This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/constraint.c
Joshua Leung 269e943d58 == Copy Location Constraint ==
I've added two new options for this constraint:
* Copy Bone Tip Location
* Apply owner's location on top of copied location ('Offset')
2007-03-24 03:00:54 +00:00

2190 lines
52 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "MEM_guardedalloc.h"
#include "nla.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_object_types.h"
#include "DNA_action_types.h"
#include "DNA_curve_types.h"
#include "DNA_scene_types.h"
#include "BKE_utildefines.h"
#include "BKE_action.h"
#include "BKE_anim.h" // for the curve calculation part
#include "BKE_armature.h"
#include "BKE_blender.h"
#include "BKE_constraint.h"
#include "BKE_displist.h"
#include "BKE_object.h"
#include "BKE_ipo.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "blendef.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/* used by object.c */
void Mat4BlendMat4(float [][4], float [][4], float [][4], float );
/* Local function prototypes */
/* ********************* Data level ****************** */
void free_constraint_data (bConstraint *con)
{
if (con->data){
switch (con->type){
default:
break;
};
MEM_freeN (con->data);
}
}
void free_constraints (ListBase *conlist)
{
bConstraint *con;
/* Do any specific freeing */
for (con=conlist->first; con; con=con->next) {
free_constraint_data (con);
}
/* Free the whole list */
BLI_freelistN(conlist);
}
void free_constraint_channels (ListBase *chanbase)
{
bConstraintChannel *chan;
for (chan=chanbase->first; chan; chan=chan->next)
{
if (chan->ipo){
chan->ipo->id.us--;
}
}
BLI_freelistN(chanbase);
}
void relink_constraints (struct ListBase *list)
{
bConstraint *con;
for (con = list->first; con; con=con->next){
switch (con->type){
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
bRigidBodyJointConstraint *data;
data = con->data;
ID_NEW(data->tar);
}
break;
}
}
}
void copy_constraint_channels (ListBase *dst, ListBase *src)
{
bConstraintChannel *dchan, *schan;
dst->first=dst->last=NULL;
duplicatelist(dst, src);
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){
dchan->ipo = copy_ipo(schan->ipo);
}
}
void clone_constraint_channels (ListBase *dst, ListBase *src)
{
bConstraintChannel *dchan, *schan;
dst->first=dst->last=NULL;
duplicatelist(dst, src);
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){
id_us_plus((ID *)dchan->ipo);
}
}
void copy_constraints (ListBase *dst, ListBase *src)
{
bConstraint *con;
dst->first= dst->last= NULL;
duplicatelist (dst, src);
for (con = dst->first; con; con=con->next) {
con->data = MEM_dupallocN (con->data);
/* removed a whole lot of useless code here (ton) */
}
}
/* **************** Editor Functions **************** */
char constraint_has_target (bConstraint *con)
{
switch (con->type){
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data = con->data;
if (data->tar)
return 1;
}
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
bRigidBodyJointConstraint *data = con->data;
if (data->tar)
return 1;
}
break;
}
// Unknown types or CONSTRAINT_TYPE_NULL or no target
return 0;
}
Object *get_constraint_target(bConstraint *con, char **subtarget)
{
/*
* If the target for this constraint is target, return a pointer
* to the name for this constraints subtarget ... NULL otherwise
*/
switch (con->type) {
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data = con->data;
*subtarget= NULL;
return data->tar;
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data = con->data;
*subtarget= data->subtarget;
return (data->tar);
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
bRigidBodyJointConstraint *data = con->data;
*subtarget= NULL;
return data->tar;
}
break;
default:
*subtarget= NULL;
break;
}
return NULL;
}
void set_constraint_target(bConstraint *con, Object *ob, char *subtarget)
{
/*
* Set the target for this constraint
*/
switch (con->type) {
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data = con->data;
data->tar= ob;
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = con->data;
data->tar= ob;
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data = con->data;
data->tar= ob;
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data = con->data;
data->tar= ob;
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data = con->data;
data->tar= ob;
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data = con->data;
data->tar= ob;
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data = con->data;
data->tar= ob;
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data = con->data;
data->tar= ob;
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data = con->data;
data->tar= ob;
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
bRigidBodyJointConstraint *data = con->data;
data->tar= ob;
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data = (bMinMaxConstraint*)con->data;
data->tar= ob;
if(subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
}
}
void unique_constraint_name (bConstraint *con, ListBase *list)
{
