This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/engines/eevee/eevee_volumes.c

951 lines
39 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2016, Blender Foundation.
*/
/** \file
* \ingroup draw_engine
*
* Volumetric effects rendering using frostbite approach.
*/
#include "DRW_render.h"
#include "BLI_listbase.h"
#include "BLI_rand.h"
#include "BLI_string_utils.h"
#include "DNA_fluid_types.h"
#include "DNA_object_force_types.h"
#include "DNA_volume_types.h"
#include "DNA_world_types.h"
#include "BKE_fluid.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_volume.h"
#include "BKE_volume_render.h"
#include "ED_screen.h"
#include "DEG_depsgraph_query.h"
#include "GPU_draw.h"
#include "GPU_extensions.h"
#include "GPU_material.h"
#include "GPU_texture.h"
#include "eevee_private.h"
static struct {
char *volumetric_common_lib;
char *volumetric_common_lights_lib;
struct GPUShader *volumetric_clear_sh;
struct GPUShader *scatter_sh;
struct GPUShader *scatter_with_lights_sh;
struct GPUShader *volumetric_integration_sh;
struct GPUShader *volumetric_resolve_sh;
struct GPUShader *volumetric_accum_sh;
GPUTexture *depth_src;
GPUTexture *dummy_density;
GPUTexture *dummy_color;
GPUTexture *dummy_flame;
GPUTexture *dummy_scatter;
GPUTexture *dummy_transmit;
/* List of all fluid simulation / smoke domains rendered within this frame. */
ListBase smoke_domains;
} e_data = {NULL}; /* Engine data */
extern char datatoc_bsdf_common_lib_glsl[];
extern char datatoc_common_uniforms_lib_glsl[];
extern char datatoc_common_view_lib_glsl[];
extern char datatoc_octahedron_lib_glsl[];
extern char datatoc_cubemap_lib_glsl[];
extern char datatoc_irradiance_lib_glsl[];
extern char datatoc_lights_lib_glsl[];
extern char datatoc_volumetric_accum_frag_glsl[];
extern char datatoc_volumetric_frag_glsl[];
extern char datatoc_volumetric_geom_glsl[];
extern char datatoc_volumetric_vert_glsl[];
extern char datatoc_volumetric_resolve_frag_glsl[];
extern char datatoc_volumetric_scatter_frag_glsl[];
extern char datatoc_volumetric_integration_frag_glsl[];
extern char datatoc_volumetric_lib_glsl[];
extern char datatoc_common_fullscreen_vert_glsl[];
#define USE_VOLUME_OPTI \
(GLEW_ARB_shader_image_load_store && GLEW_ARB_shading_language_420pack && \
!GPU_crappy_amd_driver())
static void eevee_create_shader_volumes(void)
{
e_data.volumetric_common_lib = BLI_string_joinN(datatoc_common_view_lib_glsl,
datatoc_common_uniforms_lib_glsl,
datatoc_bsdf_common_lib_glsl,
datatoc_volumetric_lib_glsl);
e_data.volumetric_common_lights_lib = BLI_string_joinN(datatoc_common_view_lib_glsl,
datatoc_common_uniforms_lib_glsl,
datatoc_bsdf_common_lib_glsl,
datatoc_octahedron_lib_glsl,
datatoc_cubemap_lib_glsl,
datatoc_irradiance_lib_glsl,
datatoc_lights_lib_glsl,
datatoc_volumetric_lib_glsl);
e_data.volumetric_clear_sh = DRW_shader_create_with_lib(datatoc_volumetric_vert_glsl,
datatoc_volumetric_geom_glsl,
datatoc_volumetric_frag_glsl,
e_data.volumetric_common_lib,
"#define VOLUMETRICS\n"
"#define CLEAR\n");
e_data.scatter_sh = DRW_shader_create_with_lib(datatoc_volumetric_vert_glsl,
datatoc_volumetric_geom_glsl,
datatoc_volumetric_scatter_frag_glsl,
e_data.volumetric_common_lights_lib,
SHADER_DEFINES
"#define VOLUMETRICS\n"
"#define VOLUME_SHADOW\n");
e_data.scatter_with_lights_sh = DRW_shader_create_with_lib(datatoc_volumetric_vert_glsl,
datatoc_volumetric_geom_glsl,
datatoc_volumetric_scatter_frag_glsl,
e_data.volumetric_common_lights_lib,
SHADER_DEFINES
"#define VOLUMETRICS\n"
"#define VOLUME_LIGHTING\n"
"#define VOLUME_SHADOW\n");
e_data.volumetric_integration_sh = DRW_shader_create_with_lib(
datatoc_volumetric_vert_glsl,
datatoc_volumetric_geom_glsl,
datatoc_volumetric_integration_frag_glsl,
e_data.volumetric_common_lib,
USE_VOLUME_OPTI ? "#extension GL_ARB_shader_image_load_store: enable\n"
"#extension GL_ARB_shading_language_420pack: enable\n"
