This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenlib/intern/task_iterator.c
Brecht Van Lommel d8a3f3595a Task: Use TBB as Task Scheduler
This patch enables TBB as the default task scheduler. TBB stands for Threading Building Blocks and is developed by Intel. The library contains several threading patters. This patch maps blenders BLI_task_* function to their counterpart. After this patch we can add more patterns. A promising one is TBB:graph that can be used for depsgraph, draw manager and compositor.

Performance changes depends on the actual hardware. It was tested on different hardwares from laptops to workstations and we didn't detected any downgrade of the performance.
* Linux Xeon E5-2699 v4 got FPS boost from 12 to 17 using Spring's 04_010_A.anim.blend.
* AMD Ryzen Threadripper 2990WX 32-Core Animation playback goes from 9.5-10.5 FPS to 13.0-14.0 FPS on Agent 327 , 10_03_B.anim.blend.

Reviewed By: brecht, sergey

Differential Revision: https://developer.blender.org/D7475
2020-04-30 08:09:21 +02:00

424 lines
14 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bli
*
* Parallel tasks over all elements in a container.
*/
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "DNA_listBase.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_mempool.h"
#include "BLI_task.h"
#include "BLI_threads.h"
#include "atomic_ops.h"
/* Allows to avoid using malloc for userdata_chunk in tasks, when small enough. */
#define MALLOCA(_size) ((_size) <= 8192) ? alloca((_size)) : MEM_mallocN((_size), __func__)
#define MALLOCA_FREE(_mem, _size) \
if (((_mem) != NULL) && ((_size) > 8192)) \
MEM_freeN((_mem))
BLI_INLINE void task_parallel_calc_chunk_size(const TaskParallelSettings *settings,
const int tot_items,
int num_tasks,
int *r_chunk_size)
{
int chunk_size = 0;
if (!settings->use_threading) {
/* Some users of this helper will still need a valid chunk size in case processing is not
* threaded. We can use a bigger one than in default threaded case then. */
chunk_size = 1024;
num_tasks = 1;
}
else if (settings->min_iter_per_thread > 0) {
/* Already set by user, no need to do anything here. */
chunk_size = settings->min_iter_per_thread;
}
else {
/* Multiplier used in heuristics below to define "optimal" chunk size.
* The idea here is to increase the chunk size to compensate for a rather measurable threading
* overhead caused by fetching tasks. With too many CPU threads we are starting
* to spend too much time in those overheads.
* First values are: 1 if num_tasks < 16;
* else 2 if num_tasks < 32;
* else 3 if num_tasks < 48;
* else 4 if num_tasks < 64;
* etc.
* Note: If we wanted to keep the 'power of two' multiplier, we'd need something like:
* 1 << max_ii(0, (int)(sizeof(int) * 8) - 1 - bitscan_reverse_i(num_tasks) - 3)
*/
const int num_tasks_factor = max_ii(1, num_tasks >> 3);
/* We could make that 'base' 32 number configurable in TaskParallelSettings too, or maybe just
* always use that heuristic using TaskParallelSettings.min_iter_per_thread as basis? */
chunk_size = 32 * num_tasks_factor;
/* Basic heuristic to avoid threading on low amount of items.
* We could make that limit configurable in settings too. */
if (tot_items > 0 && tot_items < max_ii(256, chunk_size * 2)) {
chunk_size = tot_items;
}
}
BLI_assert(chunk_size > 0);
*r_chunk_size = chunk_size;
}
typedef struct TaskParallelIteratorState {
void *userdata;
TaskParallelIteratorIterFunc iter_func;
TaskParallelIteratorFunc func;
/* *** Data used to 'acquire' chunks of items from the iterator. *** */
/* Common data also passed to the generator callback. */
TaskParallelIteratorStateShared iter_shared;
/* Total number of items. If unknown, set it to a negative number. */
int tot_items;
} TaskParallelIteratorState;
static void parallel_iterator_func_do(TaskParallelIteratorState *__restrict state,
void *userdata_chunk)
{
TaskParallelTLS tls = {
.userdata_chunk = userdata_chunk,
};
void **current_chunk_items;
int *current_chunk_indices;
int current_chunk_size;
const size_t items_size = sizeof(*current_chunk_items) * (size_t)state->iter_shared.chunk_size;
const size_t indices_size = sizeof(*current_chunk_indices) *
(size_t)state->iter_shared.chunk_size;
current_chunk_items = MALLOCA(items_size);
current_chunk_indices = MALLOCA(indices_size);
current_chunk_size = 0;
for (bool do_abort = false; !do_abort;) {
if (state->iter_shared.spin_lock != NULL) {
BLI_spin_lock(state->iter_shared.spin_lock);
}
/* Get current status. */