char tempname[64];
int number;
char *dot;
int exists = 0;
bConstraint *curcon;
/* See if we are given an empty string */
if (con->name[0] == '\0') {
/* give it default name first */
strcpy (con->name, "Const");
}
/* See if we even need to do this */
for (curcon = list->first; curcon; curcon=curcon->next){
if (curcon!=con){
if (!strcmp(curcon->name, con->name)){
exists = 1;
break;
}
}
}
if (!exists)
return;
/* Strip off the suffix */
dot=strchr(con->name, '.');
if (dot)
*dot=0;
for (number = 1; number <=999; number++){
sprintf (tempname, "%s.%03d", con->name, number);
exists = 0;
for (curcon=list->first; curcon; curcon=curcon->next){
if (con!=curcon){
if (!strcmp (curcon->name, tempname)){
exists = 1;
break;
}
}
}
if (!exists){
strcpy (con->name, tempname);
return;
}
}
}
void *new_constraint_data (short type)
{
void *result;
switch (type){
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data;
data = MEM_callocN(sizeof(bKinematicConstraint), "kinematicConstraint");
data->weight= (float)1.0;
data->orientweight= (float)1.0;
data->iterations = 500;
data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
result = data;
}
break;
case CONSTRAINT_TYPE_NULL:
{
result = NULL;
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
data = MEM_callocN(sizeof(bTrackToConstraint), "tracktoConstraint");
data->reserved1 = TRACK_Y;
data->reserved2 = UP_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data;
data = MEM_callocN(sizeof(bMinMaxConstraint), "minmaxConstraint");
data->minmaxflag = TRACK_Z;
data->offset = 0.0f;
data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
data->flag = 0;
result = data;
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
data = MEM_callocN(sizeof(bRotateLikeConstraint), "rotlikeConstraint");
data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data;
data = MEM_callocN(sizeof(bLocateLikeConstraint), "loclikeConstraint");
data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data;
data = MEM_callocN(sizeof(bLocateLikeConstraint), "sizelikeConstraint");
data->flag |= SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data;
data = MEM_callocN(sizeof(bActionConstraint), "actionConstraint");
data->local= 1;
result = data;
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
data = MEM_callocN(sizeof(bLockTrackConstraint), "locktrackConstraint");
data->trackflag = TRACK_Y;
data->lockflag = LOCK_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
data = MEM_callocN(sizeof(bFollowPathConstraint), "followpathConstraint");
data->trackflag = TRACK_Y;
data->upflag = UP_Z;
data->offset = 0;
data->followflag = 0;
result = data;
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
data = MEM_callocN(sizeof(bStretchToConstraint), "StretchToConstraint");
data->volmode = 0;
data->plane = 0;
data->orglength = 0.0;
data->bulge = 1.0;
result = data;
}
break;
case CONSTRAINT_TYPE_LOCLIMIT:
{
bLocLimitConstraint *data;
data = MEM_callocN(sizeof(bLocLimitConstraint), "LocLimitConstraint");
result = data;
}
break;
case CONSTRAINT_TYPE_ROTLIMIT:
{
bRotLimitConstraint *data;
data = MEM_callocN(sizeof(bRotLimitConstraint), "RotLimitConstraint");
result = data;
}
break;
case CONSTRAINT_TYPE_SIZELIMIT:
{
bSizeLimitConstraint *data;
data = MEM_callocN(sizeof(bSizeLimitConstraint), "SizeLimitConstraint");
result = data;
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
bRigidBodyJointConstraint *data;
int i;
Base *base_iter;
data = MEM_callocN(sizeof(bRigidBodyJointConstraint), "RigidBodyToConstraint");
base_iter = G.scene->base.first;
while( base_iter && !data->tar ) {
if( ( ( base_iter->flag & SELECT ) &&
// ( base_iter->lay & G.vd->lay ) ) &&
( base_iter != G.scene->basact ) )
)
data->tar=base_iter->object;
base_iter = base_iter->next;
}
data->type=1;
data->pivX=0.0;
data->pivY=0.0;
data->pivZ=0.0;
data->axX=0.0;
data->axY=0.0;
data->axZ=0.0;
for (i=0;i<6;i++)
{
data->minLimit[i]=0.0;
data->maxLimit[i]=0.0;
}
data->extraFz=0.0;
result = data;
}
break;
default:
result = NULL;
break;
}
return result;
}
bConstraintChannel *get_constraint_channel (ListBase *list, const char *name)
{
bConstraintChannel *chan;
for (chan = list->first; chan; chan=chan->next) {
if (!strcmp(name, chan->name)) {
return chan;
}
}
return NULL;
}
/* finds or creates new constraint channel */
bConstraintChannel *verify_constraint_channel (ListBase *list, const char *name)
{
bConstraintChannel *chan;
chan= get_constraint_channel (list, name);
if(chan==NULL) {
chan= MEM_callocN(sizeof(bConstraintChannel), "new constraint chan");
BLI_addtail(list, chan);
strcpy(chan->name, name);
}
return chan;
}
/* ***************** Evaluating ********************* */
/* does ipos only */
void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime)
{
bConstraint *con;
bConstraintChannel *chan;
IpoCurve *icu=NULL;
for (con=conbase->first; con; con=con->next) {
chan = get_constraint_channel(chanbase, con->name);
if (chan && chan->ipo){
calc_ipo(chan->ipo, ctime);
for (icu=chan->ipo->curve.first; icu; icu=icu->next){
switch (icu->adrcode){