"#define USE_VOLUME_OPTI\n" :
NULL);
e_data.volumetric_resolve_sh = DRW_shader_create_with_lib(datatoc_common_fullscreen_vert_glsl,
NULL,
datatoc_volumetric_resolve_frag_glsl,
e_data.volumetric_common_lib,
NULL);
e_data.volumetric_accum_sh = DRW_shader_create_fullscreen(datatoc_volumetric_accum_frag_glsl,
NULL);
const float density[4] = {1.0f, 1.0f, 1.0f, 1.0f};
e_data.dummy_density = DRW_texture_create_3d(1, 1, 1, GPU_RGBA8, DRW_TEX_WRAP, density);
const float flame = 0.0f;
e_data.dummy_flame = DRW_texture_create_3d(1, 1, 1, GPU_R8, DRW_TEX_WRAP, &flame);
}
void EEVEE_volumes_set_jitter(EEVEE_ViewLayerData *sldata, uint current_sample)
{
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
double ht_point[3];
double ht_offset[3] = {0.0, 0.0};
uint ht_primes[3] = {3, 7, 2};
BLI_halton_3d(ht_primes, ht_offset, current_sample, ht_point);
common_data->vol_jitter[0] = (float)ht_point[0];
common_data->vol_jitter[1] = (float)ht_point[1];
common_data->vol_jitter[2] = (float)ht_point[2];
}
void EEVEE_volumes_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_StorageList *stl = vedata->stl;
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_EffectsInfo *effects = stl->effects;
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
const DRWContextState *draw_ctx = DRW_context_state_get();
const Scene *scene_eval = DEG_get_evaluated_scene(draw_ctx->depsgraph);
const float *viewport_size = DRW_viewport_size_get();
const int tile_size = scene_eval->eevee.volumetric_tile_size;
/* Find Froxel Texture resolution. */
int tex_size[3];
tex_size[0] = (int)ceilf(fmaxf(1.0f, viewport_size[0] / (float)tile_size));
tex_size[1] = (int)ceilf(fmaxf(1.0f, viewport_size[1] / (float)tile_size));
tex_size[2] = max_ii(scene_eval->eevee.volumetric_samples, 1);
common_data->vol_coord_scale[0] = viewport_size[0] / (float)(tile_size * tex_size[0]);
common_data->vol_coord_scale[1] = viewport_size[1] / (float)(tile_size * tex_size[1]);
common_data->vol_coord_scale[2] = 1.0f / viewport_size[0];
common_data->vol_coord_scale[3] = 1.0f / viewport_size[1];
/* TODO compute snap to maxZBuffer for clustered rendering */
if ((common_data->vol_tex_size[0] != tex_size[0]) ||
(common_data->vol_tex_size[1] != tex_size[1]) ||
(common_data->vol_tex_size[2] != tex_size[2])) {
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_scattering);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_extinction);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_emission);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_phase);
DRW_TEXTURE_FREE_SAFE(txl->volume_scatter);
DRW_TEXTURE_FREE_SAFE(txl->volume_transmit);
DRW_TEXTURE_FREE_SAFE(txl->volume_scatter_history);
DRW_TEXTURE_FREE_SAFE(txl->volume_transmit_history);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_fb);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_scat_fb);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_integ_fb);
copy_v3_v3_int(common_data->vol_tex_size, tex_size);
common_data->vol_inv_tex_size[0] = 1.0f / (float)(tex_size[0]);
common_data->vol_inv_tex_size[1] = 1.0f / (float)(tex_size[1]);
common_data->vol_inv_tex_size[2] = 1.0f / (float)(tex_size[2]);
}
/* Like frostbite's paper, 5% blend of the new frame. */
common_data->vol_history_alpha = (txl->volume_prop_scattering == NULL) ? 0.0f : 0.95f;
/* Temporal Super sampling jitter */
uint ht_primes[3] = {3, 7, 2};
uint current_sample = 0;
/* If TAA is in use do not use the history buffer. */
bool do_taa = ((effects->enabled_effects & EFFECT_TAA) != 0);
if (draw_ctx->evil_C != NULL) {
struct wmWindowManager *wm = CTX_wm_manager(draw_ctx->evil_C);
do_taa = do_taa && (ED_screen_animation_no_scrub(wm) == NULL);
}
if (do_taa) {
common_data->vol_history_alpha = 0.0f;
current_sample = effects->taa_current_sample - 1;
effects->volume_current_sample = -1;
}
else if (DRW_state_is_image_render()) {
const uint max_sample = (ht_primes[0] * ht_primes[1] * ht_primes[2]);
