This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/mathutils/mathutils_noise.c
Campbell Barton 4ca67869cc Code cleanup: remove unused includes
Opted to keep includes if they are used indirectly (even if removing is possible).
2014-05-01 04:47:51 +10:00

906 lines
31 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): eeshlo, Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/python/mathutils/mathutils_noise.c
* \ingroup mathutils
*
* This file defines the 'noise' module, a general purpose module to access
* blenders noise functions.
*/
/************************/
/* Blender Noise Module */
/************************/
#include <Python.h>
#include "structseq.h"
#include "BLI_math.h"
#include "BLI_noise.h"
#include "BLI_utildefines.h"
#include "DNA_texture_types.h"
#include "mathutils.h"
#include "mathutils_noise.h"
/* 2.6 update
* Moved to submodule of mathutils.
* All vector functions now return mathutils.Vector
* Updated docs to be compatible with autodocs generation.
* Updated vector functions to use nD array functions.
* noise.vl_vector --> noise.variable_lacunarity
* noise.vector --> noise.noise_vector
*/
/*-----------------------------------------*/
/* 'mersenne twister' random number generator */
/*
* A C-program for MT19937, with initialization improved 2002/2/10.
* Coded by Takuji Nishimura and Makoto Matsumoto.
* This is a faster version by taking Shawn Cokus's optimization,
* Matthe Bellew's simplification, Isaku Wada's real version.
*
* Before using, initialize the state by using init_genrand(seed)
* or init_by_array(init_key, key_length).
*
* Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. The names of its contributors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Any feedback is very welcome.
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
* email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/
/* Period parameters */
#define N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
#define UMASK 0x80000000UL /* most significant w-r bits */
#define LMASK 0x7fffffffUL /* least significant r bits */
#define MIXBITS(u, v) (((u) & UMASK) | ((v) & LMASK))
#define TWIST(u, v) ((MIXBITS(u, v) >> 1) ^ ((v) & 1UL ? MATRIX_A : 0UL))
static unsigned long state[N]; /* the array for the state vector */
static int left = 1;
static int initf = 0;
static unsigned long *next;
/* initializes state[N] with a seed */
static void init_genrand(unsigned long s)
{
int j;
state[0] = s & 0xffffffffUL;
for (j = 1; j < N; j++) {
state[j] =
(1812433253UL *
(state[j - 1] ^ (state[j - 1] >> 30)) + j);
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array state[]. */
/* 2002/01/09 modified by Makoto Matsumoto */
state[j] &= 0xffffffffUL; /* for >32 bit machines */
}
left = 1;
initf = 1;
}
static void next_state(void)
{
unsigned long *p = state;
int j;
/* if init_genrand() has not been called, */
/* a default initial seed is used */
if (initf == 0)
init_genrand(5489UL);
left = N;
next = state;
for (j = N - M + 1; --j; p++)
*p = p[M] ^ TWIST(p[0], p[1]);
for (j = M; --j; p++)
*p = p[M - N] ^ TWIST(p[0], p[1]);
*p = p[M - N] ^ TWIST(p[0], state[0]);
}
/*------------------------------------------------------------*/
static void setRndSeed(int seed)
{
if (seed == 0)
init_genrand(time(NULL));
else
init_genrand(seed);
}
/* float number in range [0, 1) using the mersenne twister rng */
static float frand(void)
{
unsigned long y;
if (--left == 0)
next_state();
y = *next++;
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return (float) y / 4294967296.f;
}
/*------------------------------------------------------------*/
/* Utility Functions */
/*------------------------------------------------------------*/
/* Fills an array of length size with random numbers in the range (-1, 1)*/
static void rand_vn(float *array_tar, const int size)
