This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/operators/bmo_subdivide.c
Sybren A. Stüvel 20869065b8 Cleanup: BMesh, Clang-Tidy else-after-return fixes
This addresses warnings from Clang-Tidy's `readability-else-after-return`
rule in the `source/blender/bmesh` module.

No functional changes.
2020-07-03 14:48:37 +02:00

1425 lines
39 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bmesh
*
* Edge based subdivision with various subdivision patterns.
*/
#include "MEM_guardedalloc.h"
#include "BLI_array.h"
#include "BLI_math.h"
#include "BLI_noise.h"
#include "BLI_rand.h"
#include "BLI_stack.h"
#include "BKE_customdata.h"
#include "bmesh.h"
#include "intern/bmesh_operators_private.h"
#include "intern/bmesh_private.h"
typedef struct SubDParams {
int numcuts;
float smooth;
int smooth_falloff;
float fractal;
float along_normal;
// int beauty;
bool use_smooth;
bool use_smooth_even;
bool use_sphere;
bool use_fractal;
int seed;
BMOperator *op;
BMOpSlot *slot_edge_percents; /* BMO_slot_get(params->op->slots_in, "edge_percents"); */
BMOpSlot *slot_custom_patterns; /* BMO_slot_get(params->op->slots_in, "custom_patterns"); */
float fractal_ofs[3];
/* rumtime storage for shape key */
struct {
int cd_vert_shape_offset;
int cd_vert_shape_offset_tmp;
int totlayer;
/* shapekey holding displaced vertex coordinates for current geometry */
int tmpkey;
} shape_info;
} SubDParams;
static void bmo_subd_init_shape_info(BMesh *bm, SubDParams *params)
{
const int skey = CustomData_number_of_layers(&bm->vdata, CD_SHAPEKEY) - 1;
params->shape_info.tmpkey = skey;
params->shape_info.cd_vert_shape_offset = CustomData_get_offset(&bm->vdata, CD_SHAPEKEY);
params->shape_info.cd_vert_shape_offset_tmp = CustomData_get_n_offset(
&bm->vdata, CD_SHAPEKEY, skey);
params->shape_info.totlayer = CustomData_number_of_layers(&bm->vdata, CD_SHAPEKEY);
}
typedef void (*subd_pattern_fill_fp)(BMesh *bm,
BMFace *face,
BMVert **verts,
const SubDParams *params);
/*
* note: this is a pattern-based edge subdivider.
* it tries to match a pattern to edge selections on faces,
* then executes functions to cut them.
*/
typedef struct SubDPattern {
int seledges[20]; /* selected edges mask, for splitting */
/* verts starts at the first new vert cut, not the first vert in the face */
subd_pattern_fill_fp connectexec;
int len; /* total number of verts, before any subdivision */
} SubDPattern;
/* generic subdivision rules:
*
* - two selected edges in a face should make a link
* between them.
*
* - one edge should do, what? make pretty topology, or just
* split the edge only?
*/
/* flags for all elements share a common bitfield space */
#define SUBD_SPLIT 1
#define EDGE_PERCENT 2
/* I don't think new faces are flagged, currently, but
* better safe than sorry. */
#define FACE_CUSTOMFILL 4
#define ELE_INNER 8
#define ELE_SPLIT 16
/* see bug [#32665], 0.00005 means a we get face splits at a little under 1.0 degrees */
#define FLT_FACE_SPLIT_EPSILON 0.00005f
/*
* NOTE: beauty has been renamed to flag!
*/
/* generic subdivision rules:
*
* - two selected edges in a face should make a link
* between them.
*
* - one edge should do, what? make pretty topology, or just
* split the edge only?
*/
/* connects face with smallest len, which I think should always be correct for
* edge subdivision */
static BMEdge *connect_smallest_face(BMesh *bm, BMVert *v_a, BMVert *v_b, BMFace **r_f_new)
{
BMLoop *l_a, *l_b;
BMFace *f;
/* this isn't the best thing in the world. it doesn't handle cases where there's
* multiple faces yet. that might require a convexity test to figure out which
* face is "best" and who knows what for non-manifold conditions.
*
* note: we allow adjacent here, since there's no chance this happens.
*/
f = BM_vert_pair_share_face_by_len(v_a, v_b, &l_a, &l_b, true);
if (f) {
BMFace *f_new;
BMLoop *l_new;
BLI_assert(!BM_loop_is_adjacent(l_a, l_b));
f_new = BM_face_split(bm, f, l_a, l_b, &l_new, NULL, false);
if (r_f_new) {
*r_f_new = f_new;
}
return l_new ? l_new->e : NULL;
}
return NULL;
}
/**
* Specialized slerp that uses a sphere defined by each points normal.