current_sample = effects->volume_current_sample = (effects->volume_current_sample + 1) %
max_sample;
if (current_sample != max_sample - 1) {
DRW_viewport_request_redraw();
}
}
EEVEE_volumes_set_jitter(sldata, current_sample);
float integration_start = scene_eval->eevee.volumetric_start;
float integration_end = scene_eval->eevee.volumetric_end;
common_data->vol_light_clamp = scene_eval->eevee.volumetric_light_clamp;
common_data->vol_shadow_steps = (float)scene_eval->eevee.volumetric_shadow_samples;
if ((scene_eval->eevee.flag & SCE_EEVEE_VOLUMETRIC_SHADOWS) == 0) {
common_data->vol_shadow_steps = 0;
}
/* Update view_vecs */
float invproj[4][4], winmat[4][4];
DRW_view_winmat_get(NULL, winmat, false);
DRW_view_winmat_get(NULL, invproj, true);
EEVEE_update_viewvecs(invproj, winmat, sldata->common_data.view_vecs);
if (DRW_view_is_persp_get(NULL)) {
float sample_distribution = scene_eval->eevee.volumetric_sample_distribution;
sample_distribution = 4.0f * (max_ff(1.0f - sample_distribution, 1e-2f));
const float clip_start = common_data->view_vecs[0][2];
/* Negate */
float near = integration_start = min_ff(-integration_start, clip_start - 1e-4f);
float far = integration_end = min_ff(-integration_end, near - 1e-4f);
common_data->vol_depth_param[0] = (far - near * exp2(1.0f / sample_distribution)) /
(far - near);
common_data->vol_depth_param[1] = (1.0f - common_data->vol_depth_param[0]) / near;
common_data->vol_depth_param[2] = sample_distribution;
}
else {
const float clip_start = common_data->view_vecs[0][2];
const float clip_end = clip_start + common_data->view_vecs[1][2];
integration_start = min_ff(integration_end, clip_start);
integration_end = max_ff(-integration_end, clip_end);
common_data->vol_depth_param[0] = integration_start;
common_data->vol_depth_param[1] = integration_end;
common_data->vol_depth_param[2] = 1.0f / (integration_end - integration_start);
}
/* Disable clamp if equal to 0. */
if (common_data->vol_light_clamp == 0.0) {
common_data->vol_light_clamp = FLT_MAX;
}
common_data->vol_use_lights = (scene_eval->eevee.flag & SCE_EEVEE_VOLUMETRIC_LIGHTS) != 0;
if (!e_data.dummy_scatter) {
float scatter[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float transmit[4] = {1.0f, 1.0f, 1.0f, 1.0f};
e_data.dummy_scatter = DRW_texture_create_3d(1, 1, 1, GPU_RGBA8, DRW_TEX_WRAP, scatter);
e_data.dummy_transmit = DRW_texture_create_3d(1, 1, 1, GPU_RGBA8, DRW_TEX_WRAP, transmit);
}
}
void EEVEE_volumes_cache_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_EffectsInfo *effects = stl->effects;
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
const DRWContextState *draw_ctx = DRW_context_state_get();
Scene *scene = draw_ctx->scene;
DRWShadingGroup *grp = NULL;
/* Shaders */
if (!e_data.scatter_sh) {
eevee_create_shader_volumes();
}
/* Quick breakdown of the Volumetric rendering:
*
* The rendering is separated in 4 stages:
*
* - Material Parameters : we collect volume properties of
* all participating media in the scene and store them in
* a 3D texture aligned with the 3D frustum.
* This is done in 2 passes, one that clear the texture
* and/or evaluate the world volumes, and the 2nd one that
* additively render object volumes.
*
* - Light Scattering : the volume properties then are sampled
* and light scattering is evaluated for each cell of the
* volume texture. Temporal super-sampling (if enabled) occurs here.
*
* - Volume Integration : the scattered light and extinction is
* integrated (accumulated) along the view-rays. The result is stored
* for every cell in another texture.
*
* - Full-screen Resolve : From the previous stage, we get two
* 3D textures that contains integrated scattered light and extinction
* for "every" positions in the frustum. We only need to sample
* them and blend the scene color with those factors. This also
* work for alpha blended materials.
