This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/source/strand.c

1070 lines
29 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributors: Brecht Van Lommel.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/render/intern/source/strand.c
* \ingroup render
*/
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "DNA_key_types.h"
#include "DNA_material_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_utildefines.h"
#include "BLI_ghash.h"
#include "BLI_memarena.h"
#include "BLI_rand.h"
#include "BKE_DerivedMesh.h"
#include "BKE_key.h"
#include "render_types.h"
#include "rendercore.h"
#include "renderdatabase.h"
#include "shading.h"
#include "strand.h"
#include "zbuf.h"
/* *************** */
static float strand_eval_width(Material *ma, float strandco)
{
float fac;
strandco= 0.5f*(strandco + 1.0f);
if (ma->strand_ease!=0.0f) {
if (ma->strand_ease<0.0f)
fac= pow(strandco, 1.0f+ma->strand_ease);
else
fac= pow(strandco, 1.0f/(1.0f-ma->strand_ease));
}
else fac= strandco;
return ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
}
void strand_eval_point(StrandSegment *sseg, StrandPoint *spoint)
{
Material *ma;
StrandBuffer *strandbuf;
const float *simplify;
float p[4][3], data[4], cross[3], w, dx, dy, t;
int type;
strandbuf= sseg->buffer;
ma= sseg->buffer->ma;
t= spoint->t;
type= (strandbuf->flag & R_STRAND_BSPLINE)? KEY_BSPLINE: KEY_CARDINAL;
copy_v3_v3(p[0], sseg->v[0]->co);
copy_v3_v3(p[1], sseg->v[1]->co);
copy_v3_v3(p[2], sseg->v[2]->co);
copy_v3_v3(p[3], sseg->v[3]->co);
if (sseg->obi->flag & R_TRANSFORMED) {
mul_m4_v3(sseg->obi->mat, p[0]);
mul_m4_v3(sseg->obi->mat, p[1]);
mul_m4_v3(sseg->obi->mat, p[2]);
mul_m4_v3(sseg->obi->mat, p[3]);
}
if (t == 0.0f) {
copy_v3_v3(spoint->co, p[1]);
spoint->strandco= sseg->v[1]->strandco;
spoint->dtstrandco= (sseg->v[2]->strandco - sseg->v[0]->strandco);
if (sseg->v[0] != sseg->v[1])
spoint->dtstrandco *= 0.5f;
}
else if (t == 1.0f) {
copy_v3_v3(spoint->co, p[2]);
spoint->strandco= sseg->v[2]->strandco;
spoint->dtstrandco= (sseg->v[3]->strandco - sseg->v[1]->strandco);
if (sseg->v[3] != sseg->v[2])
spoint->dtstrandco *= 0.5f;
}
else {
key_curve_position_weights(t, data, type);
spoint->co[0]= data[0]*p[0][0] + data[1]*p[1][0] + data[2]*p[2][0] + data[3]*p[3][0];
spoint->co[1]= data[0]*p[0][1] + data[1]*p[1][1] + data[2]*p[2][1] + data[3]*p[3][1];
spoint->co[2]= data[0]*p[0][2] + data[1]*p[1][2] + data[2]*p[2][2] + data[3]*p[3][2];
spoint->strandco= (1.0f-t)*sseg->v[1]->strandco + t*sseg->v[2]->strandco;
}
key_curve_tangent_weights(t, data, type);
spoint->dtco[0]= data[0]*p[0][0] + data[1]*p[1][0] + data[2]*p[2][0] + data[3]*p[3][0];
spoint->dtco[1]= data[0]*p[0][1] + data[1]*p[1][1] + data[2]*p[2][1] + data[3]*p[3][1];
spoint->dtco[2]= data[0]*p[0][2] + data[1]*p[1][2] + data[2]*p[2][2] + data[3]*p[3][2];
normalize_v3_v3(spoint->tan, spoint->dtco);
normalize_v3_v3(spoint->nor, spoint->co);
negate_v3(spoint->nor);
spoint->width= strand_eval_width(ma, spoint->strandco);
/* simplification */
simplify= RE_strandren_get_simplify(strandbuf->obr, sseg->strand, 0);
spoint->alpha= (simplify)? simplify[1]: 1.0f;
/* outer points */
cross_v3_v3v3(cross, spoint->co, spoint->tan);
w= spoint->co[2]*strandbuf->winmat[2][3] + strandbuf->winmat[3][3];
dx= strandbuf->winx*cross[0]*strandbuf->winmat[0][0]/w;
dy= strandbuf->winy*cross[1]*strandbuf->winmat[1][1]/w;
w = sqrtf(dx * dx + dy * dy);
if (w > 0.0f) {
if (strandbuf->flag & R_STRAND_B_UNITS) {