case CO_ENFORCE:
con->enforce = icu->curval;
if (con->enforce<0.0f) con->enforce= 0.0f;
else if (con->enforce>1.0f) con->enforce= 1.0f;
break;
}
}
}
}
}
void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight)
{
float squat[4], dquat[4], fquat[4];
float ssize[3], dsize[3], fsize[4];
float sloc[3], dloc[3], floc[3];
float mat3[3][3], dstweight;
float qmat[3][3], smat[3][3];
int i;
dstweight = 1.0F-srcweight;
Mat3CpyMat4(mat3, dst);
Mat3ToQuat(mat3, dquat);
Mat3ToSize(mat3, dsize);
VECCOPY (dloc, dst[3]);
Mat3CpyMat4(mat3, src);
Mat3ToQuat(mat3, squat);
Mat3ToSize(mat3, ssize);
VECCOPY (sloc, src[3]);
/* Do the actual blend */
for (i=0; i<3; i++){
floc[i] = (dloc[i]*dstweight) + (sloc[i]*srcweight);
fsize[i] = 1.0f + ((dsize[i]-1.0f)*dstweight) + ((ssize[i]-1.0f)*srcweight);
fquat[i+1] = (dquat[i+1]*dstweight) + (squat[i+1]*srcweight);
}
/* Do one more iteration for the quaternions only and normalize the quaternion if needed */
fquat[0] = 1.0f + ((dquat[0]-1.0f)*dstweight) + ((squat[0]-1.0f)*srcweight);
NormalQuat (fquat);
QuatToMat3(fquat, qmat);
SizeToMat3(fsize, smat);
Mat3MulMat3(mat3, qmat, smat);
Mat4CpyMat3(out, mat3);
VECCOPY (out[3], floc);
}
static void constraint_target_to_mat4 (Object *ob, const char *substring, float mat[][4], float size[3])
{
/* Case OBJECT */
if (!strlen(substring)) {
Mat4CpyMat4 (mat, ob->obmat);
VECCOPY (size, ob->size); // whats this for, hack! (ton)
}
/* Case BONE */
else {
bPoseChannel *pchan;
float bsize[3]={1, 1, 1};
pchan = get_pose_channel(ob->pose, substring);
if (pchan){
/**
* Multiply the objectspace bonematrix by the skeletons's global
* transform to obtain the worldspace transformation of the target
*/
Mat4MulMat4 (mat, pchan->pose_mat, ob->obmat);
}
else
Mat4CpyMat4 (mat, ob->obmat);
VECCOPY(size, bsize); // whats this for, hack! (ton)
}
}
/* stupid little cross product function, 0:x, 1:y, 2:z axes */
static int basis_cross(int n, int m)
{
if(n-m == 1) return 1;
if(n-m == -1) return -1;
if(n-m == 2) return -1;
if(n-m == -2) return 1;
else return 0;
}
static void vectomat(float *vec, float *target_up, short axis, short upflag, short flags, float m[][3])
{
float n[3];
float u[3]; /* vector specifying the up axis */
float proj[3];
float right[3];
float neg = -1;
int right_index;
VecCopyf(n, vec);
if(Normalise(n) == 0.0) {
n[0] = 0.0;
n[1] = 0.0;
n[2] = 1.0;
}
if(axis > 2) axis -= 3;
else VecMulf(n,-1);
/* n specifies the transformation of the track axis */
if(flags & TARGET_Z_UP) {
/* target Z axis is the global up axis */
u[0] = target_up[0];
u[1] = target_up[1];
u[2] = target_up[2];
}
else {
/* world Z axis is the global up axis */
u[0] = 0;
u[1] = 0;
u[2] = 1;
}
/* project the up vector onto the plane specified by n */
Projf(proj, u, n); /* first u onto n... */
VecSubf(proj, u, proj); /* then onto the plane */
/* proj specifies the transformation of the up axis */
if(Normalise(proj) == 0.0) { /* degenerate projection */
proj[0] = 0.0;
proj[1] = 1.0;
proj[2] = 0.0;
}
/* normalised cross product of n and proj specifies transformation of the right axis */
Crossf(right, proj, n);
Normalise(right);
if(axis != upflag) {
right_index = 3 - axis - upflag;
neg = (float) basis_cross(axis, upflag);
/* account for up direction, track direction */
m[right_index][0] = neg * right[0];
m[right_index][1] = neg * right[1];
m[right_index][2] = neg * right[2];
m[upflag][0] = proj[0];
m[upflag][1] = proj[1];
m[upflag][2] = proj[2];
m[axis][0] = n[0];
m[axis][1] = n[1];
m[axis][2] = n[2];
}
else {
m[0][0]= m[1][1]= m[2][2]= 1.0;
m[0][1]= m[0][2]= m[0][3]= 0.0;
m[1][0]= m[1][2]= m[1][3]= 0.0;
m[2][0]= m[2][1]= m[2][3]= 0.0;
}
}
/* called during solve_constraints */
/* also for make_parent, to find correct inverse of "follow path" */
/* warning, ownerdata is void... is not Bone anymore, but PoseChannel or Object */
/* ctime is global time, uncorrected for local bsystem_time */
short get_constraint_target_matrix (bConstraint *con, short ownertype, void* ownerdata, float mat[][4], float size[3], float ctime)
{
short valid=0;
switch (con->type){
case CONSTRAINT_TYPE_NULL:
{
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_ACTION:
{
if (ownertype == TARGET_BONE) {
extern void chan_calc_mat(bPoseChannel *chan);
bActionConstraint *data = (bActionConstraint*)con->data;
bPose *pose;
bPoseChannel *pchan, *tchan;
float tempmat3[3][3];
float eul[3];
float s,t;
Mat4One(mat); // return mat
if (data->tar==NULL) return 0;
/* need proper check for bone... */
if(data->subtarget[0]) {
pchan = get_pose_channel(data->tar->pose, data->subtarget);
if (pchan) {
float arm_mat[3][3], pose_mat[3][3]; /* arm mat should be bone mat! bug... */
Mat3CpyMat4(arm_mat, pchan->bone->arm_mat);
Mat3CpyMat4(pose_mat, pchan->pose_mat);
/* new; true local rotation constraint */
if(data->local) {
float diff_mat[3][3], par_mat[3][3], ipar_mat[3][3];
/* we need the local rotation = current rotation - (parent rotation + restpos) */
if (pchan->parent) {
Mat3CpyMat4(par_mat, pchan->parent->pose_mat);
Mat3MulMat3(diff_mat, par_mat, arm_mat);