*/
/* World pass is not additive as it also clear the buffer. */
DRW_PASS_CREATE(psl->volumetric_world_ps, DRW_STATE_WRITE_COLOR);
DRW_PASS_CREATE(psl->volumetric_objects_ps, DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND_ADD);
/* World Volumetric */
struct World *wo = scene->world;
if (wo != NULL && wo->use_nodes && wo->nodetree &&
!LOOK_DEV_STUDIO_LIGHT_ENABLED(draw_ctx->v3d)) {
struct GPUMaterial *mat = EEVEE_material_world_volume_get(scene, wo);
if (GPU_material_has_volume_output(mat)) {
grp = DRW_shgroup_material_create(mat, psl->volumetric_world_ps);
}
if (grp) {
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
/* TODO (fclem): remove those (need to clean the GLSL files). */
DRW_shgroup_uniform_block(grp, "grid_block", sldata->grid_ubo);
DRW_shgroup_uniform_block(grp, "probe_block", sldata->probe_ubo);
DRW_shgroup_uniform_block(grp, "planar_block", sldata->planar_ubo);
DRW_shgroup_uniform_block(grp, "light_block", sldata->light_ubo);
DRW_shgroup_uniform_block(grp, "shadow_block", sldata->shadow_ubo);
DRW_shgroup_uniform_block(
grp, "renderpass_block", EEVEE_material_default_render_pass_ubo_get(sldata));
/* Fix principle volumetric not working with world materials. */
ListBase gpu_grids = GPU_material_volume_grids(mat);
LISTBASE_FOREACH (GPUMaterialVolumeGrid *, gpu_grid, &gpu_grids) {
DRW_shgroup_uniform_texture(grp, gpu_grid->sampler_name, e_data.dummy_density);
}
DRW_shgroup_call_procedural_triangles(grp, NULL, common_data->vol_tex_size[2]);
effects->enabled_effects |= (EFFECT_VOLUMETRIC | EFFECT_POST_BUFFER);
}
}
if (grp == NULL) {
/* If no world or volume material is present just clear the buffer with this drawcall */
grp = DRW_shgroup_create(e_data.volumetric_clear_sh, psl->volumetric_world_ps);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_uniform_block(
grp, "renderpass_block", EEVEE_material_default_render_pass_ubo_get(sldata));
DRW_shgroup_call_procedural_triangles(grp, NULL, common_data->vol_tex_size[2]);
}
}
static bool eevee_volume_object_grids_init(Object *ob, ListBase *gpu_grids, DRWShadingGroup *grp)
{
Volume *volume = ob->data;
BKE_volume_load(volume, G.main);
/* Test if we need to use multiple transforms. */
DRWVolumeGrid *first_drw_grid = NULL;
bool multiple_transforms = true;
LISTBASE_FOREACH (GPUMaterialVolumeGrid *, gpu_grid, gpu_grids) {
VolumeGrid *volume_grid = BKE_volume_grid_find(volume, gpu_grid->name);
DRWVolumeGrid *drw_grid = (volume_grid) ?
DRW_volume_batch_cache_get_grid(volume, volume_grid) :
NULL;
if (drw_grid) {
if (first_drw_grid == NULL) {
first_drw_grid = drw_grid;
}
else if (drw_grid &&
!equals_m4m4(drw_grid->object_to_texture, first_drw_grid->object_to_texture)) {
multiple_transforms = true;
break;
}
}
}
/* Bail out of no grids to render. */
if (first_drw_grid == NULL) {
return false;
}
/* Set transform matrix for the volume as a whole. This one is also used for
* clipping so must map the entire bounding box to 0..1. */
float bounds_to_object[4][4];
if (multiple_transforms) {
/* For multiple grids with different transform, we first transform from object space
* to bounds, then for each individual grid from bounds to texture. */
BoundBox *bb = BKE_volume_boundbox_get(ob);
float bb_size[3];
sub_v3_v3v3(bb_size, bb->vec[6], bb->vec[0]);
size_to_mat4(bounds_to_object, bb_size);
copy_v3_v3(bounds_to_object[3], bb->vec[0]);
invert_m4_m4(first_drw_grid->object_to_bounds, bounds_to_object);
DRW_shgroup_uniform_mat4(grp, "volumeObjectToTexture", first_drw_grid->object_to_bounds);
}
else {
/* All grid transforms are equal, we can transform to texture space immediately. */
DRW_shgroup_uniform_mat4(grp, "volumeObjectToTexture", first_drw_grid->object_to_texture);
}
/* Don't use orco transform here, only matrix. */
DRW_shgroup_uniform_vec3_copy(grp, "volumeOrcoLoc", (float[3]){0.5f, 0.5f, 0.5f});
DRW_shgroup_uniform_vec3_copy(grp, "volumeOrcoSize", (float[3]){0.5f, 0.5f, 0.5f});
/* Set density scale. */
const float density_scale = BKE_volume_density_scale(volume, ob->obmat);
DRW_shgroup_uniform_float_copy(grp, "volumeDensityScale", density_scale);
/* Bind volume grid textures. */
LISTBASE_FOREACH (GPUMaterialVolumeGrid *, gpu_grid, gpu_grids) {
VolumeGrid *volume_grid = BKE_volume_grid_find(volume, gpu_grid->name);
DRWVolumeGrid *drw_grid = (volume_grid) ?