const float crosslen= len_v3(cross);
w= 2.0f*crosslen*strandbuf->minwidth/w;
if (spoint->width < w) {
spoint->alpha= spoint->width/w;
spoint->width= w;
}
if (simplify)
/* squared because we only change width, not length */
spoint->width *= simplify[0]*simplify[0];
mul_v3_fl(cross, spoint->width*0.5f/crosslen);
}
else
mul_v3_fl(cross, spoint->width/w);
}
sub_v3_v3v3(spoint->co1, spoint->co, cross);
add_v3_v3v3(spoint->co2, spoint->co, cross);
copy_v3_v3(spoint->dsco, cross);
}
/* *************** */
static void interpolate_vec1(float *v1, float *v2, float t, float negt, float *v)
{
v[0]= negt*v1[0] + t*v2[0];
}
static void interpolate_vec3(float *v1, float *v2, float t, float negt, float *v)
{
v[0]= negt*v1[0] + t*v2[0];
v[1]= negt*v1[1] + t*v2[1];
v[2]= negt*v1[2] + t*v2[2];
}
static void interpolate_vec4(float *v1, float *v2, float t, float negt, float *v)
{
v[0]= negt*v1[0] + t*v2[0];
v[1]= negt*v1[1] + t*v2[1];
v[2]= negt*v1[2] + t*v2[2];
v[3]= negt*v1[3] + t*v2[3];
}
static void interpolate_shade_result(ShadeResult *shr1, ShadeResult *shr2, float t, ShadeResult *shr, int addpassflag)
{
float negt= 1.0f - t;
interpolate_vec4(shr1->combined, shr2->combined, t, negt, shr->combined);
if (addpassflag & SCE_PASS_VECTOR) {
interpolate_vec4(shr1->winspeed, shr2->winspeed, t, negt, shr->winspeed);
}
/* optim... */
if (addpassflag & ~(SCE_PASS_VECTOR)) {
if (addpassflag & SCE_PASS_Z)
interpolate_vec1(&shr1->z, &shr2->z, t, negt, &shr->z);
if (addpassflag & SCE_PASS_RGBA)
interpolate_vec4(shr1->col, shr2->col, t, negt, shr->col);
if (addpassflag & SCE_PASS_NORMAL) {
interpolate_vec3(shr1->nor, shr2->nor, t, negt, shr->nor);
normalize_v3(shr->nor);
}
if (addpassflag & SCE_PASS_EMIT)
interpolate_vec3(shr1->emit, shr2->emit, t, negt, shr->emit);
if (addpassflag & SCE_PASS_DIFFUSE) {
interpolate_vec3(shr1->diff, shr2->diff, t, negt, shr->diff);
interpolate_vec3(shr1->diffshad, shr2->diffshad, t, negt, shr->diffshad);
}
if (addpassflag & SCE_PASS_SPEC)
interpolate_vec3(shr1->spec, shr2->spec, t, negt, shr->spec);
if (addpassflag & SCE_PASS_SHADOW)
interpolate_vec3(shr1->shad, shr2->shad, t, negt, shr->shad);
if (addpassflag & SCE_PASS_AO)
interpolate_vec3(shr1->ao, shr2->ao, t, negt, shr->ao);
if (addpassflag & SCE_PASS_ENVIRONMENT)
interpolate_vec3(shr1->env, shr2->env, t, negt, shr->env);
if (addpassflag & SCE_PASS_INDIRECT)
interpolate_vec3(shr1->indirect, shr2->indirect, t, negt, shr->indirect);
if (addpassflag & SCE_PASS_REFLECT)
interpolate_vec3(shr1->refl, shr2->refl, t, negt, shr->refl);
if (addpassflag & SCE_PASS_REFRACT)
interpolate_vec3(shr1->refr, shr2->refr, t, negt, shr->refr);
if (addpassflag & SCE_PASS_MIST)
interpolate_vec1(&shr1->mist, &shr2->mist, t, negt, &shr->mist);
}
}
static void strand_apply_shaderesult_alpha(ShadeResult *shr, float alpha)
{
if (alpha < 1.0f) {
shr->combined[0] *= alpha;
shr->combined[1] *= alpha;
shr->combined[2] *= alpha;
shr->combined[3] *= alpha;
shr->col[0] *= alpha;
shr->col[1] *= alpha;
shr->col[2] *= alpha;
shr->col[3] *= alpha;
shr->alpha *= alpha;
}
}
static void strand_shade_point(Render *re, ShadeSample *ssamp, StrandSegment *sseg, StrandVert *svert, StrandPoint *spoint)
{
ShadeInput *shi= ssamp->shi;
ShadeResult *shr= ssamp->shr;
VlakRen vlr;
int seed;
memset(&vlr, 0, sizeof(vlr));
vlr.flag= R_SMOOTH;
if (sseg->buffer->ma->mode & MA_TANGENT_STR)
vlr.flag |= R_TANGENT;
shi->vlr= &vlr;
shi->v1= NULL;
shi->v2= NULL;
shi->v3= NULL;
shi->strand= sseg->strand;
