Since {rBeae36be372a6b16ee3e76eff0485a47da4f3c230} the distinction
between float and byte colors is more explicit in the ui. So far, geometry
nodes couldn't really deal with byte colors in general. This patch fixes that.
There is still only one color socket, which contains float colors. Conversion
to and from byte colors is done when read from or writing to attributes.
* Support writing to byte color attributes in Store Named Attribute node.
* Support converting to/from byte color in attribute conversion operator.
* Support propagating byte color attributes.
* Add all the implicit conversions from byte colors to the other types.
* Display byte colors as integers in spreadsheet.
Differential Revision: https://developer.blender.org/D14705
408 lines
12 KiB
C++
408 lines
12 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#pragma once
|
|
|
|
#include "BLI_array.hh"
|
|
#include "BLI_color.hh"
|
|
#include "BLI_cpp_type.hh"
|
|
#include "BLI_math_color.hh"
|
|
#include "BLI_math_vector.h"
|
|
#include "BLI_math_vector.hh"
|
|
|
|
#include "BKE_customdata.h"
|
|
|
|
namespace blender::attribute_math {
|
|
|
|
/**
|
|
* Utility function that simplifies calling a templated function based on a run-time data type.
|
|
*/
|
|
template<typename Func>
|
|
inline void convert_to_static_type(const CPPType &cpp_type, const Func &func)
|
|
{
|
|
cpp_type.to_static_type_tag<float,
|
|
float2,
|
|
float3,
|
|
int,
|
|
bool,
|
|
int8_t,
|
|
ColorGeometry4f,
|
|
ColorGeometry4b>([&](auto type_tag) {
|
|
using T = typename decltype(type_tag)::type;
|
|
if constexpr (std::is_same_v<T, void>) {
|
|
/* It's expected that the given cpp type is one of the supported ones. */
|
|
BLI_assert_unreachable();
|
|
}
|
|
else {
|
|
func(T());
|
|
}
|
|
});
|
|
}
|
|
|
|
template<typename Func>
|
|
inline void convert_to_static_type(const CustomDataType data_type, const Func &func)
|
|
{
|
|
const CPPType &cpp_type = *bke::custom_data_type_to_cpp_type(data_type);
|
|
convert_to_static_type(cpp_type, func);
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Mix three values of the same type.
|
|
*
|
|
* This is typically used to interpolate values within a triangle.
|
|
* \{ */
|
|
|
|
template<typename T> T mix3(const float3 &weights, const T &v0, const T &v1, const T &v2);
|
|
|
|
template<>
|
|
inline int8_t mix3(const float3 &weights, const int8_t &v0, const int8_t &v1, const int8_t &v2)
|
|
{
|
|
return static_cast<int8_t>(weights.x * v0 + weights.y * v1 + weights.z * v2);
|
|
}
|
|
|
|
template<> inline bool mix3(const float3 &weights, const bool &v0, const bool &v1, const bool &v2)
|
|
{
|
|
return (weights.x * v0 + weights.y * v1 + weights.z * v2) >= 0.5f;
|
|
}
|
|
|
|
template<> inline int mix3(const float3 &weights, const int &v0, const int &v1, const int &v2)
|
|
{
|
|
return static_cast<int>(weights.x * v0 + weights.y * v1 + weights.z * v2);
|
|
}
|
|
|
|
template<>
|
|
inline float mix3(const float3 &weights, const float &v0, const float &v1, const float &v2)
|
|
{
|
|
return weights.x * v0 + weights.y * v1 + weights.z * v2;
|
|
}
|
|
|
|
template<>
|
|
inline float2 mix3(const float3 &weights, const float2 &v0, const float2 &v1, const float2 &v2)
|
|
{
|
|
return weights.x * v0 + weights.y * v1 + weights.z * v2;
|
|
}
|
|
|
|
template<>
|
|
inline float3 mix3(const float3 &weights, const float3 &v0, const float3 &v1, const float3 &v2)
|
|
{
|
|
return weights.x * v0 + weights.y * v1 + weights.z * v2;
|
|
}
|
|
|
|
template<>
|
|
inline ColorGeometry4f mix3(const float3 &weights,
|
|
const ColorGeometry4f &v0,
|
|
const ColorGeometry4f &v1,
|
|
const ColorGeometry4f &v2)
|
|
{
|
|
ColorGeometry4f result;
|
|
interp_v4_v4v4v4(result, v0, v1, v2, weights);
|
|
return result;
|
|
}
|
|
|
|
template<>
|
|
inline ColorGeometry4b mix3(const float3 &weights,
|
|
const ColorGeometry4b &v0,
|
|
const ColorGeometry4b &v1,
|
|
const ColorGeometry4b &v2)
|
|
{
|
|
const float4 v0_f{&v0.r};
|
|
const float4 v1_f{&v1.r};
|
|
const float4 v2_f{&v2.r};
|
|
const float4 mixed = v0_f * weights[0] + v1_f * weights[1] + v2_f * weights[2];
|
|
return ColorGeometry4b{static_cast<uint8_t>(mixed[0]),
|
|
static_cast<uint8_t>(mixed[1]),
|
|
static_cast<uint8_t>(mixed[2]),
|
|
static_cast<uint8_t>(mixed[3])};
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Mix two values of the same type.
