This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/collision.c

1060 lines
27 KiB
C

/* collision.c
*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
/* types */
#include "DNA_curve_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_cloth_types.h"
#include "DNA_key_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_lattice_types.h"
#include "DNA_scene_types.h"
#include "DNA_modifier_types.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "BLI_edgehash.h"
#include "BLI_linklist.h"
#include "BKE_curve.h"
#include "BKE_deform.h"
#include "BKE_DerivedMesh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_cloth.h"
#include "BKE_modifier.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
#include "DNA_screen_types.h"
#include "BSE_headerbuttons.h"
#include "BIF_screen.h"
#include "BIF_space.h"
#include "mydevice.h"
#include "Bullet-C-Api.h"
/**
* gsl_poly_solve_cubic -
*
* copied from SOLVE_CUBIC.C --> GSL
*/
#define mySWAP(a,b) do { float tmp = b ; b = a ; a = tmp ; } while(0)
int gsl_poly_solve_cubic (float a, float b, float c, float *x0, float *x1, float *x2)
{
float q = (a * a - 3 * b);
float r = (2 * a * a * a - 9 * a * b + 27 * c);
float Q = q / 9;
float R = r / 54;
float Q3 = Q * Q * Q;
float R2 = R * R;
float CR2 = 729 * r * r;
float CQ3 = 2916 * q * q * q;
if (R == 0 && Q == 0)
{
*x0 = - a / 3 ;
*x1 = - a / 3 ;
*x2 = - a / 3 ;
return 3 ;
}
else if (CR2 == CQ3)
{
/* this test is actually R2 == Q3, written in a form suitable
for exact computation with integers */
/* Due to finite precision some float roots may be missed, and
considered to be a pair of complex roots z = x +/- epsilon i
close to the real axis. */
float sqrtQ = sqrtf (Q);
if (R > 0)
{
*x0 = -2 * sqrtQ - a / 3;
*x1 = sqrtQ - a / 3;
*x2 = sqrtQ - a / 3;
}
else
{
*x0 = - sqrtQ - a / 3;
*x1 = - sqrtQ - a / 3;
*x2 = 2 * sqrtQ - a / 3;
}
return 3 ;
}
else if (CR2 < CQ3) /* equivalent to R2 < Q3 */
{
float sqrtQ = sqrtf (Q);
float sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
float theta = acosf (R / sqrtQ3);
float norm = -2 * sqrtQ;
*x0 = norm * cosf (theta / 3) - a / 3;
*x1 = norm * cosf ((theta + 2.0 * M_PI) / 3) - a / 3;
*x2 = norm * cosf ((theta - 2.0 * M_PI) / 3) - a / 3;
/* Sort *x0, *x1, *x2 into increasing order */
if (*x0 > *x1)
mySWAP(*x0, *x1) ;
if (*x1 > *x2)
{
mySWAP(*x1, *x2) ;
if (*x0 > *x1)
mySWAP(*x0, *x1) ;
}
return 3;
}
else
{
float sgnR = (R >= 0 ? 1 : -1);
float A = -sgnR * powf (fabs (R) + sqrtf (R2 - Q3), 1.0/3.0);
float B = Q / A ;
*x0 = A + B - a / 3;
return 1;
}
}
/**
* gsl_poly_solve_quadratic
*
* copied from GSL
*/
int gsl_poly_solve_quadratic (float a, float b, float c, float *x0, float *x1)
{
float disc = b * b - 4 * a * c;
if (disc > 0)
{
if (b == 0)
{
float r = fabs (0.5 * sqrtf (disc) / a);
*x0 = -r;
*x1 = r;
}
else
{
float sgnb = (b > 0 ? 1 : -1);
float temp = -0.5 * (b + sgnb * sqrtf (disc));
float r1 = temp / a ;
float r2 = c / temp ;
if (r1 < r2)
{
*x0 = r1 ;
*x1 = r2 ;
}
else
{
*x0 = r2 ;
*x1 = r1 ;
}
}
return 2;
}
else if (disc == 0)
{
*x0 = -0.5 * b / a ;
*x1 = -0.5 * b / a ;
return 2 ;
}
else
{
return 0;
}
}
/*
* See Bridson et al. "Robust Treatment of Collision, Contact and Friction for Cloth Animation"
* page 4, left column
*/
int cloth_get_collision_time(float a[3], float b[3], float c[3], float d[3], float e[3], float f[3], float solution[3])
{
int num_sols = 0;
float g = -a[2] * c[1] * e[0] + a[1] * c[2] * e[0] +