DRW_volume_batch_cache_get_grid(volume, volume_grid) :
NULL;
DRW_shgroup_uniform_texture(
grp, gpu_grid->sampler_name, (drw_grid) ? drw_grid->texture : e_data.dummy_density);
if (drw_grid && multiple_transforms) {
/* Specify per-volume transform matrix that is applied after the
* transform from object to bounds. */
mul_m4_m4m4(drw_grid->bounds_to_texture, drw_grid->object_to_texture, bounds_to_object);
DRW_shgroup_uniform_mat4(grp, gpu_grid->transform_name, drw_grid->bounds_to_texture);
}
}
return true;
}
static bool eevee_volume_object_mesh_init(Scene *scene,
Object *ob,
ListBase *gpu_grids,
DRWShadingGroup *grp)
{
static const float white[3] = {1.0f, 1.0f, 1.0f};
ModifierData *md = NULL;
/* Smoke Simulation */
if (((ob->base_flag & BASE_FROM_DUPLI) == 0) &&
(md = BKE_modifiers_findby_type(ob, eModifierType_Fluid)) &&
(BKE_modifier_is_enabled(scene, md, eModifierMode_Realtime)) &&
((FluidModifierData *)md)->domain != NULL) {
FluidModifierData *mmd = (FluidModifierData *)md;
FluidDomainSettings *mds = mmd->domain;
/* Don't try to show liquid domains here. */
if (!mds->fluid || !(mds->type == FLUID_DOMAIN_TYPE_GAS)) {
return false;
}
/* Don't show smoke before simulation starts, this could be made an option in the future. */
/* (sebbas): Always show smoke for manta */
#if 0
const DRWContextState *draw_ctx = DRW_context_state_get();
const bool show_smoke = ((int)DEG_get_ctime(draw_ctx->depsgraph) >=
*mds->point_cache[0]->startframe);
#endif
if (mds->fluid && (mds->type == FLUID_DOMAIN_TYPE_GAS) /* && show_smoke */) {
if (!(mds->flags & FLUID_DOMAIN_USE_NOISE)) {
GPU_create_smoke(mmd, 0);
}
else if (mds->flags & FLUID_DOMAIN_USE_NOISE) {
GPU_create_smoke(mmd, 1);
}
BLI_addtail(&e_data.smoke_domains, BLI_genericNodeN(mmd));
}
LISTBASE_FOREACH (GPUMaterialVolumeGrid *, gpu_grid, gpu_grids) {
if (STREQ(gpu_grid->name, "density")) {
DRW_shgroup_uniform_texture_ref(grp,
gpu_grid->sampler_name,
mds->tex_density ? &mds->tex_density :
&e_data.dummy_density);
}
else if (STREQ(gpu_grid->name, "color")) {
DRW_shgroup_uniform_texture_ref(
grp, gpu_grid->sampler_name, mds->tex_color ? &mds->tex_color : &e_data.dummy_density);
}
else if (STREQ(gpu_grid->name, "flame") || STREQ(gpu_grid->name, "temperature")) {
DRW_shgroup_uniform_texture_ref(
grp, gpu_grid->sampler_name, mds->tex_flame ? &mds->tex_flame : &e_data.dummy_flame);
}
else {
DRW_shgroup_uniform_texture_ref(grp, gpu_grid->sampler_name, &e_data.dummy_density);
}
}
/* Constant Volume color. */
bool use_constant_color = ((mds->active_fields & FLUID_DOMAIN_ACTIVE_COLORS) == 0 &&
(mds->active_fields & FLUID_DOMAIN_ACTIVE_COLOR_SET) != 0);
DRW_shgroup_uniform_vec3(
grp, "volumeColor", (use_constant_color) ? mds->active_color : white, 1);
/* Output is such that 0..1 maps to 0..1000K */
DRW_shgroup_uniform_vec2(grp, "volumeTemperature", &mds->flame_ignition, 1);
}
else {
LISTBASE_FOREACH (GPUMaterialVolumeGrid *, gpu_grid, gpu_grids) {
DRW_shgroup_uniform_texture(grp, gpu_grid->sampler_name, e_data.dummy_density);
}
}
/* Transform for mesh volumes. */
static const float unit_mat[4][4] = {{1.0f, 0.0f, 0.0f, 0.0f},
{0.0f, 1.0f, 0.0f, 0.0f},
{0.0f, 0.0f, 1.0f, 0.0f},
{0.0f, 0.0f, 0.0f, 1.0f}};
float *texco_loc, *texco_size;
BKE_mesh_texspace_get_reference((struct Mesh *)ob->data, NULL, &texco_loc, &texco_size);
DRW_shgroup_uniform_mat4(grp, "volumeObjectToTexture", unit_mat);
DRW_shgroup_uniform_vec3(grp, "volumeOrcoLoc", texco_loc, 1);
DRW_shgroup_uniform_vec3(grp, "volumeOrcoSize", texco_size, 1);
return true;
}
void EEVEE_volumes_cache_object_add(EEVEE_ViewLayerData *sldata,
EEVEE_Data *vedata,
Scene *scene,
Object *ob)
{
Material *ma = BKE_object_material_get(ob, 1);
if (ma == NULL) {
if (ob->type == OB_VOLUME) {
ma = BKE_material_default_volume();
}
else {
return;
}
}
float size[3];
mat4_to_size(size, ob->obmat);
/* Check if any of the axes have 0 length. (see T69070) */
const float epsilon = 1e-8f;
if ((size[0] < epsilon) || (size[1] < epsilon) || (size[2] < epsilon)) {
return;
}
struct GPUMaterial *mat = EEVEE_material_mesh_volume_get(scene, ma);
eGPUMaterialStatus status = GPU_material_status(mat);
if (status == GPU_MAT_QUEUED) {
vedata->stl->g_data->queued_shaders_count++;
}
/* If shader failed to compile or is currently compiling. */
if (status != GPU_MAT_SUCCESS) {
return;
}
DRWShadingGroup *grp = DRW_shgroup_material_create(mat, vedata->psl->volumetric_objects_ps);