int index = state->iter_shared.next_index;
void *item = state->iter_shared.next_item;
int i;
/* 'Acquire' a chunk of items from the iterator function. */
for (i = 0; i < state->iter_shared.chunk_size && !state->iter_shared.is_finished; i++) {
current_chunk_indices[i] = index;
current_chunk_items[i] = item;
state->iter_func(state->userdata, &tls, &item, &index, &state->iter_shared.is_finished);
}
/* Update current status. */
state->iter_shared.next_index = index;
state->iter_shared.next_item = item;
current_chunk_size = i;
do_abort = state->iter_shared.is_finished;
if (state->iter_shared.spin_lock != NULL) {
BLI_spin_unlock(state->iter_shared.spin_lock);
}
for (i = 0; i < current_chunk_size; ++i) {
state->func(state->userdata, current_chunk_items[i], current_chunk_indices[i], &tls);
}
}
MALLOCA_FREE(current_chunk_items, items_size);
MALLOCA_FREE(current_chunk_indices, indices_size);
}
static void parallel_iterator_func(TaskPool *__restrict pool, void *userdata_chunk)
{
TaskParallelIteratorState *__restrict state = BLI_task_pool_user_data(pool);
parallel_iterator_func_do(state, userdata_chunk);
}
static void task_parallel_iterator_no_threads(const TaskParallelSettings *settings,
TaskParallelIteratorState *state)
{
/* Prepare user's TLS data. */
void *userdata_chunk = settings->userdata_chunk;
const size_t userdata_chunk_size = settings->userdata_chunk_size;
void *userdata_chunk_local = NULL;
const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL);
if (use_userdata_chunk) {
userdata_chunk_local = MALLOCA(userdata_chunk_size);
memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
}
/* Also marking it as non-threaded for the iterator callback. */
state->iter_shared.spin_lock = NULL;
parallel_iterator_func_do(state, userdata_chunk);
if (use_userdata_chunk && settings->func_free != NULL) {
/* `func_free` should only free data that was created during execution of `func`. */
settings->func_free(state->userdata, userdata_chunk_local);
}
}
static void task_parallel_iterator_do(const TaskParallelSettings *settings,
TaskParallelIteratorState *state)
{
const int num_threads = BLI_task_scheduler_num_threads();
task_parallel_calc_chunk_size(
settings, state->tot_items, num_threads, &state->iter_shared.chunk_size);
if (!settings->use_threading) {
task_parallel_iterator_no_threads(settings, state);
return;
}
const int chunk_size = state->iter_shared.chunk_size;
const int tot_items = state->tot_items;
const size_t num_tasks = tot_items >= 0 ?
(size_t)min_ii(num_threads, state->tot_items / chunk_size) :
(size_t)num_threads;
BLI_assert(num_tasks > 0);
if (num_tasks == 1) {
task_parallel_iterator_no_threads(settings, state);
return;
}
SpinLock spin_lock;
BLI_spin_init(&spin_lock);
state->iter_shared.spin_lock = &spin_lock;
void *userdata_chunk = settings->userdata_chunk;
const size_t userdata_chunk_size = settings->userdata_chunk_size;
void *userdata_chunk_local = NULL;
void *userdata_chunk_array = NULL;
const bool use_userdata_chunk = (userdata_chunk_size != 0) && (userdata_chunk != NULL);
TaskPool *task_pool = BLI_task_pool_create(state, TASK_PRIORITY_HIGH);
if (use_userdata_chunk) {
userdata_chunk_array = MALLOCA(userdata_chunk_size * num_tasks);
}
for (size_t i = 0; i < num_tasks; i++) {
if (use_userdata_chunk) {
userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i);
memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
}
/* Use this pool's pre-allocated tasks. */
BLI_task_pool_push(task_pool, parallel_iterator_func, userdata_chunk_local, false, NULL);
}
BLI_task_pool_work_and_wait(task_pool);
BLI_task_pool_free(task_pool);
if (use_userdata_chunk && (settings->func_reduce != NULL || settings->func_free != NULL)) {
for (size_t i = 0; i < num_tasks; i++) {
userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i);
if (settings->func_reduce != NULL) {
settings->func_reduce(state->userdata, userdata_chunk, userdata_chunk_local);
}
if (settings->func_free != NULL) {
settings->func_free(state->userdata, userdata_chunk_local);
}
}
MALLOCA_FREE(userdata_chunk_array, userdata_chunk_size * num_tasks);
}
BLI_spin_end(&spin_lock);
state->iter_shared.spin_lock = NULL;
}
/**
* This function allows to parallelize for loops using a generic iterator.
*
* \param userdata: Common userdata passed to all instances of \a func.
* \param iter_func: Callback function used to generate chunks of items.
* \param init_item: The initial item, if necessary (may be NULL if unused).
* \param init_index: The initial index.