a[2] * c[0] * e[1] - a[0] * c[2] * e[1] -
a[1] * c[0] * e[2] + a[0] * c[1] * e[2];
float h = -b[2] * c[1] * e[0] + b[1] * c[2] * e[0] - a[2] * d[1] * e[0] +
a[1] * d[2] * e[0] + b[2] * c[0] * e[1] - b[0] * c[2] * e[1] +
a[2] * d[0] * e[1] - a[0] * d[2] * e[1] - b[1] * c[0] * e[2] +
b[0] * c[1] * e[2] - a[1] * d[0] * e[2] + a[0] * d[1] * e[2] -
a[2] * c[1] * f[0] + a[1] * c[2] * f[0] + a[2] * c[0] * f[1] -
a[0] * c[2] * f[1] - a[1] * c[0] * f[2] + a[0] * c[1] * f[2];
float i = -b[2] * d[1] * e[0] + b[1] * d[2] * e[0] +
b[2] * d[0] * e[1] - b[0] * d[2] * e[1] -
b[1] * d[0] * e[2] + b[0] * d[1] * e[2] -
b[2] * c[1] * f[0] + b[1] * c[2] * f[0] -
a[2] * d[1] * f[0] + a[1] * d[2] * f[0] +
b[2] * c[0] * f[1] - b[0] * c[2] * f[1] +
a[2] * d[0] * f[1] - a[0] * d[2] * f[1] -
b[1] * c[0] * f[2] + b[0] * c[1] * f[2] -
a[1] * d[0] * f[2] + a[0] * d[1] * f[2];
float j = -b[2] * d[1] * f[0] + b[1] * d[2] * f[0] +
b[2] * d[0] * f[1] - b[0] * d[2] * f[1] -
b[1] * d[0] * f[2] + b[0] * d[1] * f[2];
// Solve cubic equation to determine times t1, t2, t3, when the collision will occur.
if(ABS(j) > ALMOST_ZERO)
{
i /= j;
h /= j;
g /= j;
num_sols = gsl_poly_solve_cubic(i, h, g, &solution[0], &solution[1], &solution[2]);
}
else if(ABS(i) > ALMOST_ZERO)
{
num_sols = gsl_poly_solve_quadratic(i, h, g, &solution[0], &solution[1]);
solution[2] = -1.0;
}
else if(ABS(h) > ALMOST_ZERO)
{
solution[0] = -g / h;
solution[1] = solution[2] = -1.0;
num_sols = 1;
}
else if(ABS(g) > ALMOST_ZERO)
{
solution[0] = 0;
solution[1] = solution[2] = -1.0;
num_sols = 1;
}
// Discard negative solutions
if ((num_sols >= 1) && (solution[0] < 0))
{
--num_sols;
solution[0] = solution[num_sols];
}
if ((num_sols >= 2) && (solution[1] < 0))
{
--num_sols;
solution[1] = solution[num_sols];
}
if ((num_sols == 3) && (solution[2] < 0))
{
--num_sols;
}
// Sort
if (num_sols == 2)
{
if (solution[0] > solution[1])
{
double tmp = solution[0];
solution[0] = solution[1];
solution[1] = tmp;
}
}
else if (num_sols == 3)
{
// Bubblesort
if (solution[0] > solution[1]) {
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
if (solution[1] > solution[2]) {
double tmp = solution[1]; solution[1] = solution[2]; solution[2] = tmp;
}
if (solution[0] > solution[1]) {
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
}
return num_sols;
}
// w3 is not perfect
void cloth_compute_barycentric (float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3)
{
double tempV1[3], tempV2[3], tempV4[3];
double a,b,c,d,e,f;
VECSUB (tempV1, p1, p3);
VECSUB (tempV2, p2, p3);
VECSUB (tempV4, pv, p3);
a = INPR (tempV1, tempV1);
b = INPR (tempV1, tempV2);
c = INPR (tempV2, tempV2);
e = INPR (tempV1, tempV4);
f = INPR (tempV2, tempV4);
d = (a * c - b * b);
if (ABS(d) < ALMOST_ZERO) {
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = (float)((e * c - b * f) / d);
if(w1[0] < 0)
w1[0] = 0;
w2[0] = (float)((f - b * (double)w1[0]) / c);
if(w2[0] < 0)
w2[0] = 0;
w3[0] = 1.0f - w1[0] - w2[0];
}
DO_INLINE void interpolateOnTriangle(float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3)
{
to[0] = to[1] = to[2] = 0;
VECADDMUL(to, v1, w1);
VECADDMUL(to, v2, w2);
VECADDMUL(to, v3, w3);
}
// unused in the moment, has some bug in
DO_INLINE void calculateFrictionImpulse(float to[3], float vrel[3], float normal[3], double normalVelocity,
double frictionConstant, double delta_V_n)
{
float vrel_t_pre[3];
float vrel_t[3];