{
float *array_pt = array_tar + (size - 1);
int i = size;
while (i--) { *(array_pt--) = 2.0f * frand() - 1.0f; }
}
/* Fills an array of length 3 with noise values */
static void noise_vector(float x, float y, float z, int nb, float v[3])
{
/* Simply evaluate noise at 3 different positions */
v[0] = (float)(2.0f * BLI_gNoise(1.f, x + 9.321f, y - 1.531f, z - 7.951f, 0, nb) - 1.0f);
v[1] = (float)(2.0f * BLI_gNoise(1.f, x, y, z, 0, nb) - 1.0f);
v[2] = (float)(2.0f * BLI_gNoise(1.f, x + 6.327f, y + 0.1671f, z - 2.672f, 0, nb) - 1.0f);
}
/* Returns a turbulence value for a given position (x, y, z) */
static float turb(float x, float y, float z, int oct, int hard, int nb,
float ampscale, float freqscale)
{
float amp, out, t;
int i;
amp = 1.f;
out = (float)(2.0f * BLI_gNoise(1.f, x, y, z, 0, nb) - 1.0f);
if (hard)
out = fabsf(out);
for (i = 1; i < oct; i++) {
amp *= ampscale;
x *= freqscale;
y *= freqscale;
z *= freqscale;
t = (float)(amp * (2.0f * BLI_gNoise(1.f, x, y, z, 0, nb) - 1.0f));
if (hard)
t = fabsf(t);
out += t;
}
return out;
}
/* Fills an array of length 3 with the turbulence vector for a given
* position (x, y, z) */
static void vTurb(float x, float y, float z, int oct, int hard, int nb,
float ampscale, float freqscale, float v[3])
{
float amp, t[3];
int i;
amp = 1.f;
noise_vector(x, y, z, nb, v);
if (hard) {
v[0] = fabsf(v[0]);
v[1] = fabsf(v[1]);
v[2] = fabsf(v[2]);
}
for (i = 1; i < oct; i++) {
amp *= ampscale;
x *= freqscale;
y *= freqscale;
z *= freqscale;
noise_vector(x, y, z, nb, t);
if (hard) {
t[0] = fabsf(t[0]);
t[1] = fabsf(t[1]);
t[2] = fabsf(t[2]);
}
v[0] += amp * t[0];
v[1] += amp * t[1];
v[2] += amp * t[2];
}
}
/*-------------------------DOC STRINGS ---------------------------*/
PyDoc_STRVAR(M_Noise_doc,
"The Blender noise module"
);
/*------------------------------------------------------------*/
/* Python Functions */
/*------------------------------------------------------------*/
PyDoc_STRVAR(M_Noise_random_doc,
".. function:: random()\n"
"\n"
" Returns a random number in the range [0, 1].\n"
"\n"
" :return: The random number.\n"
" :rtype: float\n"
);
static PyObject *M_Noise_random(PyObject *UNUSED(self))
{
return PyFloat_FromDouble(frand());
}
PyDoc_STRVAR(M_Noise_random_unit_vector_doc,
".. function:: random_unit_vector(size=3)\n"
"\n"
" Returns a unit vector with random entries.\n"
"\n"
" :arg size: The size of the vector to be produced.\n"
" :type size: Int\n"
" :return: The random unit vector.\n"
" :rtype: :class:`mathutils.Vector`\n"
);
static PyObject *M_Noise_random_unit_vector(PyObject *UNUSED(self), PyObject *args)
{
float vec[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float norm = 2.0f;
int size = 3;
if (!PyArg_ParseTuple(args, "|i:random_vector", &size))
return NULL;
if (size > 4 || size < 2) {
PyErr_SetString(PyExc_ValueError, "Vector(): invalid size");
return NULL;
}
while (norm == 0.0f || norm >= 1.0f) {
rand_vn(vec, size);
norm = normalize_vn(vec, size);
}
return Vector_CreatePyObject(vec, size, Py_NEW, NULL);
}
/* This is dumb, most people will want a unit vector anyway, since this doesn't have uniform distribution over a sphere*/
#if 0
PyDoc_STRVAR(M_Noise_random_vector_doc,
".. function:: random_vector(size=3)\n"
"\n"
" Returns a vector with random entries in the range [0, 1).\n"
"\n"
" :arg size: The size of the vector to be produced.\n"
" :type size: Int\n"
" :return: The random vector.\n"
" :rtype: :class:`mathutils.Vector`\n"
);
static PyObject *M_Noise_random_vector(PyObject *UNUSED(self), PyObject *args)
{
float vec[4] = {0.0f, 0.0f, 0.0f, 0.0f};
int size = 3;
if (!PyArg_ParseTuple(args, "|i:random_vector", &size))
return NULL;
if (size > 4 || size < 2) {
PyErr_SetString(PyExc_ValueError, "Vector(): invalid size");
return NULL;
}
rand_vn(vec, size);
return Vector_CreatePyObject(vec, size, Py_NEW, NULL);