|
|
*
|
|
* This is just basic linear interpolation.
|
|
* \{ */
|
|
|
|
template<typename T> T mix2(float factor, const T &a, const T &b);
|
|
|
|
template<> inline bool mix2(const float factor, const bool &a, const bool &b)
|
|
{
|
|
return ((1.0f - factor) * a + factor * b) >= 0.5f;
|
|
}
|
|
|
|
template<> inline int8_t mix2(const float factor, const int8_t &a, const int8_t &b)
|
|
{
|
|
return static_cast<int8_t>((1.0f - factor) * a + factor * b);
|
|
}
|
|
|
|
template<> inline int mix2(const float factor, const int &a, const int &b)
|
|
{
|
|
return static_cast<int>((1.0f - factor) * a + factor * b);
|
|
}
|
|
|
|
template<> inline float mix2(const float factor, const float &a, const float &b)
|
|
{
|
|
return (1.0f - factor) * a + factor * b;
|
|
}
|
|
|
|
template<> inline float2 mix2(const float factor, const float2 &a, const float2 &b)
|
|
{
|
|
return math::interpolate(a, b, factor);
|
|
}
|
|
|
|
template<> inline float3 mix2(const float factor, const float3 &a, const float3 &b)
|
|
{
|
|
return math::interpolate(a, b, factor);
|
|
}
|
|
|
|
template<>
|
|
inline ColorGeometry4f mix2(const float factor, const ColorGeometry4f &a, const ColorGeometry4f &b)
|
|
{
|
|
return math::interpolate(a, b, factor);
|
|
}
|
|
|
|
template<>
|
|
inline ColorGeometry4b mix2(const float factor, const ColorGeometry4b &a, const ColorGeometry4b &b)
|
|
{
|
|
return math::interpolate(a, b, factor);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Mix a dynamic amount of values with weights for many elements.
|
|
*
|
|
* This section provides an abstraction for "mixers". The abstraction encapsulates details about
|
|
* how different types should be mixed. Usually #DefaultMixer<T> should be used to get a mixer for
|
|
* a specific type.
|
|
* \{ */
|
|
|
|
template<typename T> class SimpleMixer {
|
|
private:
|
|
MutableSpan<T> buffer_;
|
|
T default_value_;
|
|
Array<float> total_weights_;
|
|
|
|
public:
|
|
/**
|
|
* \param buffer: Span where the interpolated values should be stored.
|
|
* \param default_value: Output value for an element that has not been affected by a #mix_in.
|
|
*/
|
|
SimpleMixer(MutableSpan<T> buffer, T default_value = {})
|
|
: buffer_(buffer), default_value_(default_value), total_weights_(buffer.size(), 0.0f)
|
|
{
|
|
BLI_STATIC_ASSERT(std::is_trivial_v<T>, "");
|
|
memset(buffer_.data(), 0, sizeof(T) * buffer_.size());
|
|
}
|
|
|
|
/**
|
|
* Mix a #value into the element with the given #index.
