- equals_v2v2 - project_v2_v2v2 - isect_seg_seg_v2_point which would be necessery for my further multires interpolation commit M_Geometry_LineIntersect2D now uses isect_seg_seg_v2_point(). Behaviour of this function was changed a bit -- it haven't returned intersection point in several cases when two segments are making angle.
898 lines
28 KiB
C
898 lines
28 KiB
C
/*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* This is a new part of Blender.
|
|
*
|
|
* Contributor(s): Joseph Gilbert, Campbell Barton
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "mathutils_geometry.h"
|
|
|
|
/* Used for PolyFill */
|
|
#include "BKE_displist.h"
|
|
#include "MEM_guardedalloc.h"
|
|
#include "BLI_blenlib.h"
|
|
|
|
#include "BKE_utildefines.h"
|
|
#include "BKE_curve.h"
|
|
#include "BLI_boxpack2d.h"
|
|
#include "BLI_math.h"
|
|
|
|
#define SWAP_FLOAT(a,b,tmp) tmp=a; a=b; b=tmp
|
|
#define eps 0.000001
|
|
|
|
|
|
/*-------------------------DOC STRINGS ---------------------------*/
|
|
static char M_Geometry_doc[] = "The Blender geometry module\n\n";
|
|
static char M_Geometry_Intersect_doc[] =
|
|
".. function:: Intersect(v1, v2, v3, ray, orig, clip=True)\n"
|
|
"\n"
|
|
" Returns the intersection between a ray and a triangle, if possible, returns None otherwise.\n"
|
|
"\n"
|
|
" :rtype: boolean\n"
|
|
" :arg v1: Point1\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg v2: Point2\n"
|
|
" :type v2: :class:`mathutils.Vector`\n"
|
|
" :arg v3: Point3\n"
|
|
" :type v3: :class:`mathutils.Vector`\n"
|
|
" :arg ray: Direction of the projection\n"
|
|
" :type ray: :class:`mathutils.Vector`\n"
|
|
" :arg orig: Origin\n"
|
|
" :type orig: :class:`mathutils.Vector`\n"
|
|
" :arg clip: Clip by the ray length\n"
|
|
" :type clip: boolean\n";
|
|
|
|
static char M_Geometry_TriangleArea_doc[] =
|
|
".. function:: TriangleArea(v1, v2, v3)\n"
|
|
"\n"
|
|
" Returns the area size of the 2D or 3D triangle defined.\n"
|
|
"\n"
|
|
" :rtype: float\n"
|
|
" :arg v1: Point1\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg v2: Point2\n"
|
|
" :type v2: :class:`mathutils.Vector`\n"
|
|
" :arg v3: Point3\n"
|
|
" :type v3: :class:`mathutils.Vector`\n";
|
|
|
|
static char M_Geometry_TriangleNormal_doc[] =
|
|
".. function:: TriangleNormal(v1, v2, v3)\n"
|
|
"\n"
|
|
" Returns the normal of the 3D triangle defined.\n"
|
|
"\n"
|
|
" :rtype: :class:`mathutils.Vector`\n"
|
|
" :arg v1: Point1\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg v2: Point2\n"
|
|
" :type v2: :class:`mathutils.Vector`\n"
|
|
" :arg v3: Point3\n"
|
|
" :type v3: :class:`mathutils.Vector`\n";
|
|
|
|
static char M_Geometry_QuadNormal_doc[] =
|
|
".. function:: QuadNormal(v1, v2, v3, v4)\n"
|
|
"\n"
|
|
" Returns the normal of the 3D quad defined.\n"
|
|
"\n"
|
|
" :rtype: :class:`mathutils.Vector`\n"
|
|
" :arg v1: Point1\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg v2: Point2\n"
|
|
" :type v2: :class:`mathutils.Vector`\n"