VECSUBS(vrel_t_pre, vrel, normal, normalVelocity);
VECCOPY(to, vrel_t_pre);
VecMulf(to, MAX2(1.0f - frictionConstant * delta_V_n / INPR(vrel_t_pre,vrel_t_pre), 0.0f));
}
int cloth_collision_response_static(ClothModifierData *clmd, ClothModifierData *coll_clmd)
{
unsigned int i = 0;
int result = 0;
LinkNode *search = NULL;
CollPair *collpair = NULL;
Cloth *cloth1, *cloth2;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
search = clmd->coll_parms.collision_list;
while(search)
{
collpair = search->link;
// compute barycentric coordinates for both collision points
cloth_compute_barycentric(collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3);
cloth_compute_barycentric(collpair->pb,
cloth2->verts[collpair->bp1].txold,
cloth2->verts[collpair->bp2].txold,
cloth2->verts[collpair->bp3].txold,
&u1, &u2, &u3);
// Calculate relative "velocity".
interpolateOnTriangle(v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3);
interpolateOnTriangle(v2, cloth2->verts[collpair->bp1].tv, cloth2->verts[collpair->bp2].tv, cloth2->verts[collpair->bp3].tv, u1, u2, u3);
VECSUB(relativeVelocity, v1, v2);
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR(relativeVelocity, collpair->normal);
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// If v_n_mag < 0 the edges are approaching each other.
if(magrelVel < -ALMOST_ZERO)
{
// Calculate Impulse magnitude to stop all motion in normal direction.
// const double I_mag = v_n_mag / (1/m1 + 1/m2);
float magnitude_i = magrelVel / 2.0f; // TODO implement masses
float tangential[3], magtangent, magnormal, collvel[3];
float vrel_t_pre[3];
float vrel_t[3];
double impulse;
float epsilon = clmd->coll_parms.epsilon;
float overlap = (epsilon + ALMOST_ZERO-collpair->distance);
// calculateFrictionImpulse(tangential, relativeVelocity, collpair->normal, magrelVel, clmd->coll_parms.friction*0.01, magrelVel);
// magtangent = INPR(tangential, tangential);
// Apply friction impulse.
if (magtangent < -ALMOST_ZERO)
{
// printf("friction applied: %f\n", magtangent);
// TODO check original code
/*
VECSUB(cloth1->verts[face1->v1].tv, cloth1->verts[face1->v1].tv,tangential);
VECSUB(cloth1->verts[face1->v1].tv, cloth1->verts[face1->v2].tv,tangential);
VECSUB(cloth1->verts[face1->v1].tv, cloth1->verts[face1->v3].tv,tangential);
VECSUB(cloth1->verts[face1->v1].tv, cloth1->verts[face1->v4].tv,tangential);
*/
}
impulse = -2.0f * magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3);
// printf("impulse: %f\n", impulse);
VECADDMUL(cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse);
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL(cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse);
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL(cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse);
cloth1->verts[collpair->ap3].impulse_count++;
result = 1;
/*
if (overlap > ALMOST_ZERO) {
double I_mag = overlap * 0.1;
impulse = -I_mag / ( 1.0 + w1*w1 + w2*w2 + w3*w3);
VECADDMUL(cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse);
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL(cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse);
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL(cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse);
cloth1->verts[collpair->ap3].impulse_count++;
}
*/
// printf("magnitude_i: %f\n", magnitude_i); // negative before collision in my case
// Apply the impulse and increase impulse counters.