*/
static void interp_slerp_co_no_v3(
const float co_a[3],
const float no_a[3],
const float co_b[3],
const float no_b[3],
const float no_dir[3], /* caller already knows, avoid normalize */
float fac,
float r_co[3])
{
/* center of the sphere defined by both normals */
float center[3];
BLI_assert(len_squared_v3v3(no_a, no_b) != 0);
/* calculate sphere 'center' */
{
/* use point on plane to */
float no_mid[3], no_ortho[3];
/* pass this as an arg instead */
#if 0
float no_dir[3];
#endif
add_v3_v3v3(no_mid, no_a, no_b);
normalize_v3(no_mid);
#if 0
sub_v3_v3v3(no_dir, co_a, co_b);
normalize_v3(no_dir);
#endif
/* axis of slerp */
bool center_ok = false;
cross_v3_v3v3(no_ortho, no_mid, no_dir);
if (normalize_v3(no_ortho) != 0.0f) {
float plane_a[4], plane_b[4], plane_c[4];
float v_a_no_ortho[3], v_b_no_ortho[3];
/* create planes */
cross_v3_v3v3(v_a_no_ortho, no_ortho, no_a);
cross_v3_v3v3(v_b_no_ortho, no_ortho, no_b);
project_v3_plane(v_a_no_ortho, no_ortho, v_a_no_ortho);
project_v3_plane(v_b_no_ortho, no_ortho, v_b_no_ortho);
plane_from_point_normal_v3(plane_a, co_a, v_a_no_ortho);
plane_from_point_normal_v3(plane_b, co_b, v_b_no_ortho);
plane_from_point_normal_v3(plane_c, co_b, no_ortho);
/* find the sphere center from 3 planes */
if (isect_plane_plane_plane_v3(plane_a, plane_b, plane_c, center)) {
center_ok = true;
}
}
if (center_ok == false) {
mid_v3_v3v3(center, co_a, co_b);
}
}
/* calculate the final output 'r_co' */
{
float ofs_a[3], ofs_b[3], ofs_slerp[3];
float dist_a, dist_b;
sub_v3_v3v3(ofs_a, co_a, center);
sub_v3_v3v3(ofs_b, co_b, center);
dist_a = normalize_v3(ofs_a);
dist_b = normalize_v3(ofs_b);
if (interp_v3_v3v3_slerp(ofs_slerp, ofs_a, ofs_b, fac)) {
madd_v3_v3v3fl(r_co, center, ofs_slerp, interpf(dist_b, dist_a, fac));
}
else {
interp_v3_v3v3(r_co, co_a, co_b, fac);
}
}
}
/* calculates offset for co, based on fractal, sphere or smooth settings */
static void alter_co(BMVert *v,
BMEdge *UNUSED(e_orig),
const SubDParams *params,
const float perc,
const BMVert *v_a,
const BMVert *v_b)
{
float *co = BM_ELEM_CD_GET_VOID_P(v, params->shape_info.cd_vert_shape_offset_tmp);
int i;
copy_v3_v3(co, v->co);
if (UNLIKELY(params->use_sphere)) { /* subdivide sphere */
normalize_v3_length(co, params->smooth);
}
else if (params->use_smooth) {
/* calculating twice and blending gives smoother results,
* removing visible seams. */
#define USE_SPHERE_DUAL_BLEND
const float eps_unit_vec = 1e-5f;
float smooth;
float no_dir[3];
#ifdef USE_SPHERE_DUAL_BLEND
float no_reflect[3], co_a[3], co_b[3];
#endif
sub_v3_v3v3(no_dir, v_a->co, v_b->co);
normalize_v3(no_dir);
#ifndef USE_SPHERE_DUAL_BLEND
if (len_squared_v3v3(v_a->no, v_b->no) < eps_unit_vec) {
interp_v3_v3v3(co, v_a->co, v_b->co, perc);
}
else {
interp_slerp_co_no_v3(v_a->co, v_a->no, v_b->co, v_b->no, no_dir, perc, co);
}
#else
/* sphere-a */
reflect_v3_v3v3(no_reflect, v_a->no, no_dir);
if (len_squared_v3v3(v_a->no, no_reflect) < eps_unit_vec) {
interp_v3_v3v3(co_a, v_a->co, v_b->co, perc);
}
else {
interp_slerp_co_no_v3(v_a->co, v_a->no, v_b->co, no_reflect, no_dir, perc, co_a);
}
/* sphere-b */
reflect_v3_v3v3(no_reflect, v_b->no, no_dir);
if (len_squared_v3v3(v_b->no, no_reflect) < eps_unit_vec) {
interp_v3_v3v3(co_b, v_a->co, v_b->co, perc);
}
else {
interp_slerp_co_no_v3(v_a->co, no_reflect, v_b->co, v_b->no, no_dir, perc, co_b);
}
/* blend both spheres */
interp_v3_v3v3(co, co_a, co_b, perc);
#endif /* USE_SPHERE_DUAL_BLEND */
/* apply falloff */
if (params->smooth_falloff == SUBD_FALLOFF_LIN) {
smooth = 1.0f;
}
else {
smooth = fabsf(1.0f - 2.0f * fabsf(0.5f - perc));
smooth = 1.0f + bmesh_subd_falloff_calc(params->smooth_falloff, smooth);
}
if (params->use_smooth_even) {
smooth *= shell_v3v3_mid_normalized_to_dist(v_a->no, v_b->no);
}
smooth *= params->smooth;
if (smooth != 1.0f) {
float co_flat[3];
interp_v3_v3v3(co_flat, v_a->co, v_b->co, perc);
interp_v3_v3v3(co, co_flat, co, smooth);
}
#undef USE_SPHERE_DUAL_BLEND
}
if (params->use_fractal) {
float normal[3], co2[3], base1[3], base2[3], tvec[3];
const float len = len_v3v3(v_a->co, v_b->co);
float fac;
fac = params->fractal * len;
mid_v3_v3v3(normal, v_a->no, v_b->no);
ortho_basis_v3v3_v3(base1, base2, normal);
add_v3_v3v3(co2, v->co, params->fractal_ofs);
mul_v3_fl(co2, 10.0f);
tvec[0] = fac * (BLI_gTurbulence(1.0, co2[0], co2[1], co2[2], 15, 0, 2) - 0.5f);
tvec[1] = fac * (BLI_gTurbulence(1.0, co2[1], co2[0], co2[2], 15, 0, 2) - 0.5f);
tvec[2] = fac * (BLI_gTurbulence(1.0, co2[1], co2[2], co2[0], 15, 0, 2) - 0.5f);
/* add displacement */
madd_v3_v3fl(co, normal, tvec[0]);
madd_v3_v3fl(co, base1, tvec[1] * (1.0f - params->along_normal));
madd_v3_v3fl(co, base2, tvec[2] * (1.0f - params->along_normal));
}
/* apply the new difference to the rest of the shape keys,
* note that this doesn't take rotations into account, we _could_ support
* this by getting the normals and coords for each shape key and
* re-calculate the smooth value for each but this is quite involved.