Mat3Inv(ipar_mat, diff_mat);
}
else {
Mat3Inv(ipar_mat, arm_mat);
}
Mat3MulMat3(tempmat3, ipar_mat, pose_mat);
}
else { /* we use the deform mat, for backwards compatibility */
float imat[3][3];
Mat3Inv(imat, arm_mat);
Mat3MulMat3(tempmat3, pose_mat, imat);
}
}
else Mat3One(tempmat3);
}
else {
float ans[4][4];
constraint_target_to_mat4(data->tar, data->subtarget, ans, size);
/* extract rotation, is in global world coordinates */
Mat3CpyMat4(tempmat3, ans);
}
Mat3ToEul(tempmat3, eul);
eul[0]*=(float)(180.0/M_PI);
eul[1]*=(float)(180.0/M_PI);
eul[2]*=(float)(180.0/M_PI);
/* Target defines the animation */
s = (eul[data->type]-data->min)/(data->max-data->min);
if (s<0)
s=0;
if (s>1)
s=1;
t = ( s * (data->end-data->start)) + data->start;
/* Get the appropriate information from the action, we make temp pose */
pose = MEM_callocN(sizeof(bPose), "pose");
pchan = ownerdata;
tchan= verify_pose_channel(pose, pchan->name);
extract_pose_from_action (pose, data->act, t);
chan_calc_mat(tchan);
Mat4CpyMat4(mat, tchan->chan_mat);
/* Clean up */
free_pose_channels(pose);
MEM_freeN(pose);
}
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = (bLocateLikeConstraint*)con->data;
Object *ob= data->tar;
if (data->tar) {
if (strlen(data->subtarget)) {
bPoseChannel *pchan;
float tmat[4][4];
float bsize[3]={1, 1, 1};
pchan = get_pose_channel(ob->pose, data->subtarget);
if (pchan) {
Mat4CpyMat4(tmat, pchan->pose_mat);
if (data->flag & LOCLIKE_TIP)
VECCOPY(tmat[3], pchan->pose_tail);
Mat4MulMat4 (mat, tmat, ob->obmat);
}
else
Mat4CpyMat4 (mat, ob->obmat);
VECCOPY(size, bsize); // what's this hack for?
}
else {
Mat4CpyMat4 (mat, ob->obmat);
VECCOPY(size, data->tar->size); // what's this hack for?
}
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data = (bMinMaxConstraint*)con->data;
if (data->tar){
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
data = (bRotateLikeConstraint*)con->data;
if (data->tar){
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data;
data = (bSizeLikeConstraint*)con->data;
if (data->tar){
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
data = (bTrackToConstraint*)con->data;
if (data->tar){
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data;
data = (bKinematicConstraint*)con->data;
if (data->tar){
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
valid=1;
}
else if (data->flag & CONSTRAINT_IK_AUTO) {
Object *ob= ownerdata;
if(ob==NULL)
Mat4One(mat);
else {
float vec[3];
/* move grabtarget into world space */
VECCOPY(vec, data->grabtarget);
Mat4MulVecfl(ob->obmat, vec);
Mat4CpyMat4(mat, ob->obmat);
VECCOPY(mat[3], vec);
}
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
data = (bLockTrackConstraint*)con->data;
if (data->tar){
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
data = (bFollowPathConstraint*)con->data;
if (data->tar){
Curve *cu;
float q[4], vec[4], dir[3], *quat, x1, totmat[4][4];
float curvetime;
Mat4One (totmat);
Mat4One (mat);
cu= data->tar->data;
/* note; when creating constraints that follow path, the curve gets the CU_PATH set now,
currently for paths to work it needs to go through the bevlist/displist system (ton) */
if(cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
makeDispListCurveTypes(data->tar, 0);
if(cu->path && cu->path->data) {
curvetime= bsystem_time(data->tar, data->tar->parent, (float)ctime, 0.0) - data->offset;
if(calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) {
curvetime /= cu->pathlen;
CLAMP(curvetime, 0.0, 1.0);
}
if(where_on_path(data->tar, curvetime, vec, dir) ) {
if(data->followflag){
quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag);
Normalise(dir);
q[0]= (float)cos(0.5*vec[3]);
x1= (float)sin(0.5*vec[3]);
q[1]= -x1*dir[0];
q[2]= -x1*dir[1];
q[3]= -x1*dir[2];
QuatMul(quat, q, quat);
QuatToMat4(quat, totmat);
}
VECCOPY(totmat[3], vec);
Mat4MulSerie(mat, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
}
}
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
data = (bStretchToConstraint*)con->data;
if (data->tar){
constraint_target_to_mat4(data->tar, data->subtarget, mat, size);
valid = 1;
}
else
Mat4One (mat);
}
break;
default:
Mat4One(mat);
break;
}
return valid;
}
/* only called during solve_constraints */
/* bone constraints create a fake object to work on, then ob is a workob */
/* if ownerdata is set, it's the posechannel */
void evaluate_constraint (bConstraint *constraint, Object *ob, short ownertype, void *ownerdata, float targetmat[][4])
{
float M_oldmat[4][4];
float M_identity[4][4];
if (!constraint || !ob)
return;
Mat4One (M_identity);
switch (constraint->type){
case CONSTRAINT_TYPE_NULL:
case CONSTRAINT_TYPE_KINEMATIC: /* removed */
break;
case CONSTRAINT_TYPE_ACTION:
{
float temp[4][4];
bActionConstraint *data;
data = constraint->data;
Mat4CpyMat4 (temp, ob->obmat);
Mat4MulMat4(ob->obmat, targetmat, temp);
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data;
float offset[3] = {0.0f, 0.0f, 0.0f};
data = constraint->data;
if (data->flag & LOCLIKE_OFFSET) {
// for now...