/* TODO(fclem) remove those "unnecessary" UBOs */
DRW_shgroup_uniform_block(grp, "planar_block", sldata->planar_ubo);
DRW_shgroup_uniform_block(grp, "probe_block", sldata->probe_ubo);
DRW_shgroup_uniform_block(grp, "shadow_block", sldata->shadow_ubo);
DRW_shgroup_uniform_block(grp, "light_block", sldata->light_ubo);
DRW_shgroup_uniform_block(grp, "grid_block", sldata->grid_ubo);
DRW_shgroup_uniform_block(
grp, "renderpass_block", EEVEE_material_default_render_pass_ubo_get(sldata));
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
ListBase gpu_grids = GPU_material_volume_grids(mat);
if (ob->type == OB_VOLUME) {
if (!eevee_volume_object_grids_init(ob, &gpu_grids, grp)) {
return;
}
}
else {
if (!eevee_volume_object_mesh_init(scene, ob, &gpu_grids, grp)) {
return;
}
}
/* TODO Reduce to number of slices intersecting. */
/* TODO Preemptive culling. */
DRW_shgroup_call_procedural_triangles(grp, ob, sldata->common_data.vol_tex_size[2]);
vedata->stl->effects->enabled_effects |= (EFFECT_VOLUMETRIC | EFFECT_POST_BUFFER);
}
void EEVEE_volumes_cache_finish(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_EffectsInfo *effects = vedata->stl->effects;
LightCache *lcache = vedata->stl->g_data->light_cache;
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
DRWShadingGroup *grp;
struct GPUShader *sh;
DRW_PASS_CREATE(psl->volumetric_scatter_ps, DRW_STATE_WRITE_COLOR);
sh = (common_data->vol_use_lights) ? e_data.scatter_with_lights_sh : e_data.scatter_sh;
grp = DRW_shgroup_create(sh, psl->volumetric_scatter_ps);
DRW_shgroup_uniform_texture_ref(grp, "irradianceGrid", &lcache->grid_tx.tex);
DRW_shgroup_uniform_texture_ref(grp, "shadowCubeTexture", &sldata->shadow_cube_pool);
DRW_shgroup_uniform_texture_ref(grp, "shadowCascadeTexture", &sldata->shadow_cascade_pool);
DRW_shgroup_uniform_texture_ref(grp, "volumeScattering", &txl->volume_prop_scattering);
DRW_shgroup_uniform_texture_ref(grp, "volumeExtinction", &txl->volume_prop_extinction);
DRW_shgroup_uniform_texture_ref(grp, "volumeEmission", &txl->volume_prop_emission);
DRW_shgroup_uniform_texture_ref(grp, "volumePhase", &txl->volume_prop_phase);
DRW_shgroup_uniform_texture_ref(grp, "historyScattering", &txl->volume_scatter_history);
DRW_shgroup_uniform_texture_ref(grp, "historyTransmittance", &txl->volume_transmit_history);
DRW_shgroup_uniform_block(grp, "light_block", sldata->light_ubo);
DRW_shgroup_uniform_block(grp, "shadow_block", sldata->shadow_ubo);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_uniform_block(
grp, "renderpass_block", EEVEE_material_default_render_pass_ubo_get(sldata));
DRW_shgroup_call_procedural_triangles(grp, NULL, common_data->vol_tex_size[2]);
DRW_PASS_CREATE(psl->volumetric_integration_ps, DRW_STATE_WRITE_COLOR);
grp = DRW_shgroup_create(e_data.volumetric_integration_sh, psl->volumetric_integration_ps);
DRW_shgroup_uniform_texture_ref(grp, "volumeScattering", &txl->volume_scatter);
DRW_shgroup_uniform_texture_ref(grp, "volumeExtinction", &txl->volume_transmit);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_uniform_block(
grp, "renderpass_block", EEVEE_material_default_render_pass_ubo_get(sldata));
DRW_shgroup_call_procedural_triangles(
grp, NULL, USE_VOLUME_OPTI ? 1 : common_data->vol_tex_size[2]);
DRW_PASS_CREATE(psl->volumetric_resolve_ps, DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND_CUSTOM);
grp = DRW_shgroup_create(e_data.volumetric_resolve_sh, psl->volumetric_resolve_ps);
DRW_shgroup_uniform_texture_ref(grp, "inScattering", &txl->volume_scatter);
DRW_shgroup_uniform_texture_ref(grp, "inTransmittance", &txl->volume_transmit);
DRW_shgroup_uniform_texture_ref(grp, "inSceneDepth", &e_data.depth_src);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_uniform_block(
grp, "renderpass_block", EEVEE_material_default_render_pass_ubo_get(sldata));
DRW_shgroup_call_procedural_triangles(grp, NULL, 1);
}
}
void EEVEE_volumes_draw_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_EffectsInfo *effects = vedata->stl->effects;
EEVEE_CommonUniformBuffer *common_data = &sldata->common_data;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
int *tex_size = common_data->vol_tex_size;
if (txl->volume_prop_scattering == NULL) {
/* Volume properties: We evaluate all volumetric objects
* and store their final properties into each froxel */