* for now its ok to simply apply the difference IMHO - campbell */
if (params->shape_info.totlayer > 1) {
float tvec[3];
sub_v3_v3v3(tvec, v->co, co);
/* skip the last layer since its the temp */
i = params->shape_info.totlayer - 1;
co = BM_ELEM_CD_GET_VOID_P(v, params->shape_info.cd_vert_shape_offset);
while (i--) {
BLI_assert(co != BM_ELEM_CD_GET_VOID_P(v, params->shape_info.cd_vert_shape_offset_tmp));
sub_v3_v3(co += 3, tvec);
}
}
}
/* assumes in the edge is the correct interpolated vertices already */
/* percent defines the interpolation, rad and flag are for special options */
/* results in new vertex with correct coordinate, vertex normal and weight group info */
static BMVert *bm_subdivide_edge_addvert(BMesh *bm,
BMEdge *edge,
BMEdge *e_orig,
const SubDParams *params,
const float factor_edge_split,
const float factor_subd,
BMVert *v_a,
BMVert *v_b,
BMEdge **r_edge)
{
BMVert *v_new;
v_new = BM_edge_split(bm, edge, edge->v1, r_edge, factor_edge_split);
BMO_vert_flag_enable(bm, v_new, ELE_INNER);
/* offset for smooth or sphere or fractal */
alter_co(v_new, e_orig, params, factor_subd, v_a, v_b);
#if 0 // BMESH_TODO
/* clip if needed by mirror modifier */
if (edge->v1->f2) {
if (edge->v1->f2 & edge->v2->f2 & 1) {
co[0] = 0.0f;
}
if (edge->v1->f2 & edge->v2->f2 & 2) {
co[1] = 0.0f;
}
if (edge->v1->f2 & edge->v2->f2 & 4) {
co[2] = 0.0f;
}
}
#endif
interp_v3_v3v3(v_new->no, v_a->no, v_b->no, factor_subd);
normalize_v3(v_new->no);
return v_new;
}
static BMVert *subdivide_edge_num(BMesh *bm,
BMEdge *edge,
BMEdge *e_orig,
int curpoint,
int totpoint,
const SubDParams *params,
BMVert *v_a,
BMVert *v_b,
BMEdge **r_edge)
{
BMVert *v_new;
float factor_edge_split, factor_subd;
if (BMO_edge_flag_test(bm, edge, EDGE_PERCENT) && totpoint == 1) {
factor_edge_split = BMO_slot_map_float_get(params->slot_edge_percents, edge);
factor_subd = 0.0f;
}
else {
factor_edge_split = 1.0f / (float)(totpoint + 1 - curpoint);
factor_subd = (float)(curpoint + 1) / (float)(totpoint + 1);
}
v_new = bm_subdivide_edge_addvert(
bm, edge, e_orig, params, factor_edge_split, factor_subd, v_a, v_b, r_edge);
return v_new;
}
static void bm_subdivide_multicut(
BMesh *bm, BMEdge *edge, const SubDParams *params, BMVert *v_a, BMVert *v_b)
{
BMEdge *eed = edge, *e_new, e_tmp = *edge;
BMVert *v, v1_tmp = *edge->v1, v2_tmp = *edge->v2, *v1 = edge->v1, *v2 = edge->v2;
int i, numcuts = params->numcuts;
e_tmp.v1 = &v1_tmp;
e_tmp.v2 = &v2_tmp;
for (i = 0; i < numcuts; i++) {
v = subdivide_edge_num(bm, eed, &e_tmp, i, params->numcuts, params, v_a, v_b, &e_new);
BMO_vert_flag_enable(bm, v, SUBD_SPLIT | ELE_SPLIT);
BMO_edge_flag_enable(bm, eed, SUBD_SPLIT | ELE_SPLIT);
BMO_edge_flag_enable(bm, e_new, SUBD_SPLIT | ELE_SPLIT);
BM_CHECK_ELEMENT(v);
if (v->e) {
BM_CHECK_ELEMENT(v->e);
}
if (v->e && v->e->l) {
BM_CHECK_ELEMENT(v->e->l->f);
}
}
alter_co(v1, &e_tmp, params, 0, &v1_tmp, &v2_tmp);
alter_co(v2, &e_tmp, params, 1.0, &v1_tmp, &v2_tmp);
}
/* note: the patterns are rotated as necessary to
* match the input geometry. they're based on the
* pre-split state of the face */
/**
* <pre>
* v3---------v2
* | |
* | |
* | |
* | |
* v4---v0---v1
* </pre>
*/
static void quad_1edge_split(BMesh *bm,
BMFace *UNUSED(face),
BMVert **verts,
const SubDParams *params)
{
BMFace *f_new;
int i, add, numcuts = params->numcuts;
/* if it's odd, the middle face is a quad, otherwise it's a triangle */
if ((numcuts % 2) == 0) {
add = 2;
for (i = 0; i < numcuts; i++) {
if (i == numcuts / 2) {
add -= 1;
}
connect_smallest_face(bm, verts[i], verts[numcuts + add], &f_new);
}
}
else {
add = 2;
for (i = 0; i < numcuts; i++) {
connect_smallest_face(bm, verts[i], verts[numcuts + add], &f_new);
if (i == numcuts / 2) {
add -= 1;
connect_smallest_face(bm, verts[i], verts[numcuts + add], &f_new);
}
}
}
}
static const SubDPattern quad_1edge = {
{1, 0, 0, 0},
quad_1edge_split,
4,
};
/**
* <pre>
* v6--------v5
* | |
* | |v4s
* | |v3s
* | s s |
* v7-v0--v1-v2
* </pre>
*/
static void quad_2edge_split_path(BMesh *bm,
BMFace *UNUSED(face),