/*
// calculateFrictionImpulse(tangential, collvel, collpair->normal, magtangent, clmd->coll_parms.friction*0.01, magtangent);
VECSUBS(vrel_t_pre, collvel, collpair->normal, magnormal);
// VecMulf(vrel_t_pre, clmd->coll_parms.friction*0.01f/INPR(vrel_t_pre,vrel_t_pre));
magtangent = Normalize(vrel_t_pre);
VecMulf(vrel_t_pre, MIN2(clmd->coll_parms.friction*0.01f*magnormal,magtangent));
VECSUB(cloth1->verts[face1->v1].tv, cloth1->verts[face1->v1].tv,vrel_t_pre);
*/
}
search = search->next;
}
return result;
}
void cloth_collision_static(ClothModifierData *clmd, ClothModifierData *coll_clmd, Tree *tree1, Tree *tree2)
{
CollPair *collpair = NULL;
Cloth *cloth1=NULL, *cloth2=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL, *verts2=NULL;
double distance = 0;
float epsilon = clmd->coll_parms.epsilon;
unsigned int i = 0;
for(i = 0; i < 4; i++)
{
collpair = (CollPair *)MEM_callocN(sizeof(CollPair), "cloth coll pair");
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
face1 = &(cloth1->mfaces[tree1->tri_index]);
face2 = &(cloth2->mfaces[tree2->tri_index]);
// check all possible pairs of triangles
if(i == 0)
{
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
if(i == 1)
{
if(face1->v4)
{
collpair->ap1 = face1->v3;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v1;
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else
i++;
}
if(i == 2)
{
if(face2->v4)
{
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
collpair->bp1 = face2->v3;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v1;
}
else
i+=2;
}
if(i == 3)
{
if((face1->v4)&&(face2->v4))
{
collpair->ap1 = face1->v3;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v1;
collpair->bp1 = face2->v3;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v1;
}
else
i++;
}
// calc SIPcode (?)
if(i < 4)
{
// calc distance + normal
distance = plNearestPoints(
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, verts2[collpair->bp1].txold, verts2[collpair->bp2].txold, verts2[collpair->bp3].txold, collpair->pa,collpair->pb,collpair->vector);
if (distance <= (epsilon + ALMOST_ZERO))
{
// printf("dist: %f\n", (float)distance);
// collpair->face1 = tree1->tri_index;
// collpair->face2 = tree2->tri_index;
VECCOPY(collpair->normal, collpair->vector);
Normalize(collpair->normal);
collpair->distance = distance;
BLI_linklist_append(&clmd->coll_parms.collision_list, collpair);
}
else
{
MEM_freeN(collpair);
}
}
else
{
MEM_freeN(collpair);
}
}
}
void cloth_collision_moving_tris(ClothModifierData *clmd, ClothModifierData *coll_clmd, Tree *tree1, Tree *tree2)
{
CollPair collpair;
Cloth *cloth1=NULL, *cloth2=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL, *verts2=NULL;
double distance = 0;
float epsilon = clmd->coll_parms.epsilon;
unsigned int i = 0, j = 0, k = 0;
int numsolutions = 0;
float a[3], b[3], c[3], d[3], e[3], f[3], solution[3];
for(i = 0; i < 2; i++)
{
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
face1 = &(cloth1->mfaces[tree1->tri_index]);
face2 = &(cloth2->mfaces[tree2->tri_index]);
// check all possible pairs of triangles
if(i == 0)
{
collpair.ap1 = face1->v1;
collpair.ap2 = face1->v2;
collpair.ap3 = face1->v3;
collpair.pointsb[0] = face2->v1;
collpair.pointsb[1] = face2->v2;
collpair.pointsb[2] = face2->v3;
collpair.pointsb[3] = face2->v4;
}
if(i == 1)
{
if(face1->v4)
{
collpair.ap1 = face1->v3;
collpair.ap2 = face1->v4;
collpair.ap3 = face1->v1;
collpair.pointsb[0] = face2->v1;
collpair.pointsb[1] = face2->v2;
collpair.pointsb[2] = face2->v3;
collpair.pointsb[3] = face2->v4;
}
else
i++;
}
// calc SIPcode (?)