|
|
" :arg v3: Point3\n"
|
|
" :type v3: :class:`mathutils.Vector`\n"
|
|
" :arg v4: Point4\n"
|
|
" :type v4: :class:`mathutils.Vector`\n";
|
|
|
|
static char M_Geometry_LineIntersect_doc[] =
|
|
".. function:: LineIntersect(v1, v2, v3, v4)\n"
|
|
"\n"
|
|
" Returns a tuple with the points on each line respectively closest to the other.\n"
|
|
"\n"
|
|
" :rtype: tuple with elements being of type :class:`mathutils.Vector`\n"
|
|
" :arg v1: First point of the first line\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg v2: Second point of the first line\n"
|
|
" :type v2: :class:`mathutils.Vector`\n"
|
|
" :arg v3: First point of the second line\n"
|
|
" :type v3: :class:`mathutils.Vector`\n"
|
|
" :arg v4: Second point of the second line\n"
|
|
" :type v4: :class:`mathutils.Vector`\n";
|
|
|
|
static char M_Geometry_PolyFill_doc[] =
|
|
".. function:: PolyFill(veclist_list)\n"
|
|
"\n"
|
|
" Takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles.\n"
|
|
"\n"
|
|
" :rtype: list\n"
|
|
" :arg veclist_list: list of polylines\n";
|
|
|
|
static char M_Geometry_LineIntersect2D_doc[] =
|
|
".. function:: LineIntersect2D(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
|
|
"\n"
|
|
" Takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None.\n"
|
|
"\n"
|
|
" :rtype: :class:`mathutils.Vector`\n"
|
|
" :arg lineA_p1: First point of the first line\n"
|
|
" :type lineA_p1: :class:`mathutils.Vector`\n"
|
|
" :arg lineA_p2: Second point of the first line\n"
|
|
" :type lineA_p2: :class:`mathutils.Vector`\n"
|
|
" :arg lineB_p1: First point of the second line\n"
|
|
" :type lineB_p1: :class:`mathutils.Vector`\n"
|
|
" :arg lineB_p2: Second point of the second line\n"
|
|
" :type lineB_p2: :class:`mathutils.Vector`\n";
|
|
|
|
static char M_Geometry_ClosestPointOnLine_doc[] =
|
|
".. function:: ClosestPointOnLine(pt, line_p1, line_p2)\n"
|
|
"\n"
|
|
" Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n"
|
|
"\n"
|
|
" :rtype: (:class:`mathutils.Vector`, float)\n"
|
|
" :arg pt: Point\n"
|
|
" :type pt: :class:`mathutils.Vector`\n"
|
|
" :arg line_p1: First point of the line\n"
|
|
" :type line_p1: :class:`mathutils.Vector`\n"
|
|
" :arg line_p1: Second point of the line\n"
|
|
" :type line_p1: :class:`mathutils.Vector`\n";
|
|
|
|
static char M_Geometry_PointInTriangle2D_doc[] =
|
|
".. function:: PointInTriangle2D(pt, tri_p1, tri_p2, tri_p3)\n"
|
|
"\n"
|
|
" Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
|
|
"\n"
|
|
" :rtype: int\n"
|
|
" :arg pt: Point\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p1: First point of the triangle\n"
|
|
" :type tri_p1: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p2: Second point of the triangle\n"
|
|
" :type tri_p2: :class:`mathutils.Vector`\n"
|
|
" :arg tri_p3: Third point of the triangle\n"
|
|
" :type tri_p3: :class:`mathutils.Vector`\n";
|
|
|
|
static char M_Geometry_PointInQuad2D_doc[] =
|
|