|
|
*/
|
|
void mix_in(const int64_t index, const T &value, const float weight = 1.0f)
|
|
{
|
|
BLI_assert(weight >= 0.0f);
|
|
buffer_[index] += value * weight;
|
|
total_weights_[index] += weight;
|
|
}
|
|
|
|
/**
|
|
* Has to be called before the buffer provided in the constructor is used.
|
|
*/
|
|
void finalize()
|
|
{
|
|
for (const int64_t i : buffer_.index_range()) {
|
|
const float weight = total_weights_[i];
|
|
if (weight > 0.0f) {
|
|
buffer_[i] *= 1.0f / weight;
|
|
}
|
|
else {
|
|
buffer_[i] = default_value_;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Mixes together booleans with "or" while fitting the same interface as the other
|
|
* mixers in order to be simpler to use. This mixing method has a few benefits:
|
|
* - An "average" for selections is relatively meaningless.
|
|
* - Predictable selection propagation is very super important.
|
|
* - It's generally easier to remove an element from a selection that is slightly too large than
|
|
* the opposite.
|
|
*/
|
|
class BooleanPropagationMixer {
|
|
private:
|
|
MutableSpan<bool> buffer_;
|
|
|
|
public:
|
|
/**
|
|
* \param buffer: Span where the interpolated values should be stored.
|
|
*/
|
|
BooleanPropagationMixer(MutableSpan<bool> buffer) : buffer_(buffer)
|
|
{
|
|
buffer_.fill(false);
|
|
}
|
|
|
|
/**
|
|
* Mix a #value into the element with the given #index.
|
|
*/
|
|
void mix_in(const int64_t index, const bool value, [[maybe_unused]] const float weight = 1.0f)
|
|
{
|
|
buffer_[index] |= value;
|
|
}
|
|
|
|
/**
|
|
* Does not do anything, since the mixing is trivial.
|
|
*/
|
|
void finalize()
|
|
{
|
|
}
|
|
};
|
|
|
|
/**
|
|
* This mixer accumulates values in a type that is different from the one that is mixed.
|
|
* Some types cannot encode the floating point weights in their values (e.g. int and bool).
|
|
*/
|
|
template<typename T, typename AccumulationT, T (*ConvertToT)(const AccumulationT &value)>
|
|
class SimpleMixerWithAccumulationType {
|
|
private:
|
|
struct Item {
|
|
/* Store both values together, because they are accessed together. */
|
|
AccumulationT value = {0};
|
|
float weight = 0.0f;
|
|
};
|
|
|
|
MutableSpan<T> buffer_;
|
|
T default_value_;
|
|
Array<Item> accumulation_buffer_;
|
|
|
|
public:
|
|
SimpleMixerWithAccumulationType(MutableSpan<T> buffer, T default_value = {})
|
|
: buffer_(buffer), default_value_(default_value), accumulation_buffer_(buffer.size())
|
|
{
|
|
}
|
|
|
|
void mix_in(const int64_t index, const T &value, const float weight = 1.0f)
|
|
{
|
|
const AccumulationT converted_value = static_cast<AccumulationT>(value);
|
|
Item &item = accumulation_buffer_[index];
|
|
item.value += converted_value * weight;
|
|
item.weight += weight;
|
|
}
|
|
|
|
void finalize()
|
|
{
|
|
for (const int64_t i : buffer_.index_range()) {
|
|
const Item &item = accumulation_buffer_[i];
|
|
if (item.weight > 0.0f) {
|
|
const float weight_inv = 1.0f / item.weight;
|
|
const T converted_value = ConvertToT(item.value * weight_inv);
|
|
buffer_[i] = converted_value;
|
|
}
|
|
else {
|
|
buffer_[i] = default_value_;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class ColorGeometry4fMixer {
|
|
private:
|
|
MutableSpan<ColorGeometry4f> buffer_;
|
|
ColorGeometry4f default_color_;
|
|
Array<float> total_weights_;
|
|
|
|
public:
|
|
ColorGeometry4fMixer(MutableSpan<ColorGeometry4f> buffer,
|
|
ColorGeometry4f default_color = ColorGeometry4f(0.0f, 0.0f, 0.0f, 1.0f));
|
|