BMVert **verts,
const SubDParams *params)
{
BMFace *f_new;
int i, numcuts = params->numcuts;
for (i = 0; i < numcuts; i++) {
connect_smallest_face(bm, verts[i], verts[numcuts + (numcuts - i)], &f_new);
}
connect_smallest_face(bm, verts[numcuts * 2 + 3], verts[numcuts * 2 + 1], &f_new);
}
static const SubDPattern quad_2edge_path = {
{1, 1, 0, 0},
quad_2edge_split_path,
4,
};
/**
* <pre>
* v6--------v5
* | |
* | |v4s
* | |v3s
* | s s |
* v7-v0--v1-v2
* </pre>
*/
static void quad_2edge_split_innervert(BMesh *bm,
BMFace *UNUSED(face),
BMVert **verts,
const SubDParams *params)
{
BMFace *f_new;
BMVert *v, *v_last;
BMEdge *e, *e_new, e_tmp;
int i, numcuts = params->numcuts;
v_last = verts[numcuts];
for (i = numcuts - 1; i >= 0; i--) {
e = connect_smallest_face(bm, verts[i], verts[numcuts + (numcuts - i)], &f_new);
e_tmp = *e;
v = bm_subdivide_edge_addvert(bm, e, &e_tmp, params, 0.5f, 0.5f, e->v1, e->v2, &e_new);
if (i != numcuts - 1) {
connect_smallest_face(bm, v_last, v, &f_new);
}
v_last = v;
}
connect_smallest_face(bm, v_last, verts[numcuts * 2 + 2], &f_new);
}
static const SubDPattern quad_2edge_innervert = {
{1, 1, 0, 0},
quad_2edge_split_innervert,
4,
};
/**
* <pre>
* v6--------v5
* | |
* | |v4s
* | |v3s
* | s s |
* v7-v0--v1-v2
* </pre>
*/
static void quad_2edge_split_fan(BMesh *bm,
BMFace *UNUSED(face),
BMVert **verts,
const SubDParams *params)
{
BMFace *f_new;
/* BMVert *v; */ /* UNUSED */
/* BMVert *v_last = verts[2]; */ /* UNUSED */
/* BMEdge *e, *e_new; */ /* UNUSED */
int i, numcuts = params->numcuts;
for (i = 0; i < numcuts; i++) {
connect_smallest_face(bm, verts[i], verts[numcuts * 2 + 2], &f_new);
connect_smallest_face(bm, verts[numcuts + (numcuts - i)], verts[numcuts * 2 + 2], &f_new);
}
}
static const SubDPattern quad_2edge_fan = {
{1, 1, 0, 0},
quad_2edge_split_fan,
4,
};
/**
* <pre>
* s s
* v8--v7--v6-v5
* | |
* | v4 s
* | |
* | v3 s
* | s s |
* v9-v0--v1-v2
* </pre>
*/
static void quad_3edge_split(BMesh *bm,
BMFace *UNUSED(face),
BMVert **verts,
const SubDParams *params)
{
BMFace *f_new;
int i, add = 0, numcuts = params->numcuts;
for (i = 0; i < numcuts; i++) {
if (i == numcuts / 2) {
if (numcuts % 2 != 0) {
connect_smallest_face(bm, verts[numcuts - i - 1 + add], verts[i + numcuts + 1], &f_new);
}
add = numcuts * 2 + 2;
}
connect_smallest_face(bm, verts[numcuts - i - 1 + add], verts[i + numcuts + 1], &f_new);
}
for (i = 0; i < numcuts / 2 + 1; i++) {
connect_smallest_face(bm, verts[i], verts[(numcuts - i) + numcuts * 2 + 1], &f_new);
}
}
static const SubDPattern quad_3edge = {
{1, 1, 1, 0},
quad_3edge_split,
4,
};
/**
* <pre>
* v8--v7-v6--v5
* | s |
* |v9 s s|v4
* first line | | last line
* |v10s s s|v3
* v11-v0--v1-v2
*
* it goes from bottom up
* </pre>
*/
static void quad_4edge_subdivide(BMesh *bm,
BMFace *UNUSED(face),
BMVert **verts,
const SubDParams *params)
{
BMFace *f_new;
BMVert *v, *v1, *v2;
BMEdge *e, *e_new, e_tmp;
BMVert **lines;
int numcuts = params->numcuts;
int i, j, a, b, s = numcuts + 2 /* , totv = numcuts * 4 + 4 */;
lines = MEM_callocN(sizeof(BMVert *) * (numcuts + 2) * (numcuts + 2), "q_4edge_split");
/* build a 2-dimensional array of verts,
* containing every vert (and all new ones)
* in the face */
/* first line */
for (i = 0; i < numcuts + 2; i++) {
lines[i] = verts[numcuts * 3 + 2 + (numcuts - i + 1)];
}
/* last line */
for (i = 0; i < numcuts + 2; i++) {
lines[(s - 1) * s + i] = verts[numcuts + i];
}
/* first and last members of middle lines */
for (i = 0; i < numcuts; i++) {
a = i;
b = numcuts + 1 + numcuts + 1 + (numcuts - i - 1);
e = connect_smallest_face(bm, verts[a], verts[b], &f_new);
if (!e) {
continue;
}
BMO_edge_flag_enable(bm, e, ELE_INNER);
BMO_face_flag_enable(bm, f_new, ELE_INNER);
v1 = lines[(i + 1) * s] = verts[a];
v2 = lines[(i + 1) * s + s - 1] = verts[b];
e_tmp = *e;
for (a = 0; a < numcuts; a++) {
v = subdivide_edge_num(bm, e, &e_tmp, a, numcuts, params, v1, v2, &e_new);
BMESH_ASSERT(v != NULL);
BMO_edge_flag_enable(bm, e_new, ELE_INNER);
lines[(i + 1) * s + a + 1] = v;