}
#endif
PyDoc_STRVAR(M_Noise_seed_set_doc,
".. function:: seed_set(seed)\n"
"\n"
" Sets the random seed used for random_unit_vector, random_vector and random.\n"
"\n"
" :arg seed: Seed used for the random generator.\n"
" When seed is zero, the current time will be used instead.\n"
" :type seed: Int\n"
);
static PyObject *M_Noise_seed_set(PyObject *UNUSED(self), PyObject *args)
{
int s;
if (!PyArg_ParseTuple(args, "i:seed_set", &s))
return NULL;
setRndSeed(s);
Py_RETURN_NONE;
}
PyDoc_STRVAR(M_Noise_noise_doc,
".. function:: noise(position, noise_basis=noise.types.STDPERLIN)\n"
"\n"
" Returns noise value from the noise basis at the position specified.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg noise_basis: The type of noise to be evaluated.\n"
" :type noise_basis: Value in noise.types or int\n"
" :return: The noise value.\n"
" :rtype: float\n"
);
static PyObject *M_Noise_noise(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3];
int nb = 1;
if (!PyArg_ParseTuple(args, "O|i:noise", &value, &nb))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "noise: invalid 'position' arg") == -1)
return NULL;
return PyFloat_FromDouble((2.0f * BLI_gNoise(1.0f, vec[0], vec[1], vec[2], 0, nb) - 1.0f));
}
PyDoc_STRVAR(M_Noise_noise_vector_doc,
".. function:: noise_vector(position, noise_basis=noise.types.STDPERLIN)\n"
"\n"
" Returns the noise vector from the noise basis at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg noise_basis: The type of noise to be evaluated.\n"
" :type noise_basis: Value in noise.types or int\n"
" :return: The noise vector.\n"
" :rtype: :class:`mathutils.Vector`\n"
);
static PyObject *M_Noise_noise_vector(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3], r_vec[3];
int nb = 1;
if (!PyArg_ParseTuple(args, "O|i:noise_vector", &value, &nb))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "noise_vector: invalid 'position' arg") == -1)
return NULL;
noise_vector(vec[0], vec[1], vec[2], nb, r_vec);
return Vector_CreatePyObject(r_vec, 3, Py_NEW, NULL);
}
PyDoc_STRVAR(M_Noise_turbulence_doc,
".. function:: turbulence(position, octaves, hard, noise_basis=noise.types.STDPERLIN, amplitude_scale=0.5, frequency_scale=2.0)\n"
"\n"
" Returns the turbulence value from the noise basis at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg octaves: The number of different noise frequencies used.\n"
" :type octaves: int\n"
" :arg hard: Specifies whether returned turbulence is hard (sharp transitions) or soft (smooth transitions).\n"
" :type hard: :boolean\n"
" :arg noise_basis: The type of noise to be evaluated.\n"
" :type noise_basis: Value in mathutils.noise.types or int\n"
" :arg amplitude_scale: The amplitude scaling factor.\n"
" :type amplitude_scale: float\n"
" :arg frequency_scale: The frequency scaling factor\n"
" :type frequency_scale: Value in noise.types or int\n"
" :return: The turbulence value.\n"
" :rtype: float\n"
);
static PyObject *M_Noise_turbulence(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3];
int oct, hd, nb = 1;
float as = 0.5f, fs = 2.0f;
if (!PyArg_ParseTuple(args, "Oii|iff:turbulence", &value, &oct, &hd, &nb, &as, &fs))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "turbulence: invalid 'position' arg") == -1)
return NULL;
return PyFloat_FromDouble(turb(vec[0], vec[1], vec[2], oct, hd, nb, as, fs));
}
PyDoc_STRVAR(M_Noise_turbulence_vector_doc,
".. function:: turbulence_vector(position, octaves, hard, noise_basis=noise.types.STDPERLIN, amplitude_scale=0.5, frequency_scale=2.0)\n"
"\n"
" Returns the turbulence vector from the noise basis at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg octaves: The number of different noise frequencies used.\n"
" :type octaves: int\n"
" :arg hard: Specifies whether returned turbulence is hard (sharp transitions) or soft (smooth transitions).\n"