shi->obi= sseg->obi;
shi->obr= sseg->obi->obr;
/* cache for shadow */
shi->samplenr= re->shadowsamplenr[shi->thread]++;
/* all samples */
shi->mask= 0xFFFF;
/* seed RNG for consistent results across tiles */
seed = shi->strand->index + (svert - shi->strand->vert);
BLI_thread_srandom(shi->thread, seed);
shade_input_set_strand(shi, sseg->strand, spoint);
shade_input_set_strand_texco(shi, sseg->strand, sseg->v[1], spoint);
/* init material vars */
shade_input_init_material(shi);
/* shade */
shade_samples_do_AO(ssamp);
shade_input_do_shade(shi, shr);
/* apply simplification */
strand_apply_shaderesult_alpha(shr, spoint->alpha);
/* include lamphalos for strand, since halo layer was added already */
if (re->flag & R_LAMPHALO)
if (shi->layflag & SCE_LAY_HALO)
renderspothalo(shi, shr->combined, shr->combined[3]);
shi->strand= NULL;
}
/* *************** */
struct StrandShadeCache {
GHash *resulthash;
GHash *refcounthash;
MemArena *memarena;
};
typedef struct StrandCacheEntry {
GHashPair pair;
ShadeResult shr;
} StrandCacheEntry;
StrandShadeCache *strand_shade_cache_create(void)
{
StrandShadeCache *cache;
cache= MEM_callocN(sizeof(StrandShadeCache), "StrandShadeCache");
cache->resulthash= BLI_ghash_pair_new("strand_shade_cache_create1 gh");
cache->refcounthash= BLI_ghash_pair_new("strand_shade_cache_create2 gh");
cache->memarena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "strand shade cache arena");
return cache;
}
void strand_shade_cache_free(StrandShadeCache *cache)
{
BLI_ghash_free(cache->refcounthash, NULL, NULL);
BLI_ghash_free(cache->resulthash, MEM_freeN, NULL);
BLI_memarena_free(cache->memarena);
MEM_freeN(cache);
}
static GHashPair strand_shade_hash_pair(ObjectInstanceRen *obi, StrandVert *svert)
{
GHashPair pair = {obi, svert};
return pair;
}
static void strand_shade_get(Render *re, StrandShadeCache *cache, ShadeSample *ssamp, StrandSegment *sseg, StrandVert *svert)
{
StrandCacheEntry *entry;
StrandPoint p;
int *refcount;
GHashPair pair = strand_shade_hash_pair(sseg->obi, svert);
entry= BLI_ghash_lookup(cache->resulthash, &pair);
refcount= BLI_ghash_lookup(cache->refcounthash, &pair);
if (!entry) {
/* not shaded yet, shade and insert into hash */
p.t= (sseg->v[1] == svert)? 0.0f: 1.0f;
strand_eval_point(sseg, &p);
strand_shade_point(re, ssamp, sseg, svert, &p);
entry= MEM_callocN(sizeof(StrandCacheEntry), "StrandCacheEntry");
entry->pair = pair;
entry->shr = ssamp->shr[0];
BLI_ghash_insert(cache->resulthash, entry, entry);
}
else
/* already shaded, just copy previous result from hash */
ssamp->shr[0]= entry->shr;
/* lower reference count and remove if not needed anymore by any samples */
(*refcount)--;
if (*refcount == 0) {
BLI_ghash_remove(cache->resulthash, &pair, MEM_freeN, NULL);
BLI_ghash_remove(cache->refcounthash, &pair, NULL, NULL);
}
}
void strand_shade_segment(Render *re, StrandShadeCache *cache, StrandSegment *sseg, ShadeSample *ssamp, float t, float s, int addpassflag)
{
ShadeResult shr1, shr2;
/* get shading for two endpoints and interpolate */
strand_shade_get(re, cache, ssamp, sseg, sseg->v[1]);
shr1= ssamp->shr[0];
strand_shade_get(re, cache, ssamp, sseg, sseg->v[2]);
shr2= ssamp->shr[0];
interpolate_shade_result(&shr1, &shr2, t, ssamp->shr, addpassflag);
/* apply alpha along width */
if (sseg->buffer->widthfade != -1.0f) {
s = 1.0f - powf(fabsf(s), sseg->buffer->widthfade);
strand_apply_shaderesult_alpha(ssamp->shr, s);
}
}
void strand_shade_unref(StrandShadeCache *cache, ObjectInstanceRen *obi, StrandVert *svert)