txl->volume_prop_scattering = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
txl->volume_prop_extinction = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
txl->volume_prop_emission = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
txl->volume_prop_phase = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_RG16F, DRW_TEX_FILTER, NULL);
/* Volume scattering: We compute for each froxel the
* Scattered light towards the view. We also resolve temporal
* super sampling during this stage. */
txl->volume_scatter = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
txl->volume_transmit = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
/* Final integration: We compute for each froxel the
* amount of scattered light and extinction coef at this
* given depth. We use these textures as double buffer
* for the volumetric history. */
txl->volume_scatter_history = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
txl->volume_transmit_history = DRW_texture_create_3d(
tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL);
}
GPU_framebuffer_ensure_config(&fbl->volumetric_fb,
{GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(txl->volume_prop_scattering),
GPU_ATTACHMENT_TEXTURE(txl->volume_prop_extinction),
GPU_ATTACHMENT_TEXTURE(txl->volume_prop_emission),
GPU_ATTACHMENT_TEXTURE(txl->volume_prop_phase)});
GPU_framebuffer_ensure_config(&fbl->volumetric_scat_fb,
{GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(txl->volume_scatter),
GPU_ATTACHMENT_TEXTURE(txl->volume_transmit)});
GPU_framebuffer_ensure_config(&fbl->volumetric_integ_fb,
{GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(txl->volume_scatter_history),
GPU_ATTACHMENT_TEXTURE(txl->volume_transmit_history)});
}
else {
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_scattering);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_extinction);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_emission);
DRW_TEXTURE_FREE_SAFE(txl->volume_prop_phase);
DRW_TEXTURE_FREE_SAFE(txl->volume_scatter);
DRW_TEXTURE_FREE_SAFE(txl->volume_transmit);
DRW_TEXTURE_FREE_SAFE(txl->volume_scatter_history);
DRW_TEXTURE_FREE_SAFE(txl->volume_transmit_history);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_fb);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_scat_fb);
GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_integ_fb);
}
effects->volume_scatter = e_data.dummy_scatter;
effects->volume_transmit = e_data.dummy_transmit;
}
void EEVEE_volumes_compute(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_EffectsInfo *effects = stl->effects;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
DRW_stats_group_start("Volumetrics");
/* We sample the shadow-maps using shadow sampler. We need to enable Comparison mode.
* TODO(fclem) avoid this by using sampler objects.*/
GPU_texture_bind(sldata->shadow_cube_pool, 0);
GPU_texture_compare_mode(sldata->shadow_cube_pool, true);
GPU_texture_unbind(sldata->shadow_cube_pool);
GPU_texture_bind(sldata->shadow_cascade_pool, 0);
GPU_texture_compare_mode(sldata->shadow_cascade_pool, true);
GPU_texture_unbind(sldata->shadow_cascade_pool);
GPU_framebuffer_bind(fbl->volumetric_fb);
DRW_draw_pass(psl->volumetric_world_ps);
DRW_draw_pass(psl->volumetric_objects_ps);
GPU_framebuffer_bind(fbl->volumetric_scat_fb);
DRW_draw_pass(psl->volumetric_scatter_ps);
if (USE_VOLUME_OPTI) {
int tex_scatter = GPU_texture_opengl_bindcode(txl->volume_scatter_history);
int tex_transmit = GPU_texture_opengl_bindcode(txl->volume_transmit_history);
/* TODO(fclem) Encapsulate these GL calls into DRWManager. */
glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);
/* Subtlety here! we need to tell the GL that the texture is layered (GL_TRUE)
* in order to bind the full 3D texture and not just a 2D slice. */
glBindImageTexture(0, tex_scatter, 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_R11F_G11F_B10F);
glBindImageTexture(1, tex_transmit, 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_R11F_G11F_B10F);
GPU_framebuffer_bind(fbl->volumetric_fb);
}
else {
GPU_framebuffer_bind(fbl->volumetric_integ_fb);
}
DRW_draw_pass(psl->volumetric_integration_ps);
if (USE_VOLUME_OPTI) {
glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);
glBindImageTexture(0, 0, 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_R11F_G11F_B10F);