".. function:: PointInQuad2D(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
|
|
"\n"
|
|
" Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n"
|
|
"\n"
|
|
" :rtype: int\n"
|
|
" :arg pt: Point\n"
|
|
" :type v1: :class:`mathutils.Vector`\n"
|
|
" :arg quad_p1: First point of the quad\n"
|
|
" :type quad_p1: :class:`mathutils.Vector`\n"
|
|
" :arg quad_p2: Second point of the quad\n"
|
|
" :type quad_p2: :class:`mathutils.Vector`\n"
|
|
" :arg quad_p3: Third point of the quad\n"
|
|
" :type quad_p3: :class:`mathutils.Vector`\n"
|
|
" :arg quad_p4: Forth point of the quad\n"
|
|
" :type quad_p4: :class:`mathutils.Vector`\n";
|
|
|
|
static char M_Geometry_BoxPack2D_doc[] = "";
|
|
static char M_Geometry_BezierInterp_doc[] = "";
|
|
static char M_Geometry_BarycentricTransform_doc[] = "";
|
|
|
|
//---------------------------------INTERSECTION FUNCTIONS--------------------
|
|
//----------------------------------geometry.Intersect() -------------------
|
|
static PyObject *M_Geometry_Intersect(PyObject *UNUSED(self), PyObject* args)
|
|
{
|
|
VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
|
|
float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
|
|
float det, inv_det, u, v, t;
|
|
int clip = 1;
|
|
|
|
if(!PyArg_ParseTuple(args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 5 vector types" );
|
|
return NULL;
|
|
}
|
|
if(vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) {
|
|
PyErr_SetString(PyExc_TypeError, "only 3D vectors for all parameters");
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(ray) || !BaseMath_ReadCallback(ray_off))
|
|
return NULL;
|
|
|
|
VECCOPY(v1, vec1->vec);
|
|
VECCOPY(v2, vec2->vec);
|
|
VECCOPY(v3, vec3->vec);
|
|
|
|
VECCOPY(dir, ray->vec);
|
|
normalize_v3(dir);
|
|
|
|
VECCOPY(orig, ray_off->vec);
|
|
|
|
/* find vectors for two edges sharing v1 */
|
|
sub_v3_v3v3(e1, v2, v1);
|
|
sub_v3_v3v3(e2, v3, v1);
|
|
|
|
/* begin calculating determinant - also used to calculated U parameter */
|
|
cross_v3_v3v3(pvec, dir, e2);
|
|
|
|
/* if determinant is near zero, ray lies in plane of triangle */
|
|
det = dot_v3v3(e1, pvec);
|
|
|
|
if (det > -0.000001 && det < 0.000001) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
inv_det = 1.0f / det;
|
|
|
|
/* calculate distance from v1 to ray origin */
|
|
sub_v3_v3v3(tvec, orig, v1);
|
|
|
|
/* calculate U parameter and test bounds */
|
|
u = dot_v3v3(tvec, pvec) * inv_det;
|
|
if (clip && (u < 0.0f || u > 1.0f)) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* prepare to test the V parameter */
|
|
cross_v3_v3v3(qvec, tvec, e1);
|
|
|
|
/* calculate V parameter and test bounds */
|
|
v = dot_v3v3(dir, qvec) * inv_det;
|
|
|
|
if (clip && (v < 0.0f || u + v > 1.0f)) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* calculate t, ray intersects triangle */
|
|
t = dot_v3v3(e2, qvec) * inv_det;
|
|
|
|
mul_v3_fl(dir, t);
|
|
add_v3_v3v3(pvec, orig, dir);
|
|
|
|