VECCOPY(offset, ob->obmat[3]);
}
if (data->flag & LOCLIKE_X) {
ob->obmat[3][0] = targetmat[3][0];
if(data->flag & LOCLIKE_X_INVERT) ob->obmat[3][0] *= -1;
ob->obmat[3][0] += offset[0];
}
if (data->flag & LOCLIKE_Y) {
ob->obmat[3][1] = targetmat[3][1];
if(data->flag & LOCLIKE_Y_INVERT) ob->obmat[3][1] *= -1;
ob->obmat[3][1] += offset[1];
}
if (data->flag & LOCLIKE_Z) {
ob->obmat[3][2] = targetmat[3][2];
if(data->flag & LOCLIKE_Z_INVERT) ob->obmat[3][2] *= -1;
ob->obmat[3][2] += offset[2];
}
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
float loc[3];
float eul[3], obeul[3];
float size[3];
data = constraint->data;
VECCOPY(loc, ob->obmat[3]);
Mat4ToSize(ob->obmat, size);
Mat4ToEul(targetmat, eul);
Mat4ToEul(ob->obmat, obeul);
if(data->flag != (ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z)) {
if(!(data->flag & ROTLIKE_X)) {
eul[0]= obeul[0];
}
if(!(data->flag & ROTLIKE_Y)) {
eul[1]= obeul[1];
}
if(!(data->flag & ROTLIKE_Z)) {
eul[2]= obeul[2];
}
compatible_eul(eul, obeul);
}
if((data->flag & ROTLIKE_X) && (data->flag & ROTLIKE_X_INVERT))
eul[0]*=-1;
if((data->flag & ROTLIKE_Y) && (data->flag & ROTLIKE_Y_INVERT))
eul[1]*=-1;
if((data->flag & ROTLIKE_Z) && (data->flag & ROTLIKE_Z_INVERT))
eul[2]*=-1;
LocEulSizeToMat4(ob->obmat, loc, eul, size);
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
float obsize[3], size[3];
bSizeLikeConstraint *data;
data = constraint->data;
Mat4ToSize(targetmat, size);
Mat4ToSize(ob->obmat, obsize);
if (data->flag & SIZELIKE_X && obsize[0] != 0)
VecMulf(ob->obmat[0], size[0] / obsize[0]);
if (data->flag & SIZELIKE_Y && obsize[1] != 0)
VecMulf(ob->obmat[1], size[1] / obsize[1]);
if (data->flag & SIZELIKE_Z && obsize[2] != 0)
VecMulf(ob->obmat[2], size[2] / obsize[2]);
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
float val1, val2;
int index;
bMinMaxConstraint *data;
float obmat[4][4],imat[4][4],tarmat[4][4],tmat[4][4];
data = constraint->data;
Mat4CpyMat4(obmat,ob->obmat);
Mat4CpyMat4(tarmat,targetmat);
if (data->flag&MINMAX_USEROT) {
/* take rotation of target into account by doing the transaction in target's localspace */
Mat4Invert(imat,tarmat);
Mat4MulMat4(tmat,obmat,imat);
Mat4CpyMat4(obmat,tmat);
Mat4One(tarmat);
}
switch (data->minmaxflag){
case TRACK_Z:
val1 = tarmat[3][2];
val2 = obmat[3][2]-data->offset;
index = 2;
break;
case TRACK_Y:
val1 = tarmat[3][1];
val2 = obmat[3][1]-data->offset;
index = 1;
break;
case TRACK_X:
val1 = tarmat[3][0];
val2 = obmat[3][0]-data->offset;
index = 0;
break;
case TRACK_nZ:
val2 = tarmat[3][2];
val1 = obmat[3][2]-data->offset;
index = 2;
break;
case TRACK_nY:
val2 = tarmat[3][1];
val1 = obmat[3][1]-data->offset;
index = 1;
break;
case TRACK_nX:
val2 = tarmat[3][0];
val1 = obmat[3][0]-data->offset;
index = 0;
break;
default:
return;
}
if (val1 > val2) {
obmat[3][index] = tarmat[3][index] + data->offset;
if (data->flag&MINMAX_STICKY) {
if (data->flag&MINMAX_STUCK) {
VECCOPY(obmat[3], data->cache);
} else {
VECCOPY(data->cache, obmat[3]);
data->flag|=MINMAX_STUCK;
}
}
if (data->flag&MINMAX_USEROT) {
/* get out of localspace */
Mat4MulMat4(tmat,obmat,targetmat);
Mat4CpyMat4(ob->obmat,tmat);
} else {
VECCOPY(ob->obmat[3],obmat[3]);
}
} else {
data->flag&=~MINMAX_STUCK;
}
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
float size[3];
float vec[3];
float totmat[3][3];
float tmat[4][4];
data=(bTrackToConstraint*)constraint->data;
if (data->tar){
/* Get size property, since ob->size is only the object's own relative size, not its global one */
Mat4ToSize (ob->obmat, size);
Mat4CpyMat4 (M_oldmat, ob->obmat);
// Clear the object's rotation
ob->obmat[0][0]=size[0];
ob->obmat[0][1]=0;
ob->obmat[0][2]=0;
ob->obmat[1][0]=0;
ob->obmat[1][1]=size[1];
ob->obmat[1][2]=0;
ob->obmat[2][0]=0;
ob->obmat[2][1]=0;
ob->obmat[2][2]=size[2];
VecSubf(vec, ob->obmat[3], targetmat[3]);
vectomat(vec, targetmat[2],
(short)data->reserved1, (short)data->reserved2,
data->flags, totmat);
Mat4CpyMat4(tmat, ob->obmat);
Mat4MulMat34(ob->obmat, totmat, tmat);
}
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
float vec[3],vec2[3];
float totmat[3][3];
float tmpmat[3][3];
float invmat[3][3];
float tmat[4][4];
float mdet;
data=(bLockTrackConstraint*)constraint->data;
if (data->tar){
Mat4CpyMat4 (M_oldmat, ob->obmat);
/* Vector object -> target */
VecSubf(vec, targetmat[3], ob->obmat[3]);
