This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/anim_path.c
Campbell Barton 827959ff98 Cleanup: use const arguments to deform functions
This changes curve deform code not to set the objects inverse matrix,
this shouldn't cause problems as it's not used elsewhere afterwards.
2020-06-13 16:20:09 +10:00

352 lines
8.9 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include <float.h>
#include "DNA_curve_types.h"
#include "DNA_key_types.h"
#include "DNA_object_types.h"
#include "BLI_math_vector.h"
#include "BKE_anim_path.h"
#include "BKE_curve.h"
#include "BKE_key.h"
#include "CLG_log.h"
static CLG_LogRef LOG = {"bke.anim"};
/* ******************************************************************** */
/* Curve Paths - for curve deforms and/or curve following */
/**
* Free curve path data
*
* \note Frees the path itself!
* \note This is increasingly inaccurate with non-uniform #BevPoint subdivisions T24633.
*/
void free_path(Path *path)
{
if (path->data) {
MEM_freeN(path->data);
}
MEM_freeN(path);
}
/**
* Calculate a curve-deform path for a curve
* - Only called from displist.c -> #do_makeDispListCurveTypes
*/
void calc_curvepath(Object *ob, ListBase *nurbs)
{
BevList *bl;
BevPoint *bevp, *bevpn, *bevpfirst, *bevplast;
PathPoint *pp;
Nurb *nu;
Path *path;
float *fp, *dist, *maxdist, xyz[3];
float fac, d = 0, fac1, fac2;
int a, tot, cycl = 0;
/* in a path vertices are with equal differences: path->len = number of verts */
/* NOW WITH BEVELCURVE!!! */
if (ob == NULL || ob->type != OB_CURVE) {
return;
}
if (ob->runtime.curve_cache->path) {
free_path(ob->runtime.curve_cache->path);
}
ob->runtime.curve_cache->path = NULL;
/* weak! can only use first curve */
bl = ob->runtime.curve_cache->bev.first;
if (bl == NULL || !bl->nr) {
return;
}
nu = nurbs->first;
ob->runtime.curve_cache->path = path = MEM_callocN(sizeof(Path), "calc_curvepath");
/* if POLY: last vertice != first vertice */
cycl = (bl->poly != -1);
tot = cycl ? bl->nr : bl->nr - 1;
path->len = tot + 1;
/* Exception: vector handle paths and polygon paths should be subdivided
* at least a factor resolution. */
if (path->len < nu->resolu * SEGMENTSU(nu)) {
path->len = nu->resolu * SEGMENTSU(nu);
}
dist = (float *)MEM_mallocN(sizeof(float) * (tot + 1), "calcpathdist");
/* all lengths in *dist */
bevp = bevpfirst = bl->bevpoints;
fp = dist;
*fp = 0.0f;
for (a = 0; a < tot; a++) {
fp++;
if (cycl && a == tot - 1) {
sub_v3_v3v3(xyz, bevpfirst->vec, bevp->vec);
}
else {
sub_v3_v3v3(xyz, (bevp + 1)->vec, bevp->vec);
}
*fp = *(fp - 1) + len_v3(xyz);
bevp++;
}
path->totdist = *fp;
/* the path verts in path->data */
/* now also with TILT value */
pp = path->data = (PathPoint *)MEM_callocN(sizeof(PathPoint) * path->len, "pathdata");
bevp = bevpfirst;
bevpn = bevp + 1;
bevplast = bevpfirst + (bl->nr - 1);
if (UNLIKELY(bevpn > bevplast)) {
bevpn = cycl ? bevpfirst : bevplast;
}
fp = dist + 1;
maxdist = dist + tot;
fac = 1.0f / ((float)path->len - 1.0f);
fac = fac * path->totdist;
for (a = 0; a < path->len; a++) {
d = ((float)a) * fac;
/* we're looking for location (distance) 'd' in the array */
if (LIKELY(tot > 0)) {
while ((fp < maxdist) && (d >= *fp)) {
fp++;
if (bevp < bevplast) {
bevp++;
}
bevpn = bevp + 1;
if (UNLIKELY(bevpn > bevplast)) {
bevpn = cycl ? bevpfirst : bevplast;
}
}
fac1 = (*(fp)-d) / (*(fp) - *(fp - 1));
fac2 = 1.0f - fac1;
}
else {
fac1 = 1.0f;
fac2 = 0.0f;
}
interp_v3_v3v3(pp->vec, bevp->vec, bevpn->vec, fac2);
pp->vec[3] = fac1 * bevp->tilt + fac2 * bevpn->tilt;
pp->radius = fac1 * bevp->radius + fac2 * bevpn->radius;
pp->weight = fac1 * bevp->weight + fac2 * bevpn->weight;
interp_qt_qtqt(pp->quat, bevp->quat, bevpn->quat, fac2);
normalize_qt(pp->quat);
pp++;
}
MEM_freeN(dist);
}
static int interval_test(const int min, const int max, int p1, const int cycl)
{
if (cycl) {
p1 = mod_i(p1 - min, (max - min + 1)) + min;
}
else {
if (p1 < min) {
p1 = min;
}
else if (p1 > max) {
p1 = max;
}
}
return p1;
}
/**
* Calculate the deformation implied by the curve path at a given parametric position,
* and returns whether this operation succeeded.