{
GHashPair pair = strand_shade_hash_pair(obi, svert);
int *refcount;
/* lower reference count and remove if not needed anymore by any samples */
refcount= BLI_ghash_lookup(cache->refcounthash, &pair);
(*refcount)--;
if (*refcount == 0) {
BLI_ghash_remove(cache->resulthash, &pair, MEM_freeN, NULL);
BLI_ghash_remove(cache->refcounthash, &pair, NULL, NULL);
}
}
static void strand_shade_refcount(StrandShadeCache *cache, StrandSegment *sseg, StrandVert *svert)
{
GHashPair pair = strand_shade_hash_pair(sseg->obi, svert);
GHashPair *key;
int *refcount= BLI_ghash_lookup(cache->refcounthash, &pair);
if (!refcount) {
key= BLI_memarena_alloc(cache->memarena, sizeof(GHashPair));
*key = pair;
refcount= BLI_memarena_alloc(cache->memarena, sizeof(int));
*refcount= 1;
BLI_ghash_insert(cache->refcounthash, key, refcount);
}
else
(*refcount)++;
}
/* *************** */
typedef struct StrandPart {
Render *re;
ZSpan *zspan;
APixstrand *apixbuf;
int *totapixbuf;
int *rectz;
int *rectmask;
intptr_t *rectdaps;
int rectx, recty;
int sample;
int shadow;
float (*jit)[2];
int samples;
StrandSegment *segment;
float t[3], s[3];
StrandShadeCache *cache;
} StrandPart;
typedef struct StrandSortSegment {
struct StrandSortSegment *next;
int obi, strand, segment;
float z;
} StrandSortSegment;
static int compare_strand_segment(const void *poin1, const void *poin2)
{
const StrandSortSegment *seg1= (const StrandSortSegment*)poin1;
const StrandSortSegment *seg2= (const StrandSortSegment*)poin2;
if (seg1->z < seg2->z)
return -1;
else if (seg1->z == seg2->z)
return 0;
else
return 1;
}
static void do_strand_point_project(float winmat[4][4], ZSpan *zspan, float *co, float *hoco, float *zco)
{
projectvert(co, winmat, hoco);
hoco_to_zco(zspan, zco, hoco);
}
static void strand_project_point(float winmat[4][4], float winx, float winy, StrandPoint *spoint)
{
float div;
projectvert(spoint->co, winmat, spoint->hoco);
div= 1.0f/spoint->hoco[3];
spoint->x= spoint->hoco[0]*div*winx*0.5f;
spoint->y= spoint->hoco[1]*div*winy*0.5f;
}
static APixstrand *addpsmainAstrand(ListBase *lb)
{
APixstrMain *psm;
psm= MEM_mallocN(sizeof(APixstrMain), "addpsmainA");
BLI_addtail(lb, psm);
psm->ps = MEM_callocN(4096 * sizeof(APixstrand), "pixstr");
return psm->ps;
}
static APixstrand *addpsAstrand(ZSpan *zspan)
{
/* make new PS */
if (zspan->apstrandmcounter==0) {
zspan->curpstrand= addpsmainAstrand(zspan->apsmbase);
zspan->apstrandmcounter= 4095;
}
else {
zspan->curpstrand++;
zspan->apstrandmcounter--;
}
return zspan->curpstrand;
}
#define MAX_ZROW 2000
static void do_strand_fillac(void *handle, int x, int y, float u, float v, float z)
{
StrandPart *spart= (StrandPart *)handle;
StrandShadeCache *cache= spart->cache;
StrandSegment *sseg= spart->segment;
APixstrand *apn, *apnew;
float t, s;
int offset, mask, obi, strnr, seg, zverg, bufferz, maskz=0;
offset = y*spart->rectx + x;
obi= sseg->obi - spart->re->objectinstance;
strnr= sseg->strand->index + 1;
seg= sseg->v[1] - sseg->strand->vert;
mask= (1<<spart->sample);
/* check against solid z-buffer */
zverg= (int)z;
if (spart->rectdaps) {
/* find the z of the sample */
PixStr *ps;
intptr_t *rd= spart->rectdaps + offset;
bufferz= 0x7FFFFFFF;
if (spart->rectmask) maskz= 0x7FFFFFFF;
if (*rd) {
for (ps= (PixStr *)(*rd); ps; ps= ps->next) {
if (mask & ps->mask) {
bufferz= ps->z;
if (spart->rectmask)
maskz= ps->maskz;
break;
}
}
}
}
else {
bufferz= (spart->rectz)? spart->rectz[offset]: 0x7FFFFFFF;