switch (data->lockflag){
case LOCK_X: /* LOCK X */
{
switch (data->trackflag){
case TRACK_Y: /* LOCK X TRACK Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[0]);
VecSubf(totmat[1], vec, vec2);
Normalise(totmat[1]);
/* the x axis is fixed*/
totmat[0][0] = ob->obmat[0][0];
totmat[0][1] = ob->obmat[0][1];
totmat[0][2] = ob->obmat[0][2];
Normalise(totmat[0]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_Z: /* LOCK X TRACK Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[0]);
VecSubf(totmat[2], vec, vec2);
Normalise(totmat[2]);
/* the x axis is fixed*/
totmat[0][0] = ob->obmat[0][0];
totmat[0][1] = ob->obmat[0][1];
totmat[0][2] = ob->obmat[0][2];
Normalise(totmat[0]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_nY: /* LOCK X TRACK -Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[0]);
VecSubf(totmat[1], vec, vec2);
Normalise(totmat[1]);
VecMulf(totmat[1],-1);
/* the x axis is fixed*/
totmat[0][0] = ob->obmat[0][0];
totmat[0][1] = ob->obmat[0][1];
totmat[0][2] = ob->obmat[0][2];
Normalise(totmat[0]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_nZ: /* LOCK X TRACK -Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[0]);
VecSubf(totmat[2], vec, vec2);
Normalise(totmat[2]);
VecMulf(totmat[2],-1);
/* the x axis is fixed*/
totmat[0][0] = ob->obmat[0][0];
totmat[0][1] = ob->obmat[0][1];
totmat[0][2] = ob->obmat[0][2];
Normalise(totmat[0]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
case LOCK_Y: /* LOCK Y */
{
switch (data->trackflag){
case TRACK_X: /* LOCK Y TRACK X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[1]);
VecSubf(totmat[0], vec, vec2);
Normalise(totmat[0]);
/* the y axis is fixed*/
totmat[1][0] = ob->obmat[1][0];
totmat[1][1] = ob->obmat[1][1];
totmat[1][2] = ob->obmat[1][2];
Normalise(totmat[1]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_Z: /* LOCK Y TRACK Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[1]);
VecSubf(totmat[2], vec, vec2);
Normalise(totmat[2]);
/* the y axis is fixed*/
totmat[1][0] = ob->obmat[1][0];
totmat[1][1] = ob->obmat[1][1];
totmat[1][2] = ob->obmat[1][2];
Normalise(totmat[1]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
case TRACK_nX: /* LOCK Y TRACK -X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[1]);
VecSubf(totmat[0], vec, vec2);
Normalise(totmat[0]);
VecMulf(totmat[0],-1);
/* the y axis is fixed*/
totmat[1][0] = ob->obmat[1][0];
totmat[1][1] = ob->obmat[1][1];
totmat[1][2] = ob->obmat[1][2];
Normalise(totmat[1]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_nZ: /* LOCK Y TRACK -Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[1]);
VecSubf(totmat[2], vec, vec2);
Normalise(totmat[2]);
VecMulf(totmat[2],-1);
/* the y axis is fixed*/
totmat[1][0] = ob->obmat[1][0];
totmat[1][1] = ob->obmat[1][1];
totmat[1][2] = ob->obmat[1][2];
Normalise(totmat[1]);
/* the z axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
case LOCK_Z: /* LOCK Z */
{
switch (data->trackflag){
case TRACK_X: /* LOCK Z TRACK X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[2]);
VecSubf(totmat[0], vec, vec2);
Normalise(totmat[0]);
/* the z axis is fixed*/
totmat[2][0] = ob->obmat[2][0];
totmat[2][1] = ob->obmat[2][1];
totmat[2][2] = ob->obmat[2][2];
Normalise(totmat[2]);
/* the x axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_Y: /* LOCK Z TRACK Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[2]);
VecSubf(totmat[1], vec, vec2);
Normalise(totmat[1]);
/* the z axis is fixed*/
totmat[2][0] = ob->obmat[2][0];
totmat[2][1] = ob->obmat[2][1];
totmat[2][2] = ob->obmat[2][2];
Normalise(totmat[2]);
/* the x axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
case TRACK_nX: /* LOCK Z TRACK -X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[2]);
VecSubf(totmat[0], vec, vec2);
Normalise(totmat[0]);
VecMulf(totmat[0],-1);
/* the z axis is fixed*/
totmat[2][0] = ob->obmat[2][0];
totmat[2][1] = ob->obmat[2][1];
totmat[2][2] = ob->obmat[2][2];
Normalise(totmat[2]);
/* the x axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_nY: /* LOCK Z TRACK -Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ob->obmat[2]);
VecSubf(totmat[1], vec, vec2);
Normalise(totmat[1]);
VecMulf(totmat[1],-1);
/* the z axis is fixed*/
totmat[2][0] = ob->obmat[2][0];
totmat[2][1] = ob->obmat[2][1];
totmat[2][2] = ob->obmat[2][2];
Normalise(totmat[2]);