" :type hard: :boolean\n"
" :arg noise_basis: The type of noise to be evaluated.\n"
" :type noise_basis: Value in mathutils.noise.types or int\n"
" :arg amplitude_scale: The amplitude scaling factor.\n"
" :type amplitude_scale: float\n"
" :arg frequency_scale: The frequency scaling factor\n"
" :type frequency_scale: Value in noise.types or int\n"
" :return: The turbulence vector.\n"
" :rtype: :class:`mathutils.Vector`\n"
);
static PyObject *M_Noise_turbulence_vector(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3], r_vec[3];
int oct, hd, nb = 1;
float as = 0.5f, fs = 2.0f;
if (!PyArg_ParseTuple(args, "Oii|iff:turbulence_vector", &value, &oct, &hd, &nb, &as, &fs))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "turbulence_vector: invalid 'position' arg") == -1)
return NULL;
vTurb(vec[0], vec[1], vec[2], oct, hd, nb, as, fs, r_vec);
return Vector_CreatePyObject(r_vec, 3, Py_NEW, NULL);
}
/* F. Kenton Musgrave's fractal functions */
PyDoc_STRVAR(M_Noise_fractal_doc,
".. function:: fractal(position, H, lacunarity, octaves, noise_basis=noise.types.STDPERLIN)\n"
"\n"
" Returns the fractal Brownian motion (fBm) noise value from the noise basis at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg H: The fractal increment factor.\n"
" :type H: float\n"
" :arg lacunarity: The gap between successive frequencies.\n"
" :type lacunarity: float\n"
" :arg octaves: The number of different noise frequencies used.\n"
" :type octaves: int\n"
" :arg noise_basis: The type of noise to be evaluated.\n"
" :type noise_basis: Value in noise.types or int\n"
" :return: The fractal Brownian motion noise value.\n"
" :rtype: float\n"
);
static PyObject *M_Noise_fractal(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3];
float H, lac, oct;
int nb = 1;
if (!PyArg_ParseTuple(args, "Offf|i:fractal", &value, &H, &lac, &oct, &nb))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "fractal: invalid 'position' arg") == -1)
return NULL;
return PyFloat_FromDouble(mg_fBm(vec[0], vec[1], vec[2], H, lac, oct, nb));
}
PyDoc_STRVAR(M_Noise_multi_fractal_doc,
".. function:: multi_fractal(position, H, lacunarity, octaves, noise_basis=noise.types.STDPERLIN)\n"
"\n"
" Returns multifractal noise value from the noise basis at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg H: The fractal increment factor.\n"
" :type H: float\n"
" :arg lacunarity: The gap between successive frequencies.\n"
" :type lacunarity: float\n"
" :arg octaves: The number of different noise frequencies used.\n"
" :type octaves: int\n"
" :arg noise_basis: The type of noise to be evaluated.\n"
" :type noise_basis: Value in noise.types or int\n"
" :return: The multifractal noise value.\n"
" :rtype: float\n"
);
static PyObject *M_Noise_multi_fractal(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3];
float H, lac, oct;
int nb = 1;
if (!PyArg_ParseTuple(args, "Offf|i:multi_fractal", &value, &H, &lac, &oct, &nb))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "multi_fractal: invalid 'position' arg") == -1)
return NULL;
return PyFloat_FromDouble(mg_MultiFractal(vec[0], vec[1], vec[2], H, lac, oct, nb));
}
PyDoc_STRVAR(M_Noise_variable_lacunarity_doc,
".. function:: variable_lacunarity(position, distortion, noise_type1=noise.types.STDPERLIN, noise_type2=noise.types.STDPERLIN)\n"
"\n"
" Returns variable lacunarity noise value, a distorted variety of noise, from noise type 1 distorted by noise type 2 at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg distortion: The amount of distortion.\n"
" :type distortion: float\n"
" :arg noise_type1: The type of noise to be distorted.\n"
" :type noise_type1: Value in noise.types or int\n"
" :arg noise_type2: The type of noise used to distort noise_type1.\n"
" :type noise_type2: Value in noise.types or int\n"
" :return: The variable lacunarity noise value.\n"