return newVectorObject(pvec, 3, Py_NEW, NULL);
|
|
}
|
|
//----------------------------------geometry.LineIntersect() -------------------
|
|
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
|
|
static PyObject *M_Geometry_LineIntersect(PyObject *UNUSED(self), PyObject* args)
|
|
{
|
|
PyObject * tuple;
|
|
VectorObject *vec1, *vec2, *vec3, *vec4;
|
|
float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
|
|
|
|
if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 4 vector types" );
|
|
return NULL;
|
|
}
|
|
if( vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) {
|
|
PyErr_SetString(PyExc_TypeError,"vectors must be of the same size" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
|
|
return NULL;
|
|
|
|
if( vec1->size == 3 || vec1->size == 2) {
|
|
int result;
|
|
|
|
if (vec1->size == 3) {
|
|
VECCOPY(v1, vec1->vec);
|
|
VECCOPY(v2, vec2->vec);
|
|
VECCOPY(v3, vec3->vec);
|
|
VECCOPY(v4, vec4->vec);
|
|
}
|
|
else {
|
|
v1[0] = vec1->vec[0];
|
|
v1[1] = vec1->vec[1];
|
|
v1[2] = 0.0f;
|
|
|
|
v2[0] = vec2->vec[0];
|
|
v2[1] = vec2->vec[1];
|
|
v2[2] = 0.0f;
|
|
|
|
v3[0] = vec3->vec[0];
|
|
v3[1] = vec3->vec[1];
|
|
v3[2] = 0.0f;
|
|
|
|
v4[0] = vec4->vec[0];
|
|
v4[1] = vec4->vec[1];
|
|
v4[2] = 0.0f;
|
|
}
|
|
|
|
result = isect_line_line_v3(v1, v2, v3, v4, i1, i2);
|
|
|
|
if (result == 0) {
|
|
/* colinear */
|
|
Py_RETURN_NONE;
|
|
}
|
|
else {
|
|
tuple = PyTuple_New( 2 );
|
|
PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW, NULL) );
|
|
PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW, NULL) );
|
|
return tuple;
|
|
}
|
|
}
|
|
else {
|
|
PyErr_SetString(PyExc_TypeError, "2D/3D vectors only" );
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//---------------------------------NORMALS FUNCTIONS--------------------
|
|
//----------------------------------geometry.QuadNormal() -------------------
|
|
static PyObject *M_Geometry_QuadNormal(PyObject *UNUSED(self), PyObject* args)
|
|
{
|
|
VectorObject *vec1;
|
|
VectorObject *vec2;
|
|
VectorObject *vec3;
|
|
VectorObject *vec4;
|
|
float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3];
|
|
|
|
if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 4 vector types" );
|
|
return NULL;
|
|
}
|
|
if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
|
|
PyErr_SetString(PyExc_TypeError,"vectors must be of the same size" );
|
|
return NULL;
|
|
}
|
|
if( vec1->size != 3 ) {
|
|
PyErr_SetString(PyExc_TypeError, "only 3D vectors" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
|
|
return NULL;
|
|
|
|
VECCOPY(v1, vec1->vec);
|
|
VECCOPY(v2, vec2->vec);
|
|
VECCOPY(v3, vec3->vec);
|
|
VECCOPY(v4, vec4->vec);
|
|
|
|
/* find vectors for two edges sharing v2 */
|
|
sub_v3_v3v3(e1, v1, v2);
|
|
sub_v3_v3v3(e2, v3, v2);
|
|
|
|
cross_v3_v3v3(n1, e2, e1);
|
|
normalize_v3(n1);
|
|
|
|
/* find vectors for two edges sharing v4 */
|
|
sub_v3_v3v3(e1, v3, v4);
|
|
sub_v3_v3v3(e2, v1, v4);
|
|
|
|
