This patch reverses the dependency between `BLI_math_vec_types.hh` and `BLI_math_vector.hh`. Now the higher level `blender::math` functions depend on the header that defines the types they work with, rather than the other way around. The initial goal was to allow defining an `enable_if` in the types header and using it in the math header. But I also think this operations to types dependency is more natural anyway. This required changing the includes some files used from the type header to the math implementation header. I took that change a bit further removing the C vector math header from the C++ header; I think that helps to make the transition between the two systems clearer. Differential Revision: https://developer.blender.org/D14112
		
			
				
	
	
		
			252 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			252 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* SPDX-License-Identifier: GPL-2.0-or-later */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include "BLI_math_matrix.h"
 | 
						|
#include "BLI_math_vec_types.hh"
 | 
						|
#include "BLI_math_vector.h"
 | 
						|
#include "BLI_math_vector.hh"
 | 
						|
 | 
						|
namespace blender {
 | 
						|
 | 
						|
struct float4x4 {
 | 
						|
  float values[4][4];
 | 
						|
 | 
						|
  float4x4() = default;
 | 
						|
 | 
						|
  float4x4(const float *matrix)
 | 
						|
  {
 | 
						|
    memcpy(values, matrix, sizeof(float) * 16);
 | 
						|
  }
 | 
						|
 | 
						|
  float4x4(const float matrix[4][4]) : float4x4(static_cast<const float *>(matrix[0]))
 | 
						|
  {
 | 
						|
  }
 | 
						|
 | 
						|
  /* Assumes an XYZ euler order. */
 | 
						|
  static float4x4 from_loc_eul_scale(const float3 location,
 | 
						|
                                     const float3 rotation,
 | 
						|
                                     const float3 scale)
 | 
						|
  {
 | 
						|
    float4x4 mat;
 | 
						|
    loc_eul_size_to_mat4(mat.values, location, rotation, scale);
 | 
						|
    return mat;
 | 
						|
  }
 | 
						|
 | 
						|
  static float4x4 from_location(const float3 location)
 | 
						|
  {
 | 
						|
    float4x4 mat = float4x4::identity();
 | 
						|
    copy_v3_v3(mat.values[3], location);
 | 
						|
    return mat;
 | 
						|
  }
 | 
						|
 | 
						|
  static float4x4 from_normalized_axis_data(const float3 location,
 | 
						|
                                            const float3 forward,
 | 
						|
                                            const float3 up)
 | 
						|
  {
 | 
						|
    BLI_ASSERT_UNIT_V3(forward);
 | 
						|
    BLI_ASSERT_UNIT_V3(up);
 | 
						|
 | 
						|
    /* Negate the cross product so that the resulting matrix has determinant 1 (instead of -1).
 | 
						|
     * Without the negation, the result would be a so called improper rotation. That means it
 | 
						|
     * contains a reflection. Such an improper rotation matrix could not be converted to another
 | 
						|
     * representation of a rotation such as euler angles. */
 | 
						|
    const float3 cross = -math::cross(forward, up);
 | 
						|
 | 
						|
    float4x4 matrix;
 | 
						|
    matrix.values[0][0] = forward.x;
 | 
						|
    matrix.values[1][0] = cross.x;
 | 
						|
    matrix.values[2][0] = up.x;
 | 
						|
    matrix.values[3][0] = location.x;
 | 
						|
 | 
						|
    matrix.values[0][1] = forward.y;
 | 
						|
    matrix.values[1][1] = cross.y;
 | 
						|
    matrix.values[2][1] = up.y;
 | 
						|
    matrix.values[3][1] = location.y;
 | 
						|
 | 
						|
    matrix.values[0][2] = forward.z;
 | 
						|
    matrix.values[1][2] = cross.z;
 | 
						|
    matrix.values[2][2] = up.z;
 | 
						|
    matrix.values[3][2] = location.z;
 | 
						|
 | 
						|
    matrix.values[0][3] = 0.0f;
 | 
						|
    matrix.values[1][3] = 0.0f;
 | 
						|
    matrix.values[2][3] = 0.0f;
 | 
						|
    matrix.values[3][3] = 1.0f;
 | 
						|
 | 
						|
    return matrix;
 | 
						|
  }
 | 
						|
 | 
						|
  static float4x4 identity()
 | 
						|
  {
 | 
						|
    float4x4 mat;
 | 
						|
    unit_m4(mat.values);
 | 
						|
    return mat;
 | 
						|
  }
 | 
						|
 | 
						|
  operator float *()
 | 
						|
  {
 | 
						|
    return &values[0][0];
 | 
						|
  }
 | 
						|
 | 
						|
  operator const float *() const
 | 
						|
  {
 | 
						|
    return &values[0][0];
 | 
						|
  }
 | 
						|
 | 
						|
  float *operator[](const int64_t index)
 | 
						|
  {
 | 
						|
    BLI_assert(index >= 0);
 | 
						|
    BLI_assert(index < 4);
 | 
						|
    return &values[index][0];
 | 