if (spart->rectmask)
maskz= spart->rectmask[offset];
}
#define CHECK_ADD(n) \
if (apn->p[n]==strnr && apn->obi[n]==obi && apn->seg[n]==seg) \
{ if (!(apn->mask[n] & mask)) { apn->mask[n] |= mask; apn->v[n] += t; apn->u[n] += s; } break; } (void)0
#define CHECK_ASSIGN(n) \
if (apn->p[n]==0) \
{apn->obi[n]= obi; apn->p[n]= strnr; apn->z[n]= zverg; apn->mask[n]= mask; apn->v[n]= t; apn->u[n]= s; apn->seg[n]= seg; break; } (void)0
/* add to pixel list */
if (zverg < bufferz && (spart->totapixbuf[offset] < MAX_ZROW)) {
if (!spart->rectmask || zverg > maskz) {
t = u * spart->t[0] + v * spart->t[1] + (1.0f - u - v) * spart->t[2];
s = fabsf(u * spart->s[0] + v * spart->s[1] + (1.0f - u - v) * spart->s[2]);
apn= spart->apixbuf + offset;
while (apn) {
CHECK_ADD(0);
CHECK_ADD(1);
CHECK_ADD(2);
CHECK_ADD(3);
CHECK_ASSIGN(0);
CHECK_ASSIGN(1);
CHECK_ASSIGN(2);
CHECK_ASSIGN(3);
apnew= addpsAstrand(spart->zspan);
SWAP(APixstrand, *apnew, *apn);
apn->next= apnew;
CHECK_ASSIGN(0);
}
if (cache) {
strand_shade_refcount(cache, sseg, sseg->v[1]);
strand_shade_refcount(cache, sseg, sseg->v[2]);
}
spart->totapixbuf[offset]++;
}
}
}
/* width is calculated in hoco space, to ensure strands are visible */
static int strand_test_clip(float winmat[4][4], ZSpan *UNUSED(zspan), float *bounds, float *co, float *zcomp, float widthx, float widthy)
{
float hoco[4];
int clipflag= 0;
projectvert(co, winmat, hoco);
/* we compare z without perspective division for segment sorting */
*zcomp= hoco[2];
if (hoco[0]+widthx < bounds[0]*hoco[3]) clipflag |= 1;
else if (hoco[0]-widthx > bounds[1]*hoco[3]) clipflag |= 2;
if (hoco[1]-widthy > bounds[3]*hoco[3]) clipflag |= 4;
else if (hoco[1]+widthy < bounds[2]*hoco[3]) clipflag |= 8;
clipflag |= testclip(hoco);
return clipflag;
}
static void do_scanconvert_strand(Render *UNUSED(re), StrandPart *spart, ZSpan *zspan, float t, float dt, float *co1, float *co2, float *co3, float *co4, int sample)
{
float jco1[3], jco2[3], jco3[3], jco4[3], jx, jy;
copy_v3_v3(jco1, co1);
copy_v3_v3(jco2, co2);
copy_v3_v3(jco3, co3);
copy_v3_v3(jco4, co4);
if (spart->jit) {
jx= -spart->jit[sample][0];
jy= -spart->jit[sample][1];
jco1[0] += jx; jco1[1] += jy;
jco2[0] += jx; jco2[1] += jy;
jco3[0] += jx; jco3[1] += jy;
jco4[0] += jx; jco4[1] += jy;
/* XXX mblur? */
}
spart->sample= sample;
spart->t[0]= t-dt;
spart->s[0]= -1.0f;
spart->t[1]= t-dt;
spart->s[1]= 1.0f;
spart->t[2]= t;
spart->s[2]= 1.0f;
zspan_scanconvert_strand(zspan, spart, jco1, jco2, jco3, do_strand_fillac);
spart->t[0]= t-dt;
spart->s[0]= -1.0f;
spart->t[1]= t;
spart->s[1]= 1.0f;
spart->t[2]= t;
spart->s[2]= -1.0f;
zspan_scanconvert_strand(zspan, spart, jco1, jco3, jco4, do_strand_fillac);
}
static void strand_render(Render *re, StrandSegment *sseg, float winmat[4][4], StrandPart *spart, ZSpan *zspan, int totzspan, StrandPoint *p1, StrandPoint *p2)
{
if (spart) {
float t= p2->t;
float dt= p2->t - p1->t;
int a;
for (a=0; a<spart->samples; a++)
do_scanconvert_strand(re, spart, zspan, t, dt, p1->zco2, p1->zco1, p2->zco1, p2->zco2, a);
}
else {
float hoco1[4], hoco2[4];
int a, obi, index;
obi= sseg->obi - re->objectinstance;
index= sseg->strand->index;
projectvert(p1->co, winmat, hoco1);
projectvert(p2->co, winmat, hoco2);
for (a=0; a<totzspan; a++) {
#if 0
/* render both strand and single pixel wire to counter aliasing */
zbufclip4(re, &zspan[a], obi, index, p1->hoco2, p1->hoco1, p2->hoco1, p2->hoco2, p1->clip2, p1->clip1, p2->clip1, p2->clip2);
