This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/math_geom_inline.c
Campbell Barton 3debcc8b51 Math Lib: improve area calculation
- area_quad_v3 now works correctly with concave quads.
- add area_squared_*** functions, to use when comparing to avoid a sqrt().
2015-01-13 19:10:15 +11:00

299 lines
7.9 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: some of this file.
*
* ***** END GPL LICENSE BLOCK *****
* */
/** \file blender/blenlib/intern/math_geom_inline.c
* \ingroup bli
*/
#ifndef __MATH_GEOM_INLINE_C__
#define __MATH_GEOM_INLINE_C__
#include "BLI_math.h"
#include <string.h>
/* A few small defines. Keep'em local! */
#define SMALL_NUMBER 1.e-8f
/********************************** Polygons *********************************/
MINLINE float cross_tri_v2(const float v1[2], const float v2[2], const float v3[2])
{
return (v1[0] - v2[0]) * (v2[1] - v3[1]) + (v1[1] - v2[1]) * (v3[0] - v2[0]);
}
MINLINE float area_tri_signed_v2(const float v1[2], const float v2[2], const float v3[2])
{
return 0.5f * ((v1[0] - v2[0]) * (v2[1] - v3[1]) + (v1[1] - v2[1]) * (v3[0] - v2[0]));
}
MINLINE float area_tri_v2(const float v1[2], const float v2[2], const float v3[2])
{
return fabsf(area_tri_signed_v2(v1, v2, v3));
}
MINLINE float area_squared_tri_v2(const float v1[2], const float v2[2], const float v3[2])
{
float area = area_tri_signed_v2(v1, v2, v3);
return area * area;
}
/****************************** Spherical Harmonics **************************/
MINLINE void zero_sh(float r[9])
{
memset(r, 0, sizeof(float) * 9);
}
MINLINE void copy_sh_sh(float r[9], const float a[9])
{
memcpy(r, a, sizeof(float) * 9);
}
MINLINE void mul_sh_fl(float r[9], const float f)
{
int i;
for (i = 0; i < 9; i++)
r[i] *= f;
}
MINLINE void add_sh_shsh(float r[9], const float a[9], const float b[9])
{
int i;
for (i = 0; i < 9; i++)
r[i] = a[i] + b[i];
}
MINLINE float dot_shsh(const float a[9], const float b[9])
{
float r = 0.0f;
int i;
for (i = 0; i < 9; i++)
r += a[i] * b[i];
return r;
}
MINLINE float diffuse_shv3(float sh[9], const float v[3])
{
/* See formula (13) in:
* "An Efficient Representation for Irradiance Environment Maps" */
static const float c1 = 0.429043f, c2 = 0.511664f, c3 = 0.743125f;
static const float c4 = 0.886227f, c5 = 0.247708f;
float x, y, z, sum;
x = v[0];
y = v[1];
z = v[2];
sum = c1 * sh[8] * (x * x - y * y);
sum += c3 * sh[6] * z * z;
sum += c4 * sh[0];
sum += -c5 * sh[6];
sum += 2.0f * c1 * (sh[4] * x * y + sh[7] * x * z + sh[5] * y * z);
sum += 2.0f * c2 * (sh[3] * x + sh[1] * y + sh[2] * z);
return sum;
}
MINLINE void vec_fac_to_sh(float r[9], const float v[3], const float f)
{
/* See formula (3) in:
* "An Efficient Representation for Irradiance Environment Maps" */
float sh[9], x, y, z;
x = v[0];
y = v[1];
z = v[2];
sh[0] = 0.282095f;
sh[1] = 0.488603f * y;
sh[2] = 0.488603f * z;
sh[3] = 0.488603f * x;
sh[4] = 1.092548f * x * y;
sh[5] = 1.092548f * y * z;
sh[6] = 0.315392f * (3.0f * z * z - 1.0f);
sh[7] = 1.092548f * x * z;
sh[8] = 0.546274f * (x * x - y * y);
mul_sh_fl(sh, f);
copy_sh_sh(r, sh);
}
MINLINE float eval_shv3(float sh[9], const float v[3])
{
float tmp[9];
vec_fac_to_sh(tmp, v, 1.0f);
return dot_shsh(tmp, sh);
}
MINLINE void madd_sh_shfl(float r[9], const float sh[9], const float f)
{
float tmp[9];
copy_sh_sh(tmp, sh);
mul_sh_fl(tmp, f);
add_sh_shsh(r, r, tmp);
}
/* get the 2 dominant axis values, 0==X, 1==Y, 2==Z */
MINLINE void axis_dominant_v3(int *r_axis_a, int *r_axis_b, const float axis[3])
{
const float xn = fabsf(axis[0]);
const float yn = fabsf(axis[1]);
const float zn = fabsf(axis[2]);
if (zn >= xn && zn >= yn) { *r_axis_a = 0; *r_axis_b = 1; }
else if (yn >= xn && yn >= zn) { *r_axis_a = 0; *r_axis_b = 2; }
else { *r_axis_a = 1; *r_axis_b = 2; }
}
/* same as axis_dominant_v3 but return the max value */
MINLINE float axis_dominant_v3_max(int *r_axis_a, int *r_axis_b, const float axis[3])
{
const float xn = fabsf(axis[0]);
const float yn = fabsf(axis[1]);
const float zn = fabsf(axis[2]);
if (zn >= xn && zn >= yn) { *r_axis_a = 0; *r_axis_b = 1; return zn; }
else if (yn >= xn && yn >= zn) { *r_axis_a = 0; *r_axis_b = 2; return yn; }
else { *r_axis_a = 1; *r_axis_b = 2; return xn; }
}
/* get the single dominant axis value, 0==X, 1==Y, 2==Z */
MINLINE int axis_dominant_v3_single(const float vec[3])
{
const float x = fabsf(vec[0]);
const float y = fabsf(vec[1]);
const float z = fabsf(vec[2]);
return ((x > y) ?