cross_v3_v3v3(n2, e2, e1);
|
|
normalize_v3(n2);
|
|
|
|
/* adding and averaging the normals of both triangles */
|
|
add_v3_v3v3(n1, n2, n1);
|
|
normalize_v3(n1);
|
|
|
|
return newVectorObject(n1, 3, Py_NEW, NULL);
|
|
}
|
|
|
|
//----------------------------geometry.TriangleNormal() -------------------
|
|
static PyObject *M_Geometry_TriangleNormal(PyObject *UNUSED(self), PyObject* args)
|
|
{
|
|
VectorObject *vec1, *vec2, *vec3;
|
|
float v1[3], v2[3], v3[3], e1[3], e2[3], n[3];
|
|
|
|
if( !PyArg_ParseTuple( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3 ) ) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 3 vector types" );
|
|
return NULL;
|
|
}
|
|
if( vec1->size != vec2->size || vec1->size != vec3->size ) {
|
|
PyErr_SetString(PyExc_TypeError, "vectors must be of the same size" );
|
|
return NULL;
|
|
}
|
|
if( vec1->size != 3 ) {
|
|
PyErr_SetString(PyExc_TypeError, "only 3D vectors" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
|
|
return NULL;
|
|
|
|
VECCOPY(v1, vec1->vec);
|
|
VECCOPY(v2, vec2->vec);
|
|
VECCOPY(v3, vec3->vec);
|
|
|
|
/* find vectors for two edges sharing v2 */
|
|
sub_v3_v3v3(e1, v1, v2);
|
|
sub_v3_v3v3(e2, v3, v2);
|
|
|
|
cross_v3_v3v3(n, e2, e1);
|
|
normalize_v3(n);
|
|
|
|
return newVectorObject(n, 3, Py_NEW, NULL);
|
|
}
|
|
|
|
//--------------------------------- AREA FUNCTIONS--------------------
|
|
//----------------------------------geometry.TriangleArea() -------------------
|
|
static PyObject *M_Geometry_TriangleArea(PyObject *UNUSED(self), PyObject* args)
|
|
{
|
|
VectorObject *vec1, *vec2, *vec3;
|
|
float v1[3], v2[3], v3[3];
|
|
|
|
if( !PyArg_ParseTuple
|
|
( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
|
|
, &vector_Type, &vec3 ) ) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 3 vector types");
|
|
return NULL;
|
|
}
|
|
if( vec1->size != vec2->size || vec1->size != vec3->size ) {
|
|
PyErr_SetString(PyExc_TypeError, "vectors must be of the same size" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
|
|
return NULL;
|
|
|
|
if (vec1->size == 3) {
|
|
VECCOPY(v1, vec1->vec);
|
|
VECCOPY(v2, vec2->vec);
|
|
VECCOPY(v3, vec3->vec);
|
|
|
|
return PyFloat_FromDouble( area_tri_v3(v1, v2, v3) );
|
|
}
|
|
else if (vec1->size == 2) {
|
|
v1[0] = vec1->vec[0];
|
|
v1[1] = vec1->vec[1];
|
|
|
|
v2[0] = vec2->vec[0];
|
|
v2[1] = vec2->vec[1];
|
|
|
|
v3[0] = vec3->vec[0];
|
|
v3[1] = vec3->vec[1];
|
|
|
|
return PyFloat_FromDouble( area_tri_v2(v1, v2, v3) );
|
|
}
|
|
else {
|
|
PyErr_SetString(PyExc_TypeError, "only 2D,3D vectors are supported" );
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*----------------------------------geometry.PolyFill() -------------------*/
|
|
/* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
|
|
static PyObject *M_Geometry_PolyFill(PyObject *UNUSED(self), PyObject * polyLineSeq )
|
|
{
|
|
PyObject *tri_list; /*return this list of tri's */
|
|
PyObject *polyLine, *polyVec;