#endif
/* only render a line for now, which makes the shadow map more
* similar across frames, and so reduces flicker */
zbufsinglewire(&zspan[a], obi, index, hoco1, hoco2);
}
}
}
static int strand_segment_recursive(Render *re, float winmat[4][4], StrandPart *spart, ZSpan *zspan, int totzspan, StrandSegment *sseg, StrandPoint *p1, StrandPoint *p2, int depth)
{
StrandPoint p;
StrandBuffer *buffer= sseg->buffer;
float dot, d1[2], d2[2], len1, len2;
if (depth == buffer->maxdepth)
return 0;
p.t= (p1->t + p2->t)*0.5f;
strand_eval_point(sseg, &p);
strand_project_point(buffer->winmat, buffer->winx, buffer->winy, &p);
d1[0]= (p.x - p1->x);
d1[1]= (p.y - p1->y);
len1= d1[0]*d1[0] + d1[1]*d1[1];
d2[0]= (p2->x - p.x);
d2[1]= (p2->y - p.y);
len2= d2[0]*d2[0] + d2[1]*d2[1];
if (len1 == 0.0f || len2 == 0.0f)
return 0;
dot= d1[0]*d2[0] + d1[1]*d2[1];
if (dot*dot > sseg->sqadaptcos*len1*len2)
return 0;
if (spart) {
do_strand_point_project(winmat, zspan, p.co1, p.hoco1, p.zco1);
do_strand_point_project(winmat, zspan, p.co2, p.hoco2, p.zco2);
}
else {
#if 0
projectvert(p.co1, winmat, p.hoco1);
projectvert(p.co2, winmat, p.hoco2);
p.clip1= testclip(p.hoco1);
p.clip2= testclip(p.hoco2);
#endif
}
if (!strand_segment_recursive(re, winmat, spart, zspan, totzspan, sseg, p1, &p, depth+1))
strand_render(re, sseg, winmat, spart, zspan, totzspan, p1, &p);
if (!strand_segment_recursive(re, winmat, spart, zspan, totzspan, sseg, &p, p2, depth+1))
strand_render(re, sseg, winmat, spart, zspan, totzspan, &p, p2);
return 1;
}
void render_strand_segment(Render *re, float winmat[4][4], StrandPart *spart, ZSpan *zspan, int totzspan, StrandSegment *sseg)
{
StrandBuffer *buffer= sseg->buffer;
StrandPoint *p1= &sseg->point1;
StrandPoint *p2= &sseg->point2;
p1->t= 0.0f;
p2->t= 1.0f;
strand_eval_point(sseg, p1);
strand_project_point(buffer->winmat, buffer->winx, buffer->winy, p1);
strand_eval_point(sseg, p2);
strand_project_point(buffer->winmat, buffer->winx, buffer->winy, p2);
if (spart) {
do_strand_point_project(winmat, zspan, p1->co1, p1->hoco1, p1->zco1);
do_strand_point_project(winmat, zspan, p1->co2, p1->hoco2, p1->zco2);
do_strand_point_project(winmat, zspan, p2->co1, p2->hoco1, p2->zco1);
do_strand_point_project(winmat, zspan, p2->co2, p2->hoco2, p2->zco2);
}
else {
#if 0
projectvert(p1->co1, winmat, p1->hoco1);
projectvert(p1->co2, winmat, p1->hoco2);
projectvert(p2->co1, winmat, p2->hoco1);
projectvert(p2->co2, winmat, p2->hoco2);
p1->clip1= testclip(p1->hoco1);
p1->clip2= testclip(p1->hoco2);
p2->clip1= testclip(p2->hoco1);
p2->clip2= testclip(p2->hoco2);
#endif
}
if (!strand_segment_recursive(re, winmat, spart, zspan, totzspan, sseg, p1, p2, 0))
strand_render(re, sseg, winmat, spart, zspan, totzspan, p1, p2);
}
/* render call to fill in strands */
int zbuffer_strands_abuf(Render *re, RenderPart *pa, APixstrand *apixbuf, ListBase *apsmbase, unsigned int lay, int UNUSED(negzmask), float winmat[4][4], int winx, int winy, int samples, float (*jit)[2], float clipcrop, int shadow, StrandShadeCache *cache)
{
ObjectRen *obr;
ObjectInstanceRen *obi;
ZSpan zspan;
StrandRen *strand = NULL;
StrandVert *svert;
StrandBound *sbound;
StrandPart spart;
StrandSegment sseg;
StrandSortSegment *sortsegments = NULL, *sortseg, *firstseg;
MemArena *memarena;
float z[4], bounds[4], obwinmat[4][4];
int a, b, c, i, totsegment, clip[4];
if (re->test_break(re->tbh))
return 0;
if (re->totstrand == 0)
return 0;
/* setup StrandPart */
memset(&spart, 0, sizeof(spart));