						|
  }
 | 
						|
 | 
						|
  const float *operator[](const int64_t index) const
 | 
						|
  {
 | 
						|
    BLI_assert(index >= 0);
 | 
						|
    BLI_assert(index < 4);
 | 
						|
    return &values[index][0];
 | 
						|
  }
 | 
						|
 | 
						|
  using c_style_float4x4 = float[4][4];
 | 
						|
  c_style_float4x4 &ptr()
 | 
						|
  {
 | 
						|
    return values;
 | 
						|
  }
 | 
						|
 | 
						|
  const c_style_float4x4 &ptr() const
 | 
						|
  {
 | 
						|
    return values;
 | 
						|
  }
 | 
						|
 | 
						|
  friend float4x4 operator*(const float4x4 &a, const float4x4 &b)
 | 
						|
  {
 | 
						|
    float4x4 result;
 | 
						|
    mul_m4_m4m4(result.values, a.values, b.values);
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  void operator*=(const float4x4 &other)
 | 
						|
  {
 | 
						|
    mul_m4_m4_post(values, other.values);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * This also applies the translation on the vector. Use `m.ref_3x3() * v` if that is not
 | 
						|
   * intended.
 | 
						|
   */
 | 
						|
  friend float3 operator*(const float4x4 &m, const float3 &v)
 | 
						|
  {
 | 
						|
    float3 result;
 | 
						|
    mul_v3_m4v3(result, m.values, v);
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  friend float3 operator*(const float4x4 &m, const float (*v)[3])
 | 
						|
  {
 | 
						|
    return m * float3(v);
 | 
						|
  }
 | 
						|
 | 
						|
  float3 translation() const
 | 
						|
  {
 | 
						|
    return float3(values[3]);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Assumes XYZ rotation order. */
 | 
						|
  float3 to_euler() const
 | 
						|
  {
 | 
						|
    float3 euler;
 | 
						|
    mat4_to_eul(euler, values);
 | 
						|
    return euler;
 | 
						|
  }
 | 
						|
 | 
						|
  float3 scale() const
 | 
						|
  {
 | 
						|
    float3 scale;
 | 
						|
    mat4_to_size(scale, values);
 | 
						|
    return scale;
 | 
						|
  }
 | 
						|
 | 
						|
  void apply_scale(const float scale)
 | 
						|
  {
 | 
						|
    values[0][0] *= scale;
 | 
						|
    values[0][1] *= scale;
 | 
						|
    values[0][2] *= scale;
 | 
						|
    values[1][0] *= scale;
 | 
						|
    values[1][1] *= scale;
 | 
						|
    values[1][2] *= scale;
 | 
						|
    values[2][0] *= scale;
 | 
						|
    values[2][1] *= scale;
 | 
						|
    values[2][2] *= scale;
 | 
						|
  }
 | 
						|
 | 
						|
  float4x4 inverted() const
 | 
						|
  {
 | 
						|
    float4x4 result;
 | 
						|
    invert_m4_m4(result.values, values);
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Matrix inversion can be implemented more efficiently for affine matrices.
 | 
						|
   */
 | 
						|
  float4x4 inverted_affine() const
 | 
						|
  {
 | 
						|
    BLI_assert(values[0][3] == 0.0f && values[1][3] == 0.0f && values[2][3] == 0.0f &&
 | 
						|
               values[3][3] == 1.0f);
 | 
						|
    return this->inverted();
 | 
						|
  }
 | 
						|
 | 
						|
  float4x4 transposed() const
 | 
						|
  {
 | 
						|
    float4x4 result;
 | 
						|
    transpose_m4_m4(result.values, values);
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  float4x4 inverted_transposed_affine() const
 | 
						|
  {
 | 
						|
    return this->inverted_affine().transposed();
 | 
						|
  }
 | 
						|
 | 
						|
  struct float3x3_ref {
 | 
						|
    const float4x4 &data;
 | 
						|
 | 
						|
    friend float3 operator*(const float3x3_ref &m, const float3 &v)
 | 
						|
    {
 | 
						|
      float3 result;
 | 
						|
      mul_v3_mat3_m4v3(result, m.data.values, v);
 | 
						|
      return result;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  float3x3_ref ref_3x3() const
 | 
						|
  {
 | 
						|
    return {*this};
 | 
						|
  }
 | 
						|
 | 
						|
  static float4x4 interpolate(const float4x4 &a, const float4x4 &b, float t)
 | 
						|
  {
 | 
						|
    float result[4][4];
 | 
						|
    interp_m4_m4m4(result, a.values, b.values, t);
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  bool is_negative() const
 | 
						|
  {
 | 
						|
    return is_negative_m4(ptr());
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t hash() const
 | 
						|
  {
 | 
						|
    uint64_t h = 435109;
 | 
						|
    for (int i = 0; i < 16; i++) {
 | 
						|
      float value = (static_cast<const float *>(values[0]))[i];
 | 
						|
      h = h * 33 + *reinterpret_cast<const uint32_t *>(&value);
 | 
						|
    }
 | 
						|
    return h;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace blender
 |