|
|
int i, len_polylines, len_polypoints, ls_error = 0;
|
|
|
|
/* display listbase */
|
|
ListBase dispbase={NULL, NULL};
|
|
DispList *dl;
|
|
float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
|
|
int index, *dl_face, totpoints=0;
|
|
|
|
|
|
dispbase.first= dispbase.last= NULL;
|
|
|
|
|
|
if(!PySequence_Check(polyLineSeq)) {
|
|
PyErr_SetString(PyExc_TypeError, "expected a sequence of poly lines" );
|
|
return NULL;
|
|
}
|
|
|
|
len_polylines = PySequence_Size( polyLineSeq );
|
|
|
|
for( i = 0; i < len_polylines; ++i ) {
|
|
polyLine= PySequence_GetItem( polyLineSeq, i );
|
|
if (!PySequence_Check(polyLine)) {
|
|
freedisplist(&dispbase);
|
|
Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
|
|
PyErr_SetString(PyExc_TypeError, "One or more of the polylines is not a sequence of mathutils.Vector's" );
|
|
return NULL;
|
|
}
|
|
|
|
len_polypoints= PySequence_Size( polyLine );
|
|
if (len_polypoints>0) { /* dont bother adding edges as polylines */
|
|
#if 0
|
|
if (EXPP_check_sequence_consistency( polyLine, &vector_Type ) != 1) {
|
|
freedisplist(&dispbase);
|
|
Py_DECREF(polyLine);
|
|
PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type" );
|
|
return NULL;
|
|
}
|
|
#endif
|
|
dl= MEM_callocN(sizeof(DispList), "poly disp");
|
|
BLI_addtail(&dispbase, dl);
|
|
dl->type= DL_INDEX3;
|
|
dl->nr= len_polypoints;
|
|
dl->type= DL_POLY;
|
|
dl->parts= 1; /* no faces, 1 edge loop */
|
|
dl->col= 0; /* no material */
|
|
dl->verts= fp= MEM_callocN( sizeof(float)*3*len_polypoints, "dl verts");
|
|
dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index");
|
|
|
|
for( index = 0; index<len_polypoints; ++index, fp+=3) {
|
|
polyVec= PySequence_GetItem( polyLine, index );
|
|
if(VectorObject_Check(polyVec)) {
|
|
|
|
if(!BaseMath_ReadCallback((VectorObject *)polyVec))
|
|
ls_error= 1;
|
|
|
|
fp[0] = ((VectorObject *)polyVec)->vec[0];
|
|
fp[1] = ((VectorObject *)polyVec)->vec[1];
|
|
if( ((VectorObject *)polyVec)->size > 2 )
|
|
fp[2] = ((VectorObject *)polyVec)->vec[2];
|
|
else
|
|
fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */
|
|
}
|
|
else {
|
|
ls_error= 1;
|
|
}
|
|
|
|
totpoints++;
|
|
Py_DECREF(polyVec);
|
|
}
|
|
}
|
|
Py_DECREF(polyLine);
|
|
}
|
|
|
|
if(ls_error) {
|
|
freedisplist(&dispbase); /* possible some dl was allocated */
|
|
PyErr_SetString(PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type" );
|
|
return NULL;
|
|
}
|
|
else if (totpoints) {
|
|
/* now make the list to return */
|
|
filldisplist(&dispbase, &dispbase, 0);
|
|
|
|
/* The faces are stored in a new DisplayList
|
|
thats added to the head of the listbase */
|
|
dl= dispbase.first;
|
|
|
|
tri_list= PyList_New(dl->parts);
|
|
if( !tri_list ) {
|
|
freedisplist(&dispbase);
|
|
PyErr_SetString(PyExc_RuntimeError, "geometry.PolyFill failed to make a new list" );
|
|
return NULL;
|
|
}
|
|
|
|
index= 0;
|
|
dl_face= dl->index;
|
|
while(index < dl->parts) {
|
|