" :rtype: float\n"
);
static PyObject *M_Noise_variable_lacunarity(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3];
float d;
int nt1 = 1, nt2 = 1;
if (!PyArg_ParseTuple(args, "Of|ii:variable_lacunarity", &value, &d, &nt1, &nt2))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "variable_lacunarity: invalid 'position' arg") == -1)
return NULL;
return PyFloat_FromDouble(mg_VLNoise(vec[0], vec[1], vec[2], d, nt1, nt2));
}
PyDoc_STRVAR(M_Noise_hetero_terrain_doc,
".. function:: hetero_terrain(position, H, lacunarity, octaves, offset, noise_basis=noise.types.STDPERLIN)\n"
"\n"
" Returns the heterogeneous terrain value from the noise basis at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg H: The fractal dimension of the roughest areas.\n"
" :type H: float\n"
" :arg lacunarity: The gap between successive frequencies.\n"
" :type lacunarity: float\n"
" :arg octaves: The number of different noise frequencies used.\n"
" :type octaves: int\n"
" :arg offset: The height of the terrain above 'sea level'.\n"
" :type offset: float\n"
" :arg noise_basis: The type of noise to be evaluated.\n"
" :type noise_basis: Value in noise.types or int\n"
" :return: The heterogeneous terrain value.\n"
" :rtype: float\n"
);
static PyObject *M_Noise_hetero_terrain(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3];
float H, lac, oct, ofs;
int nb = 1;
if (!PyArg_ParseTuple(args, "Offff|i:hetero_terrain", &value, &H, &lac, &oct, &ofs, &nb))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "hetero_terrain: invalid 'position' arg") == -1)
return NULL;
return PyFloat_FromDouble(mg_HeteroTerrain(vec[0], vec[1], vec[2], H, lac, oct, ofs, nb));
}
PyDoc_STRVAR(M_Noise_hybrid_multi_fractal_doc,
".. function:: hybrid_multi_fractal(position, H, lacunarity, octaves, offset, gain, noise_basis=noise.types.STDPERLIN)\n"
"\n"
" Returns hybrid multifractal value from the noise basis at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg H: The fractal dimension of the roughest areas.\n"
" :type H: float\n"
" :arg lacunarity: The gap between successive frequencies.\n"
" :type lacunarity: float\n"
" :arg octaves: The number of different noise frequencies used.\n"
" :type octaves: int\n"
" :arg offset: The height of the terrain above 'sea level'.\n"
" :type offset: float\n"
" :arg gain: Scaling applied to the values.\n"
" :type gain: float\n"
" :arg noise_basis: The type of noise to be evaluated.\n"
" :type noise_basis: Value in noise.types or int\n"
" :return: The hybrid multifractal value.\n"
" :rtype: float\n"
);
static PyObject *M_Noise_hybrid_multi_fractal(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3];
float H, lac, oct, ofs, gn;
int nb = 1;
if (!PyArg_ParseTuple(args, "Offfff|i:hybrid_multi_fractal", &value, &H, &lac, &oct, &ofs, &gn, &nb))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "hybrid_multi_fractal: invalid 'position' arg") == -1)
return NULL;
return PyFloat_FromDouble(mg_HybridMultiFractal(vec[0], vec[1], vec[2], H, lac, oct, ofs, gn, nb));
}
PyDoc_STRVAR(M_Noise_ridged_multi_fractal_doc,
".. function:: ridged_multi_fractal(position, H, lacunarity, octaves, offset, gain, noise_basis=noise.types.STDPERLIN)\n"
"\n"
" Returns ridged multifractal value from the noise basis at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg H: The fractal dimension of the roughest areas.\n"
" :type H: float\n"
" :arg lacunarity: The gap between successive frequencies.\n"
" :type lacunarity: float\n"
" :arg octaves: The number of different noise frequencies used.\n"
" :type octaves: int\n"
" :arg offset: The height of the terrain above 'sea level'.\n"
" :type offset: float\n"
" :arg gain: Scaling applied to the values.\n"
" :type gain: float\n"
" :arg noise_basis: The type of noise to be evaluated.\n"
" :type noise_basis: Value in noise.types or int\n"