}
}
for (i = 1; i < numcuts + 2; i++) {
for (j = 1; j <= numcuts; j++) {
a = i * s + j;
b = (i - 1) * s + j;
e = connect_smallest_face(bm, lines[a], lines[b], &f_new);
if (!e) {
continue;
}
BMO_edge_flag_enable(bm, e, ELE_INNER);
BMO_face_flag_enable(bm, f_new, ELE_INNER);
}
}
MEM_freeN(lines);
}
/**
* <pre>
* v3
* / \
* / \
* / \
* / \
* / \
* v4--v0--v1--v2
* s s
* </pre>
*/
static void tri_1edge_split(BMesh *bm,
BMFace *UNUSED(face),
BMVert **verts,
const SubDParams *params)
{
BMFace *f_new;
int i, numcuts = params->numcuts;
for (i = 0; i < numcuts; i++) {
connect_smallest_face(bm, verts[i], verts[numcuts + 1], &f_new);
}
}
static const SubDPattern tri_1edge = {
{1, 0, 0},
tri_1edge_split,
3,
};
/**
* <pre>
* v5
* / \
* s v6/---\ v4 s
* / \ / \
* sv7/---v---\ v3 s
* / \/ \/ \
* v8--v0--v1--v2
* s s
* </pre>
*/
static void tri_3edge_subdivide(BMesh *bm,
BMFace *UNUSED(face),
BMVert **verts,
const SubDParams *params)
{
BMFace *f_new;
BMEdge *e, *e_new, e_tmp;
BMVert ***lines, *v, v1_tmp, v2_tmp;
void *stackarr[1];
int i, j, a, b, numcuts = params->numcuts;
/* number of verts in each lin */
lines = MEM_callocN(sizeof(void *) * (numcuts + 2), "triangle vert table");
lines[0] = (BMVert **)stackarr;
lines[0][0] = verts[numcuts * 2 + 1];
lines[numcuts + 1] = MEM_callocN(sizeof(void *) * (numcuts + 2), "triangle vert table 2");
for (i = 0; i < numcuts; i++) {
lines[numcuts + 1][i + 1] = verts[i];
}
lines[numcuts + 1][0] = verts[numcuts * 3 + 2];
lines[numcuts + 1][numcuts + 1] = verts[numcuts];
for (i = 0; i < numcuts; i++) {
lines[i + 1] = MEM_callocN(sizeof(void *) * (2 + i), "triangle vert table row");
a = numcuts * 2 + 2 + i;
b = numcuts + numcuts - i;
e = connect_smallest_face(bm, verts[a], verts[b], &f_new);
if (!e) {
goto cleanup;
}
BMO_edge_flag_enable(bm, e, ELE_INNER);
BMO_face_flag_enable(bm, f_new, ELE_INNER);
lines[i + 1][0] = verts[a];
lines[i + 1][i + 1] = verts[b];
e_tmp = *e;
v1_tmp = *verts[a];
v2_tmp = *verts[b];
e_tmp.v1 = &v1_tmp;
e_tmp.v2 = &v2_tmp;
for (j = 0; j < i; j++) {
v = subdivide_edge_num(bm, e, &e_tmp, j, i, params, verts[a], verts[b], &e_new);
lines[i + 1][j + 1] = v;
BMO_edge_flag_enable(bm, e_new, ELE_INNER);
}
}
/**
* <pre>
* v5
* / \
* s v6/---\ v4 s
* / \ / \
* sv7/---v---\ v3 s
* / \/ \/ \
* v8--v0--v1--v2
* s s
* </pre>
*/
for (i = 1; i <= numcuts; i++) {
for (j = 0; j < i; j++) {
e = connect_smallest_face(bm, lines[i][j], lines[i + 1][j + 1], &f_new);
BMO_edge_flag_enable(bm, e, ELE_INNER);
BMO_face_flag_enable(bm, f_new, ELE_INNER);
e = connect_smallest_face(bm, lines[i][j + 1], lines[i + 1][j + 1], &f_new);
BMO_edge_flag_enable(bm, e, ELE_INNER);
BMO_face_flag_enable(bm, f_new, ELE_INNER);
}
}
cleanup:
for (i = 1; i < numcuts + 2; i++) {
if (lines[i]) {
MEM_freeN(lines[i]);
}
}
MEM_freeN(lines);
}
static const SubDPattern tri_3edge = {
{1, 1, 1},
tri_3edge_subdivide,
3,
};
static const SubDPattern quad_4edge = {
{1, 1, 1, 1},
quad_4edge_subdivide,
4,
};
static const SubDPattern *patterns[] = {
NULL, /* quad single edge pattern is inserted here */
NULL, /* quad corner vert pattern is inserted here */
NULL, /* tri single edge pattern is inserted here */
NULL,
&quad_3edge,
NULL,
};
#define PATTERNS_TOT ARRAY_SIZE(patterns)
typedef struct SubDFaceData {
BMVert *start;
const SubDPattern *pat;
int totedgesel; /* only used if pat was NULL, e.g. no pattern was found */
BMFace *face;
} SubDFaceData;
void bmo_subdivide_edges_exec(BMesh *bm, BMOperator *op)
{
BMOpSlot *einput;
const SubDPattern *pat;
SubDParams params;
BLI_Stack *facedata;
BMIter viter, fiter, liter;
BMVert *v, **verts = NULL;
BMEdge *edge;
BMEdge **edges = NULL;
BLI_array_declare(edges);
BMLoop *(*loops_split)[2] = NULL;
BLI_array_declare(loops_split);
BMLoop **loops = NULL;
BLI_array_declare(loops);
BMLoop *l_new, *l;
BMFace *face;
BLI_array_declare(verts);
float smooth, fractal, along_normal;
bool use_sphere, use_single_edge, use_grid_fill, use_only_quads;
int cornertype, seed, i, j, a, b, numcuts, totesel, smooth_falloff;