PyList_SET_ITEM(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]) );
|
|
dl_face+= 3;
|
|
index++;
|
|
}
|
|
freedisplist(&dispbase);
|
|
} else {
|
|
/* no points, do this so scripts dont barf */
|
|
freedisplist(&dispbase); /* possible some dl was allocated */
|
|
tri_list= PyList_New(0);
|
|
}
|
|
|
|
return tri_list;
|
|
}
|
|
|
|
|
|
static PyObject *M_Geometry_LineIntersect2D(PyObject *UNUSED(self), PyObject* args)
|
|
{
|
|
VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
|
|
float vi[2];
|
|
if( !PyArg_ParseTuple ( args, "O!O!O!O!",
|
|
&vector_Type, &line_a1,
|
|
&vector_Type, &line_a2,
|
|
&vector_Type, &line_b1,
|
|
&vector_Type, &line_b2)
|
|
) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 4 vector types" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(line_a1) || !BaseMath_ReadCallback(line_a2) || !BaseMath_ReadCallback(line_b1) || !BaseMath_ReadCallback(line_b2))
|
|
return NULL;
|
|
|
|
if(isect_seg_seg_v2_point(line_a1->vec, line_a2->vec, line_b1->vec, line_b2->vec, vi) == 1) {
|
|
return newVectorObject(vi, 2, Py_NEW, NULL);
|
|
} else {
|
|
Py_RETURN_NONE;
|
|
}
|
|
}
|
|
|
|
static PyObject *M_Geometry_ClosestPointOnLine(PyObject *UNUSED(self), PyObject* args)
|
|
{
|
|
VectorObject *pt, *line_1, *line_2;
|
|
float pt_in[3], pt_out[3], l1[3], l2[3];
|
|
float lambda;
|
|
PyObject *ret;
|
|
|
|
if( !PyArg_ParseTuple ( args, "O!O!O!",
|
|
&vector_Type, &pt,
|
|
&vector_Type, &line_1,
|
|
&vector_Type, &line_2)
|
|
) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 3 vector types" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(pt) || !BaseMath_ReadCallback(line_1) || !BaseMath_ReadCallback(line_2))
|
|
return NULL;
|
|
|
|
/* accept 2d verts */
|
|
if (pt->size==3) { VECCOPY(pt_in, pt->vec);}
|
|
else { pt_in[2]=0.0; VECCOPY2D(pt_in, pt->vec) }
|
|
|
|
if (line_1->size==3) { VECCOPY(l1, line_1->vec);}
|
|
else { l1[2]=0.0; VECCOPY2D(l1, line_1->vec) }
|
|
|
|
if (line_2->size==3) { VECCOPY(l2, line_2->vec);}
|
|
else { l2[2]=0.0; VECCOPY2D(l2, line_2->vec) }
|
|
|
|
/* do the calculation */
|
|
lambda = closest_to_line_v3( pt_out,pt_in, l1, l2);
|
|
|
|
ret = PyTuple_New(2);
|
|
PyTuple_SET_ITEM( ret, 0, newVectorObject(pt_out, 3, Py_NEW, NULL) );
|
|
PyTuple_SET_ITEM( ret, 1, PyFloat_FromDouble(lambda) );
|
|
return ret;
|
|
}
|
|
|
|
static PyObject *M_Geometry_PointInTriangle2D(PyObject *UNUSED(self), PyObject* args)
|
|
{
|
|
VectorObject *pt_vec, *tri_p1, *tri_p2, *tri_p3;
|
|
|
|
if( !PyArg_ParseTuple ( args, "O!O!O!O!",
|
|
&vector_Type, &pt_vec,
|
|
&vector_Type, &tri_p1,
|
|
&vector_Type, &tri_p2,
|
|
&vector_Type, &tri_p3)
|
|
) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 4 vector types" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(pt_vec) || !BaseMath_ReadCallback(tri_p1) || !BaseMath_ReadCallback(tri_p2) || !BaseMath_ReadCallback(tri_p3))
|
|
return NULL;
|
|
|
|
return PyLong_FromLong(isect_point_tri_v2(pt_vec->vec, tri_p1->vec, tri_p2->vec, tri_p3->vec));