" :return: The ridged multifractal value.\n"
" :rtype: float\n"
);
static PyObject *M_Noise_ridged_multi_fractal(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3];
float H, lac, oct, ofs, gn;
int nb = 1;
if (!PyArg_ParseTuple(args, "Offfff|i:ridged_multi_fractal", &value, &H, &lac, &oct, &ofs, &gn, &nb))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "ridged_multi_fractal: invalid 'position' arg") == -1)
return NULL;
return PyFloat_FromDouble(mg_RidgedMultiFractal(vec[0], vec[1], vec[2], H, lac, oct, ofs, gn, nb));
}
PyDoc_STRVAR(M_Noise_voronoi_doc,
".. function:: voronoi(position, distance_metric=noise.distance_metrics.DISTANCE, exponent=2.5)\n"
"\n"
" Returns a list of distances to the four closest features and their locations.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :arg distance_metric: Method of measuring distance.\n"
" :type distance_metric: Value in noise.distance_metrics or int\n"
" :arg exponent: The exponent for Minkowski distance metric.\n"
" :type exponent: float\n"
" :return: A list of distances to the four closest features and their locations.\n"
" :rtype: list of four floats, list of four :class:`mathutils.Vector` types\n"
);
static PyObject *M_Noise_voronoi(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
PyObject *list;
float vec[3];
float da[4], pa[12];
int dtype = 0;
float me = 2.5f; /* default minkowski exponent */
int i;
if (!PyArg_ParseTuple(args, "O|if:voronoi", &value, &dtype, &me))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "voronoi: invalid 'position' arg") == -1)
return NULL;
list = PyList_New(4);
voronoi(vec[0], vec[1], vec[2], da, pa, me, dtype);
for (i = 0; i < 4; i++) {
PyList_SET_ITEM(list, i, Vector_CreatePyObject(pa + 3 * i, 3, Py_NEW, NULL));
}
return Py_BuildValue("[[ffff]O]", da[0], da[1], da[2], da[3], list);
}
PyDoc_STRVAR(M_Noise_cell_doc,
".. function:: cell(position)\n"
"\n"
" Returns cell noise value at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :return: The cell noise value.\n"
" :rtype: float\n"
);
static PyObject *M_Noise_cell(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3];
if (!PyArg_ParseTuple(args, "O:cell", &value))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "cell: invalid 'position' arg") == -1)
return NULL;
return PyFloat_FromDouble(cellNoise(vec[0], vec[1], vec[2]));
}
PyDoc_STRVAR(M_Noise_cell_vector_doc,
".. function:: cell_vector(position)\n"
"\n"
" Returns cell noise vector at the specified position.\n"
"\n"
" :arg position: The position to evaluate the selected noise function at.\n"
" :type position: :class:`mathutils.Vector`\n"
" :return: The cell noise vector.\n"
" :rtype: :class:`mathutils.Vector`\n"
);
static PyObject *M_Noise_cell_vector(PyObject *UNUSED(self), PyObject *args)
{
PyObject *value;
float vec[3], r_vec[3];
if (!PyArg_ParseTuple(args, "O:cell_vector", &value))
return NULL;
if (mathutils_array_parse(vec, 3, 3, value, "cell_vector: invalid 'position' arg") == -1)
return NULL;
cellNoiseV(vec[0], vec[1], vec[2], r_vec);
return Vector_CreatePyObject(r_vec, 3, Py_NEW, NULL);
}
static PyMethodDef M_Noise_methods[] = {
{"seed_set", (PyCFunction) M_Noise_seed_set, METH_VARARGS, M_Noise_seed_set_doc},
{"random", (PyCFunction) M_Noise_random, METH_NOARGS, M_Noise_random_doc},
{"random_unit_vector", (PyCFunction) M_Noise_random_unit_vector, METH_VARARGS, M_Noise_random_unit_vector_doc},
/*{"random_vector", (PyCFunction) M_Noise_random_vector, METH_VARARGS, M_Noise_random_vector_doc},*/
{"noise", (PyCFunction) M_Noise_noise, METH_VARARGS, M_Noise_noise_doc},
{"noise_vector", (PyCFunction) M_Noise_noise_vector, METH_VARARGS, M_Noise_noise_vector_doc},
{"turbulence", (PyCFunction) M_Noise_turbulence, METH_VARARGS, M_Noise_turbulence_doc},
{"turbulence_vector", (PyCFunction) M_Noise_turbulence_vector, METH_VARARGS, M_Noise_turbulence_vector_doc},