spart.re= re;
spart.rectx= pa->rectx;
spart.recty= pa->recty;
spart.apixbuf= apixbuf;
spart.zspan= &zspan;
spart.rectdaps= pa->rectdaps;
spart.rectz= pa->rectz;
spart.rectmask= pa->rectmask;
spart.cache= cache;
spart.shadow= shadow;
spart.jit= jit;
spart.samples= samples;
zbuf_alloc_span(&zspan, pa->rectx, pa->recty, clipcrop);
/* needed for transform from hoco to zbuffer co */
zspan.zmulx= ((float)winx)/2.0f;
zspan.zmuly= ((float)winy)/2.0f;
zspan.zofsx= -pa->disprect.xmin;
zspan.zofsy= -pa->disprect.ymin;
/* to center the sample position */
if (!shadow) {
zspan.zofsx -= 0.5f;
zspan.zofsy -= 0.5f;
}
zspan.apsmbase= apsmbase;
/* clipping setup */
bounds[0]= (2*pa->disprect.xmin - winx-1)/(float)winx;
bounds[1]= (2*pa->disprect.xmax - winx+1)/(float)winx;
bounds[2]= (2*pa->disprect.ymin - winy-1)/(float)winy;
bounds[3]= (2*pa->disprect.ymax - winy+1)/(float)winy;
memarena= BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "strand sort arena");
firstseg= NULL;
totsegment= 0;
/* for all object instances */
for (obi=re->instancetable.first, i=0; obi; obi=obi->next, i++) {
Material *ma;
float widthx, widthy;
obr= obi->obr;
if (!obr->strandbuf || !(obr->strandbuf->lay & lay))
continue;
/* compute matrix and try clipping whole object */
if (obi->flag & R_TRANSFORMED)
mul_m4_m4m4(obwinmat, winmat, obi->mat);
else
copy_m4_m4(obwinmat, winmat);
/* test if we should skip it */
ma = obr->strandbuf->ma;
if (shadow && (!(ma->mode2 & MA_CASTSHADOW) || !(ma->mode & MA_SHADBUF)))
continue;
else if (!shadow && (ma->mode & MA_ONLYCAST))
continue;
if (clip_render_object(obi->obr->boundbox, bounds, obwinmat))
continue;
widthx= obr->strandbuf->maxwidth*obwinmat[0][0];
widthy= obr->strandbuf->maxwidth*obwinmat[1][1];
/* for each bounding box containing a number of strands */
sbound= obr->strandbuf->bound;
for (c=0; c<obr->strandbuf->totbound; c++, sbound++) {
if (clip_render_object(sbound->boundbox, bounds, obwinmat))
continue;
/* for each strand in this bounding box */
for (a=sbound->start; a<sbound->end; a++) {
strand= RE_findOrAddStrand(obr, a);
svert= strand->vert;
/* keep clipping and z depth for 4 control points */
clip[1]= strand_test_clip(obwinmat, &zspan, bounds, svert->co, &z[1], widthx, widthy);
clip[2]= strand_test_clip(obwinmat, &zspan, bounds, (svert+1)->co, &z[2], widthx, widthy);
clip[0]= clip[1]; z[0]= z[1];
for (b=0; b<strand->totvert-1; b++, svert++) {
/* compute 4th point clipping and z depth */
if (b < strand->totvert-2) {
clip[3]= strand_test_clip(obwinmat, &zspan, bounds, (svert+2)->co, &z[3], widthx, widthy);
}
else {
clip[3]= clip[2]; z[3]= z[2];
}
/* check clipping and add to sortsegments buffer */
if (!(clip[0] & clip[1] & clip[2] & clip[3])) {
sortseg= BLI_memarena_alloc(memarena, sizeof(StrandSortSegment));
sortseg->obi= i;
sortseg->strand= strand->index;
sortseg->segment= b;
sortseg->z= 0.5f*(z[1] + z[2]);
sortseg->next= firstseg;
firstseg= sortseg;
totsegment++;
}
/* shift clipping and z depth */
clip[0]= clip[1]; z[0]= z[1];
clip[1]= clip[2]; z[1]= z[2];
clip[2]= clip[3]; z[2]= z[3];
}
}
}
}
if (!re->test_break(re->tbh)) {
/* convert list to array and sort */
sortsegments= MEM_mallocN(sizeof(StrandSortSegment)*totsegment, "StrandSortSegment");
for (a=0, sortseg=firstseg; a<totsegment; a++, sortseg=sortseg->next)
sortsegments[a]= *sortseg;
qsort(sortsegments, totsegment, sizeof(StrandSortSegment), compare_strand_segment);
}
BLI_memarena_free(memarena);
