ScaleAbsoluteOperation::initExecution()
{
this->m_inputOperation = this->getInputSocketReader(0);
this->m_inputXOperation = this->getInputSocketReader(1);
this->m_inputYOperation = this->getInputSocketReader(2);
this->m_centerX = this->getWidth() / 2.0;
this->m_centerY = this->getHeight() / 2.0;
}
void ScaleAbsoluteOperation::deinitExecution()
{
this->m_inputOperation = nullptr;
this->m_inputXOperation = nullptr;
this->m_inputYOperation = nullptr;
}
void ScaleAbsoluteOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
PixelSampler effective_sampler = getEffectiveSampler(sampler);
float scaleX[4];
float scaleY[4];
this->m_inputXOperation->readSampled(scaleX, x, y, effective_sampler);
this->m_inputYOperation->readSampled(scaleY, x, y, effective_sampler);
const float scx = scaleX[0]; // target absolute scale
const float scy = scaleY[0]; // target absolute scale
const float width = this->getWidth();
const float height = this->getHeight();
// div
float relativeXScale = scx / width;
float relativeYScale = scy / height;
float nx = this->m_centerX + (x - this->m_centerX) / relativeXScale;
float ny = this->m_centerY + (y - this->m_centerY) / relativeYScale;
this->m_inputOperation->readSampled(output, nx, ny, effective_sampler);
}
bool ScaleAbsoluteOperation::determineDependingAreaOfInterest(rcti *input,
ReadBufferOperation *readOperation,
rcti *output)
{
rcti newInput;
if (!m_variable_size) {
float scaleX[4];
float scaleY[4];
this->m_inputXOperation->readSampled(scaleX, 0, 0, PixelSampler::Nearest);
this->m_inputYOperation->readSampled(scaleY, 0, 0, PixelSampler::Nearest);
const float scx = scaleX[0];
const float scy = scaleY[0];
const float width = this->getWidth();
const float height = this->getHeight();
// div
float relateveXScale = scx / width;
float relateveYScale = scy / height;
newInput.xmax = this->m_centerX + (input->xmax - this->m_centerX) / relateveXScale;
newInput.xmin = this->m_centerX + (input->xmin - this->m_centerX) / relateveXScale;
newInput.ymax = this->m_centerY + (input->ymax - this->m_centerY) / relateveYScale;
newInput.ymin = this->m_centerY + (input->ymin - this->m_centerY) / relateveYScale;
}
else {
newInput.xmax = this->getWidth();
newInput.xmin = 0;
newInput.ymax = this->getHeight();
newInput.ymin = 0;
}
return BaseScaleOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
// Absolute fixed size
ScaleFixedSizeOperation::ScaleFixedSizeOperation() : BaseScaleOperation()
{
this->addInputSocket(DataType::Color, ResizeMode::None);
this->addOutputSocket(DataType::Color);
this->setResolutionInputSocketIndex(0);
this->m_inputOperation = nullptr;
this->m_is_offset = false;
}
void ScaleFixedSizeOperation::initExecution()
{
this->m_inputOperation = this->getInputSocketReader(0);
this->m_relX = this->m_inputOperation->getWidth() / (float)this->m_newWidth;
this->m_relY = this->m_inputOperation->getHeight() / (float)this->m_newHeight;
/* *** all the options below are for a fairly special case - camera framing *** */
if (this->m_offsetX != 0.0f || this->m_offsetY != 0.0f) {
this->m_is_offset = true;
if (this->m_newWidth > this->m_newHeight) {
this->m_offsetX *= this->m_newWidth;
this->m_offsetY *= this->m_newWidth;
}
else {
this->m_offsetX *= this->m_newHeight;
this->m_offsetY *= this->m_newHeight;
}
}
if (this->m_is_aspect) {
/* apply aspect from clip */
const float w_src = this->m_inputOperation->getWidth();
const float h_src = this->m_inputOperation->getHeight();
/* destination aspect is already applied from the camera frame */
const float w_dst = this->m_newWidth;
const float h_dst = this->m_newHeight;
const float asp_src = w_src / h_src;
const float asp_dst = w_dst / h_dst;
if (fabsf(asp_src - asp_dst) >= FLT_EPSILON) {
if ((asp_src > asp_dst) == (this->m_is_crop == true)) {
/* fit X */
const float div = asp_src / asp_dst;
this->m_relX /= div;
this->m_offsetX += ((w_src - (w_src * div)) / (w_src / w_dst)) / 2.0f;
}
else {
/* fit Y */
const float div = asp_dst / asp_src;
this->m_relY /= div;
this->m_offsetY += ((h_src - (h_src * div)) / (h_src / h_dst)) / 2.0f;
}
this->m_is_offset = true;
}
}
/* *** end framing options *** */
}
void ScaleFixedSizeOperation::deinitExecution()
{
this->m_inputOperation = nullptr;
}
void ScaleFixedSizeOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
PixelSampler effective_sampler = getEffectiveSampler(sampler);
if (this->m_is_offset) {
float nx = ((x - this->m_offsetX) * this->m_relX);
float ny = ((y - this->m_offsetY) * this->m_relY);
this->m_inputOperation->readSampled(output, nx, ny, effective_sampler);
}
else {
this->m_inputOperation->readSampled(
output, x * this->m_relX, y * this->m_relY, effective_sampler);
}
}
bool ScaleFixedSizeOperation::determineDependingAreaOfInterest(rcti *input,
ReadBufferOperation *readOperation,
rcti *output)
{
rcti newInput;
newInput.xmax = (input->xmax - m_offsetX) * this->m_relX + 1;
newInput.xmin = (input->xmin - m_offsetX) * this->m_relX;
newInput.ymax = (input->ymax - m_offsetY) * this->m_relY + 1;
newInput.ymin = (input->ymin - m_offsetY) * this->m_relY;
return BaseScaleOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
void ScaleFixedSizeOperation::determineResolution(unsigned int resolution[2],
unsigned int /*preferredResolution*/[2])
{
unsigned int nr[2];
nr[0] = this->m_newWidth;
nr[1] = this->m_newHeight;
BaseScaleOperation::determineResolution(resolution, nr);
resolution[0] = this->m_newWidth;
resolution[1] = this->m_newHeight;
}
} // namespace blender::compositor