{"fractal", (PyCFunction) M_Noise_fractal, METH_VARARGS, M_Noise_fractal_doc},
{"multi_fractal", (PyCFunction) M_Noise_multi_fractal, METH_VARARGS, M_Noise_multi_fractal_doc},
{"variable_lacunarity", (PyCFunction) M_Noise_variable_lacunarity, METH_VARARGS, M_Noise_variable_lacunarity_doc},
{"hetero_terrain", (PyCFunction) M_Noise_hetero_terrain, METH_VARARGS, M_Noise_hetero_terrain_doc},
{"hybrid_multi_fractal", (PyCFunction) M_Noise_hybrid_multi_fractal, METH_VARARGS, M_Noise_hybrid_multi_fractal_doc},
{"ridged_multi_fractal", (PyCFunction) M_Noise_ridged_multi_fractal, METH_VARARGS, M_Noise_ridged_multi_fractal_doc},
{"voronoi", (PyCFunction) M_Noise_voronoi, METH_VARARGS, M_Noise_voronoi_doc},
{"cell", (PyCFunction) M_Noise_cell, METH_VARARGS, M_Noise_cell_doc},
{"cell_vector", (PyCFunction) M_Noise_cell_vector, METH_VARARGS, M_Noise_cell_vector_doc},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef M_Noise_module_def = {
PyModuleDef_HEAD_INIT,
"mathutils.noise", /* m_name */
M_Noise_doc, /* m_doc */
0, /* m_size */
M_Noise_methods, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
/*----------------------------MODULE INIT-------------------------*/
PyMODINIT_FUNC PyInit_mathutils_noise(void)
{
PyObject *submodule = PyModule_Create(&M_Noise_module_def);
PyObject *item_types, *item_metrics;
/* use current time as seed for random number generator by default */
setRndSeed(0);
PyModule_AddObject(submodule, "types", (item_types = PyInit_mathutils_noise_types()));
PyDict_SetItemString(PyThreadState_GET()->interp->modules, "noise.types", item_types);
Py_INCREF(item_types);
PyModule_AddObject(submodule, "distance_metrics", (item_metrics = PyInit_mathutils_noise_metrics()));
PyDict_SetItemString(PyThreadState_GET()->interp->modules, "noise.distance_metrics", item_metrics);
Py_INCREF(item_metrics);
return submodule;
}
/*----------------------------SUBMODULE INIT-------------------------*/
static struct PyModuleDef M_NoiseTypes_module_def = {
PyModuleDef_HEAD_INIT,
"mathutils.noise.types", /* m_name */
NULL, /* m_doc */
0, /* m_size */
NULL, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
PyMODINIT_FUNC PyInit_mathutils_noise_types(void)
{
PyObject *submodule = PyModule_Create(&M_NoiseTypes_module_def);
PyModule_AddIntConstant(submodule, "BLENDER", TEX_BLENDER);
PyModule_AddIntConstant(submodule, "STDPERLIN", TEX_STDPERLIN);
PyModule_AddIntConstant(submodule, "NEWPERLIN", TEX_NEWPERLIN);
PyModule_AddIntConstant(submodule, "VORONOI_F1", TEX_VORONOI_F1);
PyModule_AddIntConstant(submodule, "VORONOI_F2", TEX_VORONOI_F2);
PyModule_AddIntConstant(submodule, "VORONOI_F3", TEX_VORONOI_F3);
PyModule_AddIntConstant(submodule, "VORONOI_F4", TEX_VORONOI_F4);
PyModule_AddIntConstant(submodule, "VORONOI_F2F1", TEX_VORONOI_F2F1);
PyModule_AddIntConstant(submodule, "VORONOI_CRACKLE", TEX_VORONOI_CRACKLE);
PyModule_AddIntConstant(submodule, "CELLNOISE", TEX_CELLNOISE);
return submodule;
}
static struct PyModuleDef M_NoiseMetrics_module_def = {
PyModuleDef_HEAD_INIT,
"mathutils.noise.distance_metrics", /* m_name */
NULL, /* m_doc */
0, /* m_size */
NULL, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
PyMODINIT_FUNC PyInit_mathutils_noise_metrics(void)
{
PyObject *submodule = PyModule_Create(&M_NoiseMetrics_module_def);
PyModule_AddIntConstant(submodule, "DISTANCE", TEX_DISTANCE);
PyModule_AddIntConstant(submodule, "DISTANCE_SQUARED", TEX_DISTANCE_SQUARED);
PyModule_AddIntConstant(submodule, "MANHATTAN", TEX_MANHATTAN);
PyModule_AddIntConstant(submodule, "CHEBYCHEV", TEX_CHEBYCHEV);
PyModule_AddIntConstant(submodule, "MINKOVSKY_HALF", TEX_MINKOVSKY_HALF);
PyModule_AddIntConstant(submodule, "MINKOVSKY_FOUR", TEX_MINKOVSKY_FOUR);
PyModule_AddIntConstant(submodule, "MINKOVSKY", TEX_MINKOVSKY);
return submodule;
}