glBindImageTexture(1, 0, 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_R11F_G11F_B10F);
}
SWAP(struct GPUFrameBuffer *, fbl->volumetric_scat_fb, fbl->volumetric_integ_fb);
SWAP(GPUTexture *, txl->volume_scatter, txl->volume_scatter_history);
SWAP(GPUTexture *, txl->volume_transmit, txl->volume_transmit_history);
effects->volume_scatter = txl->volume_scatter;
effects->volume_transmit = txl->volume_transmit;
/* Restore */
GPU_framebuffer_bind(fbl->main_fb);
DRW_stats_group_end();
}
}
void EEVEE_volumes_resolve(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_EffectsInfo *effects = stl->effects;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
DefaultTextureList *dtxl = DRW_viewport_texture_list_get();
e_data.depth_src = dtxl->depth;
/* Apply for opaque geometry. */
GPU_framebuffer_bind(fbl->main_color_fb);
DRW_draw_pass(psl->volumetric_resolve_ps);
/* Restore. */
GPU_framebuffer_bind(fbl->main_fb);
}
}
void EEVEE_volumes_free_smoke_textures(void)
{
/* Free Smoke Textures after rendering */
LISTBASE_FOREACH (LinkData *, link, &e_data.smoke_domains) {
FluidModifierData *mmd = (FluidModifierData *)link->data;
GPU_free_smoke(mmd);
}
BLI_freelistN(&e_data.smoke_domains);
}
void EEVEE_volumes_free(void)
{
MEM_SAFE_FREE(e_data.volumetric_common_lib);
MEM_SAFE_FREE(e_data.volumetric_common_lights_lib);
DRW_TEXTURE_FREE_SAFE(e_data.dummy_scatter);
DRW_TEXTURE_FREE_SAFE(e_data.dummy_transmit);
DRW_TEXTURE_FREE_SAFE(e_data.dummy_density);
DRW_TEXTURE_FREE_SAFE(e_data.dummy_flame);
DRW_TEXTURE_FREE_SAFE(e_data.dummy_color);
DRW_SHADER_FREE_SAFE(e_data.volumetric_clear_sh);
DRW_SHADER_FREE_SAFE(e_data.scatter_sh);
DRW_SHADER_FREE_SAFE(e_data.scatter_with_lights_sh);
DRW_SHADER_FREE_SAFE(e_data.volumetric_integration_sh);
DRW_SHADER_FREE_SAFE(e_data.volumetric_resolve_sh);
DRW_SHADER_FREE_SAFE(e_data.volumetric_accum_sh);
}
/* -------------------------------------------------------------------- */
/** \name Render Passes
* \{ */
void EEVEE_volumes_output_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata, uint tot_samples)
{
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_TextureList *txl = vedata->txl;
EEVEE_StorageList *stl = vedata->stl;
EEVEE_PassList *psl = vedata->psl;
EEVEE_EffectsInfo *effects = stl->effects;
float clear[4] = {0.0f, 0.0f, 0.0f, 0.0f};
/* Create FrameBuffer. */
/* Should be enough precision for many samples. */
const eGPUTextureFormat texture_format_accum = (tot_samples > 128) ? GPU_RGBA32F : GPU_RGBA16F;
DRW_texture_ensure_fullscreen_2d(&txl->volume_scatter_accum, texture_format_accum, 0);
DRW_texture_ensure_fullscreen_2d(&txl->volume_transmittance_accum, texture_format_accum, 0);
GPU_framebuffer_ensure_config(&fbl->volumetric_accum_fb,
{GPU_ATTACHMENT_NONE,
GPU_ATTACHMENT_TEXTURE(txl->volume_scatter_accum),
GPU_ATTACHMENT_TEXTURE(txl->volume_transmittance_accum)});
/* Clear texture. */
if (DRW_state_is_image_render() || effects->taa_current_sample == 1) {
GPU_framebuffer_bind(fbl->volumetric_accum_fb);
GPU_framebuffer_clear_color(fbl->volumetric_accum_fb, clear);
}
/* Create Pass and shgroup. */
DRW_PASS_CREATE(psl->volumetric_accum_ps, DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND_ADD_FULL);
DRWShadingGroup *grp = NULL;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
grp = DRW_shgroup_create(e_data.volumetric_resolve_sh, psl->volumetric_accum_ps);
DRW_shgroup_uniform_texture_ref(grp, "inScattering", &txl->volume_scatter);
DRW_shgroup_uniform_texture_ref(grp, "inTransmittance", &txl->volume_transmit);
DRW_shgroup_uniform_texture_ref(grp, "inSceneDepth", &e_data.depth_src);
DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);
DRW_shgroup_uniform_block(
grp, "renderpass_block", EEVEE_material_default_render_pass_ubo_get(sldata));
}
else {
/* There is no volumetrics in the scene. Use a shader to fill the accum textures with a default
* value. */
grp = DRW_shgroup_create(e_data.volumetric_accum_sh, psl->volumetric_accum_ps);
}
DRW_shgroup_call(grp, DRW_cache_fullscreen_quad_get(), NULL);
}
void EEVEE_volumes_output_accumulate(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata)
{
EEVEE_FramebufferList *fbl = vedata->fbl;
EEVEE_PassList *psl = vedata->psl;
if (fbl->volumetric_accum_fb != NULL) {
/* Accum pass */
GPU_framebuffer_bind(fbl->volumetric_accum_fb);
DRW_draw_pass(psl->volumetric_accum_ps);
/* Restore */
GPU_framebuffer_bind(fbl->main_fb);
}
}
/* \} */