*
* \param ctime: Time is normalized range <0-1>.
*
* \return success.
*/
bool where_on_path(const Object *ob,
float ctime,
float r_vec[4],
float r_dir[3],
float r_quat[4],
float *r_radius,
float *r_weight)
{
Curve *cu;
const Nurb *nu;
const BevList *bl;
const Path *path;
const PathPoint *pp, *p0, *p1, *p2, *p3;
float fac;
float data[4];
int cycl = 0, s0, s1, s2, s3;
const ListBase *nurbs;
if (ob == NULL || ob->type != OB_CURVE) {
return false;
}
cu = ob->data;
if (ob->runtime.curve_cache == NULL || ob->runtime.curve_cache->path == NULL ||
ob->runtime.curve_cache->path->data == NULL) {
CLOG_WARN(&LOG, "no path!");
return false;
}
path = ob->runtime.curve_cache->path;
pp = path->data;
/* test for cyclic */
bl = ob->runtime.curve_cache->bev.first;
if (!bl) {
return false;
}
if (!bl->nr) {
return false;
}
if (bl->poly > -1) {
cycl = 1;
}
/* values below zero for non-cyclic curves give strange results */
BLI_assert(cycl || ctime >= 0.0f);
ctime *= (path->len - 1);
s1 = (int)floor(ctime);
fac = (float)(s1 + 1) - ctime;
/* path->len is corrected for cyclic */
s0 = interval_test(0, path->len - 1 - cycl, s1 - 1, cycl);
s1 = interval_test(0, path->len - 1 - cycl, s1, cycl);
s2 = interval_test(0, path->len - 1 - cycl, s1 + 1, cycl);
s3 = interval_test(0, path->len - 1 - cycl, s1 + 2, cycl);
p0 = pp + s0;
p1 = pp + s1;
p2 = pp + s2;
p3 = pp + s3;
/* NOTE: commented out for follow constraint
*
* If it's ever be uncommented watch out for BKE_curve_deform_coords()
* which used to temporary set CU_FOLLOW flag for the curve and no
* longer does it (because of threading issues of such a thing.
*/
// if (cu->flag & CU_FOLLOW) {
key_curve_tangent_weights(1.0f - fac, data, KEY_BSPLINE);
interp_v3_v3v3v3v3(r_dir, p0->vec, p1->vec, p2->vec, p3->vec, data);
/* Make compatible with #vec_to_quat. */
negate_v3(r_dir);
//}
nurbs = BKE_curve_editNurbs_get(cu);
if (!nurbs) {
nurbs = &cu->nurb;
}
nu = nurbs->first;
/* make sure that first and last frame are included in the vectors here */
if (nu->type == CU_POLY) {
key_curve_position_weights(1.0f - fac, data, KEY_LINEAR);
}
else if (nu->type == CU_BEZIER) {
key_curve_position_weights(1.0f - fac, data, KEY_LINEAR);
}
else if (s0 == s1 || p2 == p3) {
key_curve_position_weights(1.0f - fac, data, KEY_CARDINAL);
}
else {
key_curve_position_weights(1.0f - fac, data, KEY_BSPLINE);
}
r_vec[0] = /* X */
data[0] * p0->vec[0] + data[1] * p1->vec[0] + data[2] * p2->vec[0] + data[3] * p3->vec[0];
r_vec[1] = /* Y */
data[0] * p0->vec[1] + data[1] * p1->vec[1] + data[2] * p2->vec[1] + data[3] * p3->vec[1];
r_vec[2] = /* Z */
data[0] * p0->vec[2] + data[1] * p1->vec[2] + data[2] * p2->vec[2] + data[3] * p3->vec[2];
r_vec[3] = /* Tilt, should not be needed since we have quat still used */
data[0] * p0->vec[3] + data[1] * p1->vec[3] + data[2] * p2->vec[3] + data[3] * p3->vec[3];
if (r_quat) {
float totfac, q1[4], q2[4];
totfac = data[0] + data[3];
if (totfac > FLT_EPSILON) {
interp_qt_qtqt(q1, p0->quat, p3->quat, data[3] / totfac);
}
else {
copy_qt_qt(q1, p1->quat);
}
totfac = data[1] + data[2];
if (totfac > FLT_EPSILON) {
interp_qt_qtqt(q2, p1->quat, p2->quat, data[2] / totfac);
}
else {
copy_qt_qt(q2, p3->quat);
}
totfac = data[0] + data[1] + data[2] + data[3];
if (totfac > FLT_EPSILON) {
interp_qt_qtqt(r_quat, q1, q2, (data[1] + data[2]) / totfac);
}
else {
copy_qt_qt(r_quat, q2);
}
}
if (r_radius) {
*r_radius = data[0] * p0->radius + data[1] * p1->radius + data[2] * p2->radius +
data[3] * p3->radius;
}
if (r_weight) {
*r_weight = data[0] * p0->weight + data[1] * p1->weight + data[2] * p2->weight +
data[3] * p3->weight;
}
return true;
}