spart.totapixbuf= MEM_callocN(sizeof(int)*pa->rectx*pa->recty, "totapixbuf");
if (!re->test_break(re->tbh)) {
/* render segments in sorted order */
sortseg= sortsegments;
for (a=0; a<totsegment; a++, sortseg++) {
if (re->test_break(re->tbh))
break;
obi= &re->objectinstance[sortseg->obi];
obr= obi->obr;
sseg.obi= obi;
sseg.strand= RE_findOrAddStrand(obr, sortseg->strand);
sseg.buffer= sseg.strand->buffer;
sseg.sqadaptcos= sseg.buffer->adaptcos;
sseg.sqadaptcos *= sseg.sqadaptcos;
svert= sseg.strand->vert + sortseg->segment;
sseg.v[0]= (sortseg->segment > 0)? (svert-1): svert;
sseg.v[1]= svert;
sseg.v[2]= svert+1;
sseg.v[3]= (sortseg->segment < sseg.strand->totvert-2)? svert+2: svert+1;
sseg.shaded= 0;
spart.segment= &sseg;
render_strand_segment(re, winmat, &spart, &zspan, 1, &sseg);
}
}
if (sortsegments)
MEM_freeN(sortsegments);
MEM_freeN(spart.totapixbuf);
zbuf_free_span(&zspan);
return totsegment;
}
/* *************** */
StrandSurface *cache_strand_surface(Render *re, ObjectRen *obr, DerivedMesh *dm, float mat[4][4], int timeoffset)
{
StrandSurface *mesh;
MFace *mface;
MVert *mvert;
float (*co)[3];
int a, totvert, totface;
totvert= dm->getNumVerts(dm);
totface= dm->getNumTessFaces(dm);
for (mesh = re->strandsurface.first; mesh; mesh = mesh->next) {
if ((mesh->obr.ob == obr->ob) &&
(mesh->obr.par == obr->par) &&
(mesh->obr.index == obr->index) &&
(mesh->totvert == totvert) &&
(mesh->totface == totface))
{
break;
}
}
if (!mesh) {
mesh= MEM_callocN(sizeof(StrandSurface), "StrandSurface");
mesh->obr= *obr;
mesh->totvert= totvert;
mesh->totface= totface;
mesh->face= MEM_callocN(sizeof(int)*4*mesh->totface, "StrandSurfFaces");
mesh->ao= MEM_callocN(sizeof(float)*3*mesh->totvert, "StrandSurfAO");
mesh->env= MEM_callocN(sizeof(float)*3*mesh->totvert, "StrandSurfEnv");
mesh->indirect= MEM_callocN(sizeof(float)*3*mesh->totvert, "StrandSurfIndirect");
BLI_addtail(&re->strandsurface, mesh);
}
if (timeoffset == -1 && !mesh->prevco)
mesh->prevco= co= MEM_callocN(sizeof(float)*3*mesh->totvert, "StrandSurfCo");
else if (timeoffset == 0 && !mesh->co)
mesh->co= co= MEM_callocN(sizeof(float)*3*mesh->totvert, "StrandSurfCo");
else if (timeoffset == 1 && !mesh->nextco)
mesh->nextco= co= MEM_callocN(sizeof(float)*3*mesh->totvert, "StrandSurfCo");
else
return mesh;
mvert= dm->getVertArray(dm);
for (a=0; a<mesh->totvert; a++, mvert++) {
copy_v3_v3(co[a], mvert->co);
mul_m4_v3(mat, co[a]);
}
mface= dm->getTessFaceArray(dm);
for (a=0; a<mesh->totface; a++, mface++) {
mesh->face[a][0]= mface->v1;
mesh->face[a][1]= mface->v2;
mesh->face[a][2]= mface->v3;
mesh->face[a][3]= mface->v4;
}
return mesh;
}
void free_strand_surface(Render *re)
{
StrandSurface *mesh;
for (mesh=re->strandsurface.first; mesh; mesh=mesh->next) {
if (mesh->co) MEM_freeN(mesh->co);
if (mesh->prevco) MEM_freeN(mesh->prevco);
if (mesh->nextco) MEM_freeN(mesh->nextco);
if (mesh->ao) MEM_freeN(mesh->ao);
if (mesh->env) MEM_freeN(mesh->env);
if (mesh->indirect) MEM_freeN(mesh->indirect);
if (mesh->face) MEM_freeN(mesh->face);
}
BLI_freelistN(&re->strandsurface);
}
void strand_minmax(StrandRen *strand, float min[3], float max[3], const float width)
{
StrandVert *svert;
const float width2 = width * 2.0f;
float vec[3];
int a;
for (a=0, svert=strand->vert; a<strand->totvert; a++, svert++) {
copy_v3_v3(vec, svert->co);
minmax_v3v3_v3(min, max, vec);
if (width!=0.0f) {
add_v3_fl(vec, width);
minmax_v3v3_v3(min, max, vec);
add_v3_fl(vec, -width2);
minmax_v3v3_v3(min, max, vec);
}
}
}