if(i < 2)
{
VECSUB(a, verts1[collpair.ap2].xold, verts1[collpair.ap1].xold);
VECSUB(b, verts1[collpair.ap2].v, verts1[collpair.ap1].v);
VECSUB(c, verts1[collpair.ap3].xold, verts1[collpair.ap1].xold);
VECSUB(d, verts1[collpair.ap3].v, verts1[collpair.ap1].v);
for(j = 0; j < 4; j++)
{
if((j==3) && !(face2->v4))
break;
VECSUB(e, verts2[collpair.pointsb[j]].xold, verts1[collpair.ap1].xold);
VECSUB(f, verts2[collpair.pointsb[j]].v, verts1[collpair.ap1].v);
numsolutions = cloth_get_collision_time(a, b, c, d, e, f, solution);
for (k = 0; k < numsolutions; k++)
{
if ((solution[k] >= 0.0) && (solution[k] <= 1.0))
{
float out_collisionTime = solution[k];
// TODO: check for collisions
// TODO: put into collision list
printf("Moving found!\n");
}
}
// TODO: check borders for collisions
}
}
}
}
// move collision objects forward in time and update static bounding boxes
void cloth_update_collision_objects(float step)
{
Base *base=NULL;
ClothModifierData *coll_clmd=NULL;
Object *coll_ob=NULL;
unsigned int i=0;
// search all objects for collision object
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
// if collision object go on
if (coll_clmd->sim_parms.flags & CSIMSETT_FLAG_COLLOBJ)
{
if (coll_clmd->clothObject && coll_clmd->clothObject->tree)
{
Cloth *coll_cloth = coll_clmd->clothObject;
BVH *coll_bvh = coll_clmd->clothObject->tree;
unsigned int coll_numverts = coll_cloth->numverts;
// update position of collision object
for(i = 0; i < coll_numverts; i++)
{
VECCOPY(coll_cloth->verts[i].txold, coll_cloth->verts[i].tx);
VECADDS(coll_cloth->verts[i].tx, coll_cloth->verts[i].xold, coll_cloth->verts[i].v, step);
// no dt here because of float rounding errors
VECSUB(coll_cloth->verts[i].tv, coll_cloth->verts[i].tx, coll_cloth->verts[i].txold);
}
// update BVH of collision object
bvh_update(coll_clmd, coll_bvh, 0); // 0 means STATIC, 1 means MOVING
}
else
printf ("cloth_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
}
}
}
// CLOTH_MAX_THRESHOLD defines how much collision rounds/loops should be taken
#define CLOTH_MAX_THRESHOLD 10
// cloth - object collisions
int cloth_bvh_objcollision(ClothModifierData * clmd, float step, float dt)
{
Base *base=NULL;
ClothModifierData *coll_clmd=NULL;
Cloth *cloth=NULL;
Object *coll_ob=NULL;
BVH *cloth_bvh=NULL;
unsigned int i=0, j = 0, numfaces = 0, numverts = 0;
unsigned int result = 0, ic = 0, rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
float tnull[3] = {0,0,0};
int ret = 0;
if ((clmd->sim_parms.flags & CSIMSETT_FLAG_COLLOBJ) || !(((Cloth *)clmd->clothObject)->tree))
{
return 0;
}
cloth = clmd->clothObject;
verts = cloth->verts;
cloth_bvh = (BVH *) cloth->tree;
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvh_update(clmd, cloth_bvh, 0); // 0 means STATIC, 1 means MOVING (see later in this function)
// update collision objects
cloth_update_collision_objects(step);
do
{
result = 0;
ic = 0;
clmd->coll_parms.collision_list = NULL;
// check all collision objects
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
// if collision object go on
if (coll_clmd->sim_parms.flags & CSIMSETT_FLAG_COLLOBJ)
{
if (coll_clmd->clothObject && coll_clmd->clothObject->tree)
{
BVH *coll_bvh = coll_clmd->clothObject->tree;
bvh_traverse(clmd, coll_clmd, cloth_bvh->root, coll_bvh->root, step, cloth_collision_static);
}
else
printf ("cloth_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
}
}
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for(j = 0; j < 50; j++) // 50 is just a value that ensures convergence
{
result = 0;
// handle all collision objects
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
// if collision object go on
if (coll_clmd->sim_parms.flags & CSIMSETT_FLAG_COLLOBJ)
{
if (coll_clmd->clothObject)