BMO_slot_buffer_flag_enable(bm, op->slots_in, "edges", BM_EDGE, SUBD_SPLIT);
numcuts = BMO_slot_int_get(op->slots_in, "cuts");
seed = BMO_slot_int_get(op->slots_in, "seed");
smooth = BMO_slot_float_get(op->slots_in, "smooth");
smooth_falloff = BMO_slot_int_get(op->slots_in, "smooth_falloff");
fractal = BMO_slot_float_get(op->slots_in, "fractal");
along_normal = BMO_slot_float_get(op->slots_in, "along_normal");
cornertype = BMO_slot_int_get(op->slots_in, "quad_corner_type");
use_single_edge = BMO_slot_bool_get(op->slots_in, "use_single_edge");
use_grid_fill = BMO_slot_bool_get(op->slots_in, "use_grid_fill");
use_only_quads = BMO_slot_bool_get(op->slots_in, "use_only_quads");
use_sphere = BMO_slot_bool_get(op->slots_in, "use_sphere");
patterns[1] = NULL;
/* straight cut is patterns[1] == NULL */
switch (cornertype) {
case SUBD_CORNER_PATH:
patterns[1] = &quad_2edge_path;
break;
case SUBD_CORNER_INNERVERT:
patterns[1] = &quad_2edge_innervert;
break;
case SUBD_CORNER_FAN:
patterns[1] = &quad_2edge_fan;
break;
}
if (use_single_edge) {
patterns[0] = &quad_1edge;
patterns[2] = &tri_1edge;
}
else {
patterns[0] = NULL;
patterns[2] = NULL;
}
if (use_grid_fill) {
patterns[3] = &quad_4edge;
patterns[5] = &tri_3edge;
}
else {
patterns[3] = NULL;
patterns[5] = NULL;
}
/* add a temporary shapekey layer to store displacements on current geometry */
BM_data_layer_add(bm, &bm->vdata, CD_SHAPEKEY);
bmo_subd_init_shape_info(bm, &params);
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
float *co = BM_ELEM_CD_GET_VOID_P(v, params.shape_info.cd_vert_shape_offset_tmp);
copy_v3_v3(co, v->co);
}
/* first go through and tag edges */
BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_in, "edges", BM_EDGE, SUBD_SPLIT);
params.numcuts = numcuts;
params.op = op;
params.slot_edge_percents = BMO_slot_get(op->slots_in, "edge_percents");
params.slot_custom_patterns = BMO_slot_get(op->slots_in, "custom_patterns");
params.smooth = smooth;
params.smooth_falloff = smooth_falloff;
params.seed = seed;
params.fractal = fractal;
params.along_normal = along_normal;
params.use_smooth = (smooth != 0.0f);
params.use_smooth_even = BMO_slot_bool_get(op->slots_in, "use_smooth_even");
params.use_fractal = (fractal != 0.0f);
params.use_sphere = use_sphere;
if (params.use_fractal) {
RNG *rng = BLI_rng_new_srandom(seed);
params.fractal_ofs[0] = BLI_rng_get_float(rng) * 200.0f;
params.fractal_ofs[1] = BLI_rng_get_float(rng) * 200.0f;
params.fractal_ofs[2] = BLI_rng_get_float(rng) * 200.0f;
BLI_rng_free(rng);
}
BMO_slot_map_to_flag(bm, op->slots_in, "custom_patterns", BM_FACE, FACE_CUSTOMFILL);
BMO_slot_map_to_flag(bm, op->slots_in, "edge_percents", BM_EDGE, EDGE_PERCENT);
facedata = BLI_stack_new(sizeof(SubDFaceData), __func__);
BM_ITER_MESH (face, &fiter, bm, BM_FACES_OF_MESH) {
BMEdge *e1 = NULL, *e2 = NULL;
float vec1[3], vec2[3];
bool matched = false;
/* skip non-quads if requested */
if (use_only_quads && face->len != 4) {
continue;
}
/* figure out which pattern to use */
BLI_array_clear(edges);
BLI_array_clear(verts);
BLI_array_grow_items(edges, face->len);
BLI_array_grow_items(verts, face->len);
totesel = 0;
BM_ITER_ELEM_INDEX (l_new, &liter, face, BM_LOOPS_OF_FACE, i) {
edges[i] = l_new->e;
verts[i] = l_new->v;
if (BMO_edge_flag_test(bm, edges[i], SUBD_SPLIT)) {
if (!e1) {
e1 = edges[i];
}
else {
e2 = edges[i];
}
totesel++;
}
}
/* make sure the two edges have a valid angle to each other */
if (totesel == 2 && BM_edge_share_vert_check(e1, e2)) {
sub_v3_v3v3(vec1, e1->v2->co, e1->v1->co);
sub_v3_v3v3(vec2, e2->v2->co, e2->v1->co);
normalize_v3(vec1);
normalize_v3(vec2);
if (fabsf(dot_v3v3(vec1, vec2)) > 1.0f - FLT_FACE_SPLIT_EPSILON) {
totesel = 0;
}
}
if (BMO_face_flag_test(bm, face, FACE_CUSTOMFILL)) {
pat = *BMO_slot_map_data_get(params.slot_custom_patterns, face);
for (i = 0; i < pat->len; i++) {
matched = 1;
for (j = 0; j < pat->len; j++) {
a = (j + i) % pat->len;
if ((!!BMO_edge_flag_test(bm, edges[a], SUBD_SPLIT)) != (!!pat->seledges[j])) {
matched = 0;
break;
}
}
if (matched) {