((x > z) ? 0 : 2) :
((y > z) ? 1 : 2));
}
MINLINE int max_axis_v3(const float vec[3])
{
const float x = vec[0];
const float y = vec[1];
const float z = vec[2];
return ((x > y) ?
((x > z) ? 0 : 2) :
((y > z) ? 1 : 2));
}
MINLINE int min_axis_v3(const float vec[3])
{
const float x = vec[0];
const float y = vec[1];
const float z = vec[2];
return ((x < y) ?
((x < z) ? 0 : 2) :
((y < z) ? 1 : 2));
}
/**
* Simple method to find how many tri's we need when we already know the corner+poly count.
*
* \param poly_count The number of ngon's/tris (1-2 sided faces will give incorrect results)
* \param corner_count - also known as loops in BMesh/DNA
*/
MINLINE int poly_to_tri_count(const int poly_count, const int corner_count)
{
BLI_assert(!poly_count || corner_count > poly_count * 2);
return corner_count - (poly_count * 2);
}
MINLINE float plane_point_side_v3(const float plane[4], const float co[3])
{
return dot_v3v3(co, plane) + plane[3];
}
/* useful to calculate an even width shell, by taking the angle between 2 planes.
* The return value is a scale on the offset.
* no angle between planes is 1.0, as the angle between the 2 planes approaches 180d
* the distance gets very high, 180d would be inf, but this case isn't valid */
MINLINE float shell_angle_to_dist(const float angle)
{
return (UNLIKELY(angle < SMALL_NUMBER)) ? 1.0f : fabsf(1.0f / cosf(angle));
}
/**
* equivalent to ``shell_angle_to_dist(angle_normalized_v3v3(a, b))``
*/
MINLINE float shell_v3v3_normalized_to_dist(const float a[3], const float b[3])
{
const float angle_cos = fabsf(dot_v3v3(a, b));
BLI_ASSERT_UNIT_V3(a);
BLI_ASSERT_UNIT_V3(b);
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
}
/**
* equivalent to ``shell_angle_to_dist(angle_normalized_v2v2(a, b))``
*/
MINLINE float shell_v2v2_normalized_to_dist(const float a[2], const float b[2])
{
const float angle_cos = fabsf(dot_v2v2(a, b));
BLI_ASSERT_UNIT_V2(a);
BLI_ASSERT_UNIT_V2(b);
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
}
/**
* equivalent to ``shell_angle_to_dist(angle_normalized_v3v3(a, b) / 2)``
*/
MINLINE float shell_v3v3_mid_normalized_to_dist(const float a[3], const float b[3])
{
float angle_cos;
float ab[3];
BLI_ASSERT_UNIT_V3(a);
BLI_ASSERT_UNIT_V3(b);
add_v3_v3v3(ab, a, b);
angle_cos = (normalize_v3(ab) != 0.0f) ? fabsf(dot_v3v3(a, ab)) : 0.0f;
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
}
/**
* equivalent to ``shell_angle_to_dist(angle_normalized_v2v2(a, b) / 2)``
*/
MINLINE float shell_v2v2_mid_normalized_to_dist(const float a[2], const float b[2])
{
float angle_cos;
float ab[2];
BLI_ASSERT_UNIT_V2(a);
BLI_ASSERT_UNIT_V2(b);
add_v2_v2v2(ab, a, b);
angle_cos = (normalize_v2(ab) != 0.0f) ? fabsf(dot_v2v2(a, ab)) : 0.0f;
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
}
#undef SMALL_NUMBER
#endif /* __MATH_GEOM_INLINE_C__ */