result += cloth_collision_response_static(clmd, coll_clmd);
else
printf ("cloth_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
}
}
// apply impulses in parallel
ic=0;
for(i = 0; i < numverts; i++)
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
if(verts[i].impulse_count)
{
VECADDMUL(verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count);
VECCOPY(verts[i].impulse, tnull);
verts[i].impulse_count = 0;
ic++;
ret++;
}
}
}
// free collision list
if(clmd->coll_parms.collision_list)
{
LinkNode *search = clmd->coll_parms.collision_list;
while(search)
{
CollPair *coll_pair = search->link;
MEM_freeN(coll_pair);
search = search->next;
}
BLI_linklist_free(clmd->coll_parms.collision_list,NULL);
clmd->coll_parms.collision_list = NULL;
}
printf("ic: %d\n", ic);
rounds++;
}
while(result && (CLOTH_MAX_THRESHOLD>rounds));
printf("\n");
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for(i = 0; i < numverts; i++)
{
VECADD(verts[i].tx, verts[i].txold, verts[i].tv);
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// moving collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvh_update(clmd, cloth_bvh, 1); // 0 means STATIC, 1 means MOVING
// update moving bvh for collision object once
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
if(!coll_clmd->clothObject)
continue;
// if collision object go on
if (coll_clmd->clothObject && coll_clmd->clothObject->tree)
{
BVH *coll_bvh = coll_clmd->clothObject->tree;
bvh_update(coll_clmd, coll_bvh, 1); // 0 means STATIC, 1 means MOVING
}
}
do
{
result = 0;
ic = 0;
clmd->coll_parms.collision_list = NULL;
// check all collision objects
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
// if collision object go on
if (coll_clmd->sim_parms.flags & CSIMSETT_FLAG_COLLOBJ)
{
if (coll_clmd->clothObject && coll_clmd->clothObject->tree)
{
BVH *coll_bvh = coll_clmd->clothObject->tree;
bvh_traverse(clmd, coll_clmd, cloth_bvh->root, coll_bvh->root, step, cloth_collision_moving_tris);
}
else
printf ("cloth_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
}
}
/*
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for(j = 0; j < 50; j++) // 50 is just a value that ensures convergence
{
result = 0;
// handle all collision objects
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
// if collision object go on
if (coll_clmd->sim_parms.flags & CSIMSETT_FLAG_COLLOBJ)
{
if (coll_clmd->clothObject)
result += cloth_collision_response_moving_tris(clmd, coll_clmd);
else
printf ("cloth_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
}
}
// apply impulses in parallel
ic=0;
for(i = 0; i < numverts; i++)
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
if(verts[i].impulse_count)
{
VECADDMUL(verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count);
VECCOPY(verts[i].impulse, tnull);
verts[i].impulse_count = 0;
ic++;
ret++;
}
}
}
*/
// verts come from clmd
for(i = 0; i < numverts; i++)
{
VECADD(verts[i].tx, verts[i].txold, verts[i].tv);
}
// update cloth bvh
bvh_update(clmd, cloth_bvh, 1); // 0 means STATIC, 1 means MOVING
// free collision list
if(clmd->coll_parms.collision_list)
{
LinkNode *search = clmd->coll_parms.collision_list;
while(search)
{
CollPair *coll_pair = search->link;
MEM_freeN(coll_pair);
search = search->next;
}
BLI_linklist_free(clmd->coll_parms.collision_list,NULL);
clmd->coll_parms.collision_list = NULL;
}
printf("ic: %d\n", ic);
rounds++;
}
while(result && (CLOTH_MAX_THRESHOLD>rounds));
////////////////////////////////////////////////////////////
// update positions + velocities
////////////////////////////////////////////////////////////
// verts come from clmd
for(i = 0; i < numverts; i++)
{
VECADD(verts[i].tx, verts[i].txold, verts[i].tv);
}
////////////////////////////////////////////////////////////
return MIN2(ret, 1);
}