void mix_in(int64_t index, const ColorGeometry4f &color, float weight = 1.0f);
|
|
void finalize();
|
|
};
|
|
|
|
class ColorGeometry4bMixer {
|
|
private:
|
|
MutableSpan<ColorGeometry4b> buffer_;
|
|
ColorGeometry4b default_color_;
|
|
Array<float> total_weights_;
|
|
Array<float4> accumulation_buffer_;
|
|
|
|
public:
|
|
ColorGeometry4bMixer(MutableSpan<ColorGeometry4b> buffer,
|
|
ColorGeometry4b default_color = ColorGeometry4b(0, 0, 0, 255));
|
|
void mix_in(int64_t index, const ColorGeometry4b &color, float weight = 1.0f);
|
|
void finalize();
|
|
};
|
|
|
|
template<typename T> struct DefaultMixerStruct {
|
|
/* Use void by default. This can be checked for in `if constexpr` statements. */
|
|
using type = void;
|
|
};
|
|
template<> struct DefaultMixerStruct<float> {
|
|
using type = SimpleMixer<float>;
|
|
};
|
|
template<> struct DefaultMixerStruct<float2> {
|
|
using type = SimpleMixer<float2>;
|
|
};
|
|
template<> struct DefaultMixerStruct<float3> {
|
|
using type = SimpleMixer<float3>;
|
|
};
|
|
template<> struct DefaultMixerStruct<ColorGeometry4f> {
|
|
/* Use a special mixer for colors. ColorGeometry4f can't be added/multiplied, because this is not
|
|
* something one should usually do with colors. */
|
|
using type = ColorGeometry4fMixer;
|
|
};
|
|
template<> struct DefaultMixerStruct<ColorGeometry4b> {
|
|
using type = ColorGeometry4bMixer;
|
|
};
|
|
template<> struct DefaultMixerStruct<int> {
|
|
static int double_to_int(const double &value)
|
|
{
|
|
return static_cast<int>(value);
|
|
}
|
|
/* Store interpolated ints in a double temporarily, so that weights are handled correctly. It
|
|
* uses double instead of float so that it is accurate for all 32 bit integers. */
|
|
using type = SimpleMixerWithAccumulationType<int, double, double_to_int>;
|
|
};
|
|
template<> struct DefaultMixerStruct<bool> {
|
|
static bool float_to_bool(const float &value)
|
|
{
|
|
return value >= 0.5f;
|
|
}
|
|
/* Store interpolated booleans in a float temporary.
|
|
* Otherwise information provided by weights is easily rounded away. */
|
|
using type = SimpleMixerWithAccumulationType<bool, float, float_to_bool>;
|
|
};
|
|
|
|
template<> struct DefaultMixerStruct<int8_t> {
|
|
static int8_t float_to_int8_t(const float &value)
|
|
{
|
|
return static_cast<int8_t>(value);
|
|
}
|
|
/* Store interpolated 8 bit integers in a float temporarily to increase accuracy. */
|
|
using type = SimpleMixerWithAccumulationType<int8_t, float, float_to_int8_t>;
|
|
};
|
|
|
|
template<typename T> struct DefaultPropatationMixerStruct {
|
|
/* Use void by default. This can be checked for in `if constexpr` statements. */
|
|
using type = typename DefaultMixerStruct<T>::type;
|
|
};
|
|
|
|
template<> struct DefaultPropatationMixerStruct<bool> {
|
|
using type = BooleanPropagationMixer;
|
|
};
|
|
|
|
/**
|
|
* This mixer is meant for propagating attributes when creating new geometry. A key difference
|
|
* with the default mixer is that booleans are mixed with "or" instead of "at least half"
|
|
* (the default mixing for booleans).
|
|
*/
|
|
template<typename T>
|
|
using DefaultPropatationMixer = typename DefaultPropatationMixerStruct<T>::type;
|
|
|
|
/* Utility to get a good default mixer for a given type. This is `void` when there is no default
|
|
* mixer for the given type. */
|
|
template<typename T> using DefaultMixer = typename DefaultMixerStruct<T>::type;
|
|
|
|
/** \} */
|
|
|
|
} // namespace blender::attribute_math
|