* \param tot_items: The total amount of items to iterate over
* (if unknown, set it to a negative number).
* \param func: Callback function.
* \param settings: See public API doc of TaskParallelSettings for description of all settings.
*
* \note Static scheduling is only available when \a tot_items is >= 0.
*/
void BLI_task_parallel_iterator(void *userdata,
TaskParallelIteratorIterFunc iter_func,
void *init_item,
const int init_index,
const int tot_items,
TaskParallelIteratorFunc func,
const TaskParallelSettings *settings)
{
TaskParallelIteratorState state = {0};
state.tot_items = tot_items;
state.iter_shared.next_index = init_index;
state.iter_shared.next_item = init_item;
state.iter_shared.is_finished = false;
state.userdata = userdata;
state.iter_func = iter_func;
state.func = func;
task_parallel_iterator_do(settings, &state);
}
static void task_parallel_listbase_get(void *__restrict UNUSED(userdata),
const TaskParallelTLS *__restrict UNUSED(tls),
void **r_next_item,
int *r_next_index,
bool *r_do_abort)
{
/* Get current status. */
Link *link = *r_next_item;
if (link->next == NULL) {
*r_do_abort = true;
}
*r_next_item = link->next;
(*r_next_index)++;
}
/**
* This function allows to parallelize for loops over ListBase items.
*
* \param listbase: The double linked list to loop over.
* \param userdata: Common userdata passed to all instances of \a func.
* \param func: Callback function.
* \param settings: See public API doc of ParallelRangeSettings for description of all settings.
*
* \note There is no static scheduling here,
* since it would need another full loop over items to count them.
*/
void BLI_task_parallel_listbase(ListBase *listbase,
void *userdata,
TaskParallelIteratorFunc func,
const TaskParallelSettings *settings)
{
if (BLI_listbase_is_empty(listbase)) {
return;
}
TaskParallelIteratorState state = {0};
state.tot_items = BLI_listbase_count(listbase);
state.iter_shared.next_index = 0;
state.iter_shared.next_item = listbase->first;
state.iter_shared.is_finished = false;
state.userdata = userdata;
state.iter_func = task_parallel_listbase_get;
state.func = func;
task_parallel_iterator_do(settings, &state);
}
#undef MALLOCA
#undef MALLOCA_FREE
typedef struct ParallelMempoolState {
void *userdata;
TaskParallelMempoolFunc func;
} ParallelMempoolState;
static void parallel_mempool_func(TaskPool *__restrict pool, void *taskdata)
{
ParallelMempoolState *__restrict state = BLI_task_pool_user_data(pool);
BLI_mempool_iter *iter = taskdata;
MempoolIterData *item;
while ((item = BLI_mempool_iterstep(iter)) != NULL) {
state->func(state->userdata, item);
}
}
/**
* This function allows to parallelize for loops over Mempool items.
*
* \param mempool: The iterable BLI_mempool to loop over.
* \param userdata: Common userdata passed to all instances of \a func.
* \param func: Callback function.
* \param use_threading: If \a true, actually split-execute loop in threads,
* else just do a sequential for loop
* (allows caller to use any kind of test to switch on parallelization or not).
*
* \note There is no static scheduling here.
*/
void BLI_task_parallel_mempool(BLI_mempool *mempool,
void *userdata,
TaskParallelMempoolFunc func,
const bool use_threading)
{
TaskPool *task_pool;
ParallelMempoolState state;
int i, num_threads, num_tasks;
if (BLI_mempool_len(mempool) == 0) {
return;
}
if (!use_threading) {
BLI_mempool_iter iter;
BLI_mempool_iternew(mempool, &iter);
for (void *item = BLI_mempool_iterstep(&iter); item != NULL;
item = BLI_mempool_iterstep(&iter)) {
func(userdata, item);
}
return;
}
task_pool = BLI_task_pool_create(&state, TASK_PRIORITY_HIGH);
num_threads = BLI_task_scheduler_num_threads();
/* The idea here is to prevent creating task for each of the loop iterations
* and instead have tasks which are evenly distributed across CPU cores and
* pull next item to be crunched using the threaded-aware BLI_mempool_iter.
*/
num_tasks = num_threads + 2;
state.userdata = userdata;
state.func = func;
BLI_mempool_iter *mempool_iterators = BLI_mempool_iter_threadsafe_create(mempool,
(size_t)num_tasks);
for (i = 0; i < num_tasks; i++) {
/* Use this pool's pre-allocated tasks. */
BLI_task_pool_push(task_pool, parallel_mempool_func, &mempool_iterators[i], false, NULL);
}
BLI_task_pool_work_and_wait(task_pool);
BLI_task_pool_free(task_pool);
BLI_mempool_iter_threadsafe_free(mempool_iterators);
}