/* the x axis gets mapped onto
a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
/* Block to keep matrix heading */
tmpmat[0][0] = ob->obmat[0][0];tmpmat[0][1] = ob->obmat[0][1];tmpmat[0][2] = ob->obmat[0][2];
tmpmat[1][0] = ob->obmat[1][0];tmpmat[1][1] = ob->obmat[1][1];tmpmat[1][2] = ob->obmat[1][2];
tmpmat[2][0] = ob->obmat[2][0];tmpmat[2][1] = ob->obmat[2][1];tmpmat[2][2] = ob->obmat[2][2];
Normalise(tmpmat[0]);
Normalise(tmpmat[1]);
Normalise(tmpmat[2]);
Mat3Inv(invmat,tmpmat);
Mat3MulMat3(tmpmat,totmat,invmat);
totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
Mat4CpyMat4(tmat, ob->obmat);
mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2],
totmat[1][0],totmat[1][1],totmat[1][2],
totmat[2][0],totmat[2][1],totmat[2][2]);
if (mdet==0)
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
/* apply out transformaton to the object */
Mat4MulMat34(ob->obmat, totmat, tmat);
}
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
float obmat[4][4];
float size[3], obsize[3];
data=(bFollowPathConstraint*)constraint->data;
if (data->tar) {
/* get Object local transform (loc/rot/size) to determine transformation from path */
object_to_mat4(ob, obmat);
/* get scaling of object before applying constraint */
Mat4ToSize(ob->obmat, size);
/* apply targetmat - containing location on path, and rotation */
Mat4MulSerie(ob->obmat, targetmat, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
/* un-apply scaling caused by path */
Mat4ToSize(ob->obmat, obsize);
if (obsize[0] != 0)
VecMulf(ob->obmat[0], size[0] / obsize[0]);
if (obsize[1] != 0)
VecMulf(ob->obmat[1], size[1] / obsize[1]);
if (obsize[2] != 0)
VecMulf(ob->obmat[2], size[2] / obsize[2]);
}
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
float size[3],scale[3],vec[3],xx[3],zz[3],orth[3];
float totmat[3][3];
float tmat[4][4];
float dist;
data=(bStretchToConstraint*)constraint->data;
Mat4ToSize (ob->obmat, size);
if (data->tar){
/* store X orientation before destroying obmat */
xx[0] = ob->obmat[0][0];
xx[1] = ob->obmat[0][1];
xx[2] = ob->obmat[0][2];
Normalise(xx);
/* store Z orientation before destroying obmat */
zz[0] = ob->obmat[2][0];
zz[1] = ob->obmat[2][1];
zz[2] = ob->obmat[2][2];
Normalise(zz);
VecSubf(vec, ob->obmat[3], targetmat[3]);
vec[0] /= size[0];
vec[1] /= size[1];
vec[2] /= size[2];
dist = Normalise(vec);
//dist = VecLenf( ob->obmat[3], targetmat[3]);
if (data->orglength == 0) data->orglength = dist;
if (data->bulge ==0) data->bulge = 1.0;
scale[1] = dist/data->orglength;
switch (data->volmode){
/* volume preserving scaling */
case VOLUME_XZ :
scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
scale[2] = scale[0];
break;
case VOLUME_X:
scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
scale[2] = 1.0;
break;
case VOLUME_Z:
scale[0] = 1.0;
scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
break;
/* don't care for volume */
case NO_VOLUME:
scale[0] = 1.0;
scale[2] = 1.0;
break;
default: /* should not happen, but in case*/
return;
} /* switch (data->volmode) */
/* Clear the object's rotation and scale */
ob->obmat[0][0]=size[0]*scale[0];
ob->obmat[0][1]=0;
ob->obmat[0][2]=0;
ob->obmat[1][0]=0;
ob->obmat[1][1]=size[1]*scale[1];
ob->obmat[1][2]=0;
ob->obmat[2][0]=0;
ob->obmat[2][1]=0;
ob->obmat[2][2]=size[2]*scale[2];
VecSubf(vec, ob->obmat[3], targetmat[3]);
Normalise(vec);
/* new Y aligns object target connection*/
totmat[1][0] = -vec[0];
totmat[1][1] = -vec[1];
totmat[1][2] = -vec[2];
switch (data->plane){
case PLANE_X:
/* build new Z vector */
/* othogonal to "new Y" "old X! plane */
Crossf(orth, vec, xx);
Normalise(orth);
/* new Z*/
totmat[2][0] = orth[0];
totmat[2][1] = orth[1];
totmat[2][2] = orth[2];
/* we decided to keep X plane*/
Crossf(xx,orth, vec);
Normalise(xx);
totmat[0][0] = xx[0];
totmat[0][1] = xx[1];
totmat[0][2] = xx[2];
break;
case PLANE_Z:
/* build new X vector */
/* othogonal to "new Y" "old Z! plane */
Crossf(orth, vec, zz);
Normalise(orth);
/* new X*/
totmat[0][0] = -orth[0];
totmat[0][1] = -orth[1];
totmat[0][2] = -orth[2];
/* we decided to keep Z */
Crossf(zz,orth, vec);
Normalise(zz);
totmat[2][0] = zz[0];
totmat[2][1] = zz[1];
totmat[2][2] = zz[2];
break;
} /* switch (data->plane) */
Mat4CpyMat4(tmat, ob->obmat);
Mat4MulMat34(ob->obmat, totmat, tmat);
}
}
break;
case CONSTRAINT_TYPE_LOCLIMIT:
{