SubDFaceData *fd;
fd = BLI_stack_push_r(facedata);
fd->pat = pat;
fd->start = verts[i];
fd->face = face;
fd->totedgesel = totesel;
BMO_face_flag_enable(bm, face, SUBD_SPLIT);
break;
}
}
/* obvously don't test for other patterns matching */
continue;
}
for (i = 0; i < PATTERNS_TOT; i++) {
pat = patterns[i];
if (!pat) {
continue;
}
if (pat->len == face->len) {
for (a = 0; a < pat->len; a++) {
matched = 1;
for (b = 0; b < pat->len; b++) {
j = (b + a) % pat->len;
if ((!!BMO_edge_flag_test(bm, edges[j], SUBD_SPLIT)) != (!!pat->seledges[b])) {
matched = 0;
break;
}
}
if (matched) {
break;
}
}
if (matched) {
SubDFaceData *fd;
BMO_face_flag_enable(bm, face, SUBD_SPLIT);
fd = BLI_stack_push_r(facedata);
fd->pat = pat;
fd->start = verts[a];
fd->face = face;
fd->totedgesel = totesel;
break;
}
}
}
if (!matched && totesel) {
SubDFaceData *fd;
BMO_face_flag_enable(bm, face, SUBD_SPLIT);
/* must initialize all members here */
fd = BLI_stack_push_r(facedata);
fd->start = NULL;
fd->pat = NULL;
fd->totedgesel = totesel;
fd->face = face;
}
}
einput = BMO_slot_get(op->slots_in, "edges");
/* go through and split edges */
for (i = 0; i < einput->len; i++) {
edge = einput->data.buf[i];
bm_subdivide_multicut(bm, edge, &params, edge->v1, edge->v2);
}
/* copy original-geometry displacements to current coordinates */
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
const float *co = BM_ELEM_CD_GET_VOID_P(v, params.shape_info.cd_vert_shape_offset_tmp);
copy_v3_v3(v->co, co);
}
for (; !BLI_stack_is_empty(facedata); BLI_stack_discard(facedata)) {
SubDFaceData *fd = BLI_stack_peek(facedata);
face = fd->face;
/* figure out which pattern to use */
BLI_array_clear(verts);
pat = fd->pat;
if (!pat && fd->totedgesel == 2) {
int vlen;
/* ok, no pattern. we still may be able to do something */
BLI_array_clear(loops);
BLI_array_clear(loops_split);
/* for case of two edges, connecting them shouldn't be too hard */
BLI_array_grow_items(loops, face->len);
BM_ITER_ELEM_INDEX (l, &liter, face, BM_LOOPS_OF_FACE, a) {
loops[a] = l;
}
vlen = BLI_array_len(loops);
/* find the boundary of one of the split edges */
for (a = 1; a < vlen; a++) {
if (!BMO_vert_flag_test(bm, loops[a - 1]->v, ELE_INNER) &&
BMO_vert_flag_test(bm, loops[a]->v, ELE_INNER)) {
break;
}
}
if (BMO_vert_flag_test(bm, loops[(a + numcuts + 1) % vlen]->v, ELE_INNER)) {
b = (a + numcuts + 1) % vlen;
}
else {
/* find the boundary of the other edge. */
for (j = 0; j < vlen; j++) {
b = (j + a + numcuts + 1) % vlen;
if (!BMO_vert_flag_test(bm, loops[b == 0 ? vlen - 1 : b - 1]->v, ELE_INNER) &&
BMO_vert_flag_test(bm, loops[b]->v, ELE_INNER)) {
break;
}
}
}
b += numcuts - 1;
BLI_array_grow_items(loops_split, numcuts);
for (j = 0; j < numcuts; j++) {
bool ok = true;
/* Check for special case: [#32500]
* This edge pair could be used by more than one face,
* in this case it used to (2.63), split both faces along the same verts
* while it could be calculated which face should do the split,
* it's ambiguous, so in this case we're better off to skip them as exceptional cases
* and not try to be clever guessing which face to cut up.
*
* To avoid this case we need to check:
* Do the verts of each share a face besides the one we are subdividing,
* (but not connect to make an edge of that face).
*/
{
BMLoop *other_loop;
BMIter other_fiter;
BM_ITER_ELEM (other_loop, &other_fiter, loops[a]->v, BM_LOOPS_OF_VERT) {
if (other_loop->f != face) {
if (BM_vert_in_face(loops[b]->v, other_loop->f)) {
/* we assume that these verts are not making an edge in the face */
BLI_assert(other_loop->prev->v != loops[a]->v);
BLI_assert(other_loop->next->v != loops[a]->v);
ok = false;
break;
}
}
}
}
if (ok == true) {
loops_split[j][0] = loops[a];
loops_split[j][1] = loops[b];
}
else {
loops_split[j][0] = NULL;
loops_split[j][1] = NULL;
}
b = (b - 1) % vlen;
a = (a + 1) % vlen;
}
/* Since these are newly created vertices, we don't need to worry about them being legal,
* ... though there are some cases we _should_ check for
* - concave corner of an ngon.
