This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/kernels/cuda/kernel_cuda_image.h
Brecht Van Lommel 006025ead0 Cycles: support for different 3D transform per volume grid
This is not yet fully supported by automatic volume bounds but works fine in
most cases that will have mostly matching bounds.

Ref T73201
2020-03-18 11:23:05 +01:00

193 lines
5.7 KiB
C++

/*
* Copyright 2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* w0, w1, w2, and w3 are the four cubic B-spline basis functions. */
ccl_device float cubic_w0(float a)
{
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
}
ccl_device float cubic_w1(float a)
{
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
}
ccl_device float cubic_w2(float a)
{
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
}
ccl_device float cubic_w3(float a)
{
return (1.0f / 6.0f) * (a * a * a);
}
/* g0 and g1 are the two amplitude functions. */
ccl_device float cubic_g0(float a)
{
return cubic_w0(a) + cubic_w1(a);
}
ccl_device float cubic_g1(float a)
{
return cubic_w2(a) + cubic_w3(a);
}
/* h0 and h1 are the two offset functions */
ccl_device float cubic_h0(float a)
{
/* Note +0.5 offset to compensate for CUDA linear filtering convention. */
return -1.0f + cubic_w1(a) / (cubic_w0(a) + cubic_w1(a)) + 0.5f;
}
ccl_device float cubic_h1(float a)
{
return 1.0f + cubic_w3(a) / (cubic_w2(a) + cubic_w3(a)) + 0.5f;
}
/* Fast bicubic texture lookup using 4 bilinear lookups, adapted from CUDA samples. */
template<typename T>
ccl_device T
kernel_tex_image_interp_bicubic(const TextureInfo &info, CUtexObject tex, float x, float y)
{
x = (x * info.width) - 0.5f;
y = (y * info.height) - 0.5f;
float px = floor(x);
float py = floor(y);
float fx = x - px;
float fy = y - py;
float g0x = cubic_g0(fx);
float g1x = cubic_g1(fx);
float x0 = (px + cubic_h0(fx)) / info.width;
float x1 = (px + cubic_h1(fx)) / info.width;
float y0 = (py + cubic_h0(fy)) / info.height;
float y1 = (py + cubic_h1(fy)) / info.height;
return cubic_g0(fy) * (g0x * tex2D<T>(tex, x0, y0) + g1x * tex2D<T>(tex, x1, y0)) +
cubic_g1(fy) * (g0x * tex2D<T>(tex, x0, y1) + g1x * tex2D<T>(tex, x1, y1));
}
/* Fast tricubic texture lookup using 8 trilinear lookups. */
template<typename T>
ccl_device T kernel_tex_image_interp_bicubic_3d(
const TextureInfo &info, CUtexObject tex, float x, float y, float z)
{
x = (x * info.width) - 0.5f;
y = (y * info.height) - 0.5f;
z = (z * info.depth) - 0.5f;
float px = floor(x);
float py = floor(y);
float pz = floor(z);
float fx = x - px;
float fy = y - py;
float fz = z - pz;
float g0x = cubic_g0(fx);
float g1x = cubic_g1(fx);
float g0y = cubic_g0(fy);
float g1y = cubic_g1(fy);
float g0z = cubic_g0(fz);
float g1z = cubic_g1(fz);
float x0 = (px + cubic_h0(fx)) / info.width;
float x1 = (px + cubic_h1(fx)) / info.width;
float y0 = (py + cubic_h0(fy)) / info.height;
float y1 = (py + cubic_h1(fy)) / info.height;
float z0 = (pz + cubic_h0(fz)) / info.depth;
float z1 = (pz + cubic_h1(fz)) / info.depth;
return g0z * (g0y * (g0x * tex3D<T>(tex, x0, y0, z0) + g1x * tex3D<T>(tex, x1, y0, z0)) +
g1y * (g0x * tex3D<T>(tex, x0, y1, z0) + g1x * tex3D<T>(tex, x1, y1, z0))) +
g1z * (g0y * (g0x * tex3D<T>(tex, x0, y0, z1) + g1x * tex3D<T>(tex, x1, y0, z1)) +
g1y * (g0x * tex3D<T>(tex, x0, y1, z1) + g1x * tex3D<T>(tex, x1, y1, z1)));
}
ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
{
const TextureInfo &info = kernel_tex_fetch(__texture_info, id);
CUtexObject tex = (CUtexObject)info.data;
/* float4, byte4, ushort4 and half4 */
const int texture_type = info.data_type;
if (texture_type == IMAGE_DATA_TYPE_FLOAT4 || texture_type == IMAGE_DATA_TYPE_BYTE4 ||
texture_type == IMAGE_DATA_TYPE_HALF4 || texture_type == IMAGE_DATA_TYPE_USHORT4) {
if (info.interpolation == INTERPOLATION_CUBIC) {
return kernel_tex_image_interp_bicubic<float4>(info, tex, x, y);
}
else {
return tex2D<float4>(tex, x, y);
}
}
/* float, byte and half */
else {
float f;
if (info.interpolation == INTERPOLATION_CUBIC) {
f = kernel_tex_image_interp_bicubic<float>(info, tex, x, y);
}
else {
f = tex2D<float>(tex, x, y);
}
return make_float4(f, f, f, 1.0f);
}
}
ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg,
int id,
float3 P,
InterpolationType interp)
{
const TextureInfo &info = kernel_tex_fetch(__texture_info, id);
if (info.use_transform_3d) {
P = transform_point(&info.transform_3d, P);
}
const float x = P.x;
const float y = P.y;
const float z = P.z;
CUtexObject tex = (CUtexObject)info.data;
uint interpolation = (interp == INTERPOLATION_NONE) ? info.interpolation : interp;
const int texture_type = info.data_type;
if (texture_type == IMAGE_DATA_TYPE_FLOAT4 || texture_type == IMAGE_DATA_TYPE_BYTE4 ||
texture_type == IMAGE_DATA_TYPE_HALF4 || texture_type == IMAGE_DATA_TYPE_USHORT4) {
if (interpolation == INTERPOLATION_CUBIC) {
return kernel_tex_image_interp_bicubic_3d<float4>(info, tex, x, y, z);
}
else {
return tex3D<float4>(tex, x, y, z);
}
}
else {
float f;
if (interpolation == INTERPOLATION_CUBIC) {
f = kernel_tex_image_interp_bicubic_3d<float>(info, tex, x, y, z);
}
else {
f = tex3D<float>(tex, x, y, z);
}
return make_float4(f, f, f, 1.0f);
}
}