bLocLimitConstraint *data;
data = constraint->data;
/* limit location relative to origin or parent */
if (data->flag2 & LIMIT_NOPARENT) {
/* limiting relative to parent */
float parmat[4][4]; /* matrix of parent */
float objLoc[3], parLoc[3]; /* location of object, and location of parent */
float relLoc[3]; /* objLoc - parLoc*/
/* get matrix of parent */
Mat4CpyMat4(parmat, ob->parent->obmat);
/* get locations as vectors */
objLoc[0] = ob->obmat[3][0];
objLoc[1] = ob->obmat[3][1];
objLoc[2] = ob->obmat[3][2];
parLoc[0] = parmat[3][0];
parLoc[1] = parmat[3][1];
parLoc[2] = parmat[3][2];
/* get relative location of obj from parent */
VecSubf(relLoc, objLoc, parLoc);
/* limiting location */
if (data->flag & LIMIT_XMIN) {
if(relLoc[0] < data->xmin)
ob->obmat[3][0] = (parLoc[0]+data->xmin);
}
if (data->flag & LIMIT_XMAX) {
if (relLoc[0] > data->xmax)
ob->obmat[3][0] = (parLoc[0]+data->xmax);
}
if (data->flag & LIMIT_YMIN) {
if(relLoc[1] < data->ymin)
ob->obmat[3][1] = (parLoc[1]+data->ymin);
}
if (data->flag & LIMIT_YMAX) {
if (relLoc[1] > data->ymax)
ob->obmat[3][1] = (parLoc[1]+data->ymax);
}
if (data->flag & LIMIT_ZMIN) {
if(relLoc[2] < data->zmin)
ob->obmat[3][2] = (parLoc[2]+data->zmin);
}
if (data->flag & LIMIT_ZMAX) {
if (relLoc[2] > data->zmax)
ob->obmat[3][2] = (parLoc[2]+data->zmax);
}
} else {
/* limiting relative to origin */
if (data->flag & LIMIT_XMIN) {
if(ob->obmat[3][0] < data->xmin)
ob->obmat[3][0] = data->xmin;
}
if (data->flag & LIMIT_XMAX) {
if (ob->obmat[3][0] > data->xmax)
ob->obmat[3][0] = data->xmax;
}
if (data->flag & LIMIT_YMIN) {
if(ob->obmat[3][1] < data->ymin)
ob->obmat[3][1] = data->ymin;
}
if (data->flag & LIMIT_YMAX) {
if (ob->obmat[3][1] > data->ymax)
ob->obmat[3][1] = data->ymax;
}
if (data->flag & LIMIT_ZMIN) {
if(ob->obmat[3][2] < data->zmin)
ob->obmat[3][2] = data->zmin;
}
if (data->flag & LIMIT_ZMAX) {
if (ob->obmat[3][2] > data->zmax)
ob->obmat[3][2] = data->zmax;
}
}
}
break;
case CONSTRAINT_TYPE_ROTLIMIT:
{
bRotLimitConstraint *data;
float loc[3];
float eul[3];
float size[3];
data = constraint->data;
VECCOPY(loc, ob->obmat[3]);
Mat4ToSize(ob->obmat, size);
Mat4ToEul(ob->obmat, eul);
/* eulers: radians to degrees! */
eul[0] = (eul[0] / M_PI * 180);
eul[1] = (eul[1] / M_PI * 180);
eul[2] = (eul[2] / M_PI * 180);
/* limiting of euler values... */
if (data->flag & LIMIT_XROT) {
if (eul[0] < data->xmin)
eul[0] = data->xmin;
if (eul[0] > data->xmax)
eul[0] = data->xmax;
}
if (data->flag & LIMIT_YROT) {
if (eul[1] < data->ymin)
eul[1] = data->ymin;
if (eul[1] > data->ymax)
eul[1] = data->ymax;
}
if (data->flag & LIMIT_ZROT) {
if (eul[2] < data->zmin)
eul[2] = data->zmin;
if (eul[2] > data->zmax)
eul[2] = data->zmax;
}
/* eulers: degrees to radians ! */
eul[0] = (eul[0] / 180 * M_PI);
eul[1] = (eul[1] / 180 * M_PI);
eul[2] = (eul[2] / 180 * M_PI);
LocEulSizeToMat4(ob->obmat, loc, eul, size);
}
break;
case CONSTRAINT_TYPE_SIZELIMIT:
{
bSizeLimitConstraint *data;
float obsize[3], size[3];
int clearNegScale=0;
data = constraint->data;
Mat4ToSize(ob->obmat, size);
Mat4ToSize(ob->obmat, obsize);
if (data->flag & LIMIT_XMIN) {
if (ob->transflag & OB_NEG_SCALE) {
size[0] *= -1;
if (size[0] < data->xmin) {
size[0] = data->xmin;
clearNegScale += 1;
}
} else {
if (size[0] < data->xmin)
size[0] = data->xmin;
}
}
if (data->flag & LIMIT_XMAX) {
if (size[0] > data->xmax)
size[0] = data->xmax;
}
if (data->flag & LIMIT_YMIN) {
if (ob->transflag & OB_NEG_SCALE) {
size[1] *= -1;
if (size[1] < data->ymin) {
size[1] = data->ymin;
clearNegScale += 1;
}
} else {
if (size[1] < data->ymin)
size[1] = data->ymin;
}
}
if (data->flag & LIMIT_YMAX) {
if (size[1] > data->ymax)
size[1] = data->ymax;
}
if (data->flag & LIMIT_ZMIN) {
if (ob->transflag & OB_NEG_SCALE) {
size[2] *= -1;
if (size[2] < data->zmin) {
size[2] = data->zmin;
clearNegScale += 1;
}
} else {
if (size[2] < data->zmin)
size[2] = data->zmin;
}
}
if (data->flag & LIMIT_ZMAX) {
if (size[2] > data->zmax)
size[2] = data->zmax;
}
if (clearNegScale != 0) {
ob->transflag &= ~OB_NEG_SCALE; /* is this how we remove that flag? */
}
VecMulf(ob->obmat[0], size[0]/obsize[0]);
VecMulf(ob->obmat[1], size[1]/obsize[1]);
VecMulf(ob->obmat[2], size[2]/obsize[2]);
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
}
break;
default:
printf ("Error: Unknown constraint type\n");
break;
}
}