* - 2 edges being used in 2+ ngons.
*/
// BM_face_splits_check_legal(bm, face, loops_split, BLI_array_len(loops_split));
for (j = 0; j < BLI_array_len(loops_split); j++) {
if (loops_split[j][0]) {
BMFace *f_new;
BLI_assert(BM_edge_exists(loops_split[j][0]->v, loops_split[j][1]->v) == NULL);
f_new = BM_face_split(
bm, face, loops_split[j][0], loops_split[j][1], &l_new, NULL, false);
if (f_new) {
BMO_edge_flag_enable(bm, l_new->e, ELE_INNER);
}
}
}
continue;
}
if (!pat) {
continue;
}
a = 0;
BM_ITER_ELEM_INDEX (l_new, &liter, face, BM_LOOPS_OF_FACE, j) {
if (l_new->v == fd->start) {
a = j + 1;
break;
}
}
BLI_array_grow_items(verts, face->len);
BM_ITER_ELEM_INDEX (l_new, &liter, face, BM_LOOPS_OF_FACE, j) {
b = (j - a + face->len) % face->len;
verts[b] = l_new->v;
}
BM_CHECK_ELEMENT(face);
pat->connectexec(bm, face, verts, &params);
}
/* copy original-geometry displacements to current coordinates */
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
const float *co = BM_ELEM_CD_GET_VOID_P(v, params.shape_info.cd_vert_shape_offset_tmp);
copy_v3_v3(v->co, co);
}
BM_data_layer_free_n(bm, &bm->vdata, CD_SHAPEKEY, params.shape_info.tmpkey);
BLI_stack_free(facedata);
if (edges) {
BLI_array_free(edges);
}
if (verts) {
BLI_array_free(verts);
}
BLI_array_free(loops_split);
BLI_array_free(loops);
BMO_slot_buffer_from_enabled_flag(
bm, op, op->slots_out, "geom_inner.out", BM_ALL_NOLOOP, ELE_INNER);
BMO_slot_buffer_from_enabled_flag(
bm, op, op->slots_out, "geom_split.out", BM_ALL_NOLOOP, ELE_SPLIT);
BMO_slot_buffer_from_enabled_flag(
bm, op, op->slots_out, "geom.out", BM_ALL_NOLOOP, ELE_INNER | ELE_SPLIT | SUBD_SPLIT);
}
/* editmesh-emulating function */
void BM_mesh_esubdivide(BMesh *bm,
const char edge_hflag,
const float smooth,
const short smooth_falloff,
const bool use_smooth_even,
const float fractal,
const float along_normal,
const int numcuts,
const int seltype,
const int cornertype,
const short use_single_edge,
const short use_grid_fill,
const short use_only_quads,
const int seed)
{
BMOperator op;
/* use_sphere isnt exposed here since its only used for new primitives */
BMO_op_initf(bm,
&op,
BMO_FLAG_DEFAULTS,
"subdivide_edges edges=%he "
"smooth=%f smooth_falloff=%i use_smooth_even=%b "
"fractal=%f along_normal=%f "
"cuts=%i "
"quad_corner_type=%i "
"use_single_edge=%b use_grid_fill=%b "
"use_only_quads=%b "
"seed=%i",
edge_hflag,
smooth,
smooth_falloff,
use_smooth_even,
fractal,
along_normal,
numcuts,
cornertype,
use_single_edge,
use_grid_fill,
use_only_quads,
seed);
BMO_op_exec(bm, &op);
switch (seltype) {
case SUBDIV_SELECT_NONE:
break;
case SUBDIV_SELECT_ORIG:
/* set the newly created data to be selected */
BMO_slot_buffer_hflag_enable(
bm, op.slots_out, "geom_inner.out", BM_ALL_NOLOOP, BM_ELEM_SELECT, true);
BM_mesh_select_flush(bm);
break;
case SUBDIV_SELECT_INNER:
BMO_slot_buffer_hflag_enable(
bm, op.slots_out, "geom_inner.out", BM_EDGE | BM_VERT, BM_ELEM_SELECT, true);
break;
case SUBDIV_SELECT_LOOPCUT:
/* deselect input */
BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false);
BMO_slot_buffer_hflag_enable(
bm, op.slots_out, "geom_inner.out", BM_EDGE, BM_ELEM_SELECT, true);
break;
}
BMO_op_finish(bm, &op);
}
void bmo_bisect_edges_exec(BMesh *bm, BMOperator *op)
{
BMOIter siter;
BMEdge *e;
SubDParams params = {0};
params.numcuts = BMO_slot_int_get(op->slots_in, "cuts");
params.op = op;
params.slot_edge_percents = BMO_slot_get(op->slots_in, "edge_percents");
BM_data_layer_add(bm, &bm->vdata, CD_SHAPEKEY);
bmo_subd_init_shape_info(bm, &params);
/* tag edges in map */
BMO_slot_map_to_flag(bm, op->slots_in, "edge_percents", BM_EDGE, EDGE_PERCENT);
/* go through and split edges */
BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) {
bm_subdivide_multicut(bm, e, &params, e->v1, e->v2);
}
BMO_slot_buffer_from_enabled_flag(
bm, op, op->slots_out, "geom_split.out", BM_ALL_NOLOOP, ELE_SPLIT);
BM_data_layer_free_n(bm, &bm->vdata, CD_SHAPEKEY, params.shape_info.tmpkey);
}