|
|
}
|
|
|
|
static PyObject *M_Geometry_PointInQuad2D(PyObject *UNUSED(self), PyObject* args)
|
|
{
|
|
VectorObject *pt_vec, *quad_p1, *quad_p2, *quad_p3, *quad_p4;
|
|
|
|
if( !PyArg_ParseTuple ( args, "O!O!O!O!O!",
|
|
&vector_Type, &pt_vec,
|
|
&vector_Type, &quad_p1,
|
|
&vector_Type, &quad_p2,
|
|
&vector_Type, &quad_p3,
|
|
&vector_Type, &quad_p4)
|
|
) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 5 vector types" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(pt_vec) || !BaseMath_ReadCallback(quad_p1) || !BaseMath_ReadCallback(quad_p2) || !BaseMath_ReadCallback(quad_p3) || !BaseMath_ReadCallback(quad_p4))
|
|
return NULL;
|
|
|
|
return PyLong_FromLong(isect_point_quad_v2(pt_vec->vec, quad_p1->vec, quad_p2->vec, quad_p3->vec, quad_p4->vec));
|
|
}
|
|
|
|
static int boxPack_FromPyObject(PyObject * value, boxPack **boxarray )
|
|
{
|
|
int len, i;
|
|
PyObject *list_item, *item_1, *item_2;
|
|
boxPack *box;
|
|
|
|
|
|
/* Error checking must already be done */
|
|
if( !PyList_Check( value ) ) {
|
|
PyErr_SetString(PyExc_TypeError, "can only back a list of [x,y,x,w]" );
|
|
return -1;
|
|
}
|
|
|
|
len = PyList_Size( value );
|
|
|
|
(*boxarray) = MEM_mallocN( len*sizeof(boxPack), "boxPack box");
|
|
|
|
|
|
for( i = 0; i < len; i++ ) {
|
|
list_item = PyList_GET_ITEM( value, i );
|
|
if( !PyList_Check( list_item ) || PyList_Size( list_item ) < 4 ) {
|
|
MEM_freeN(*boxarray);
|
|
PyErr_SetString(PyExc_TypeError, "can only back a list of [x,y,x,w]" );
|
|
return -1;
|
|
}
|
|
|
|
box = (*boxarray)+i;
|
|
|
|
item_1 = PyList_GET_ITEM(list_item, 2);
|
|
item_2 = PyList_GET_ITEM(list_item, 3);
|
|
|
|
if (!PyNumber_Check(item_1) || !PyNumber_Check(item_2)) {
|
|
MEM_freeN(*boxarray);
|
|
PyErr_SetString(PyExc_TypeError, "can only back a list of 2d boxes [x,y,x,w]" );
|
|
return -1;
|
|
}
|
|
|
|
box->w = (float)PyFloat_AsDouble( item_1 );
|
|
box->h = (float)PyFloat_AsDouble( item_2 );
|
|
box->index = i;
|
|
/* verts will be added later */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void boxPack_ToPyObject(PyObject * value, boxPack **boxarray)
|
|
{
|
|
int len, i;
|
|
PyObject *list_item;
|
|
boxPack *box;
|
|
|
|
len = PyList_Size( value );
|
|
|
|
for( i = 0; i < len; i++ ) {
|
|
box = (*boxarray)+i;
|
|
list_item = PyList_GET_ITEM( value, box->index );
|
|
PyList_SET_ITEM( list_item, 0, PyFloat_FromDouble( box->x ));
|
|
PyList_SET_ITEM( list_item, 1, PyFloat_FromDouble( box->y ));
|
|
}
|
|
MEM_freeN(*boxarray);
|
|
}
|
|
|
|
|
|
static PyObject *M_Geometry_BoxPack2D(PyObject *UNUSED(self), PyObject * boxlist )
|
|
{
|
|
boxPack *boxarray = NULL;
|
|
float tot_width, tot_height;
|
|
int len;
|
|
int error;
|
|
|
|
if(!PyList_Check(boxlist)) {
|
|
PyErr_SetString(PyExc_TypeError, "expected a sequence of boxes [[x,y,w,h], ... ]" );
|
|
return NULL;
|
|
}
|
|
|
|
len = PyList_Size( boxlist );
|
|
|
|
if (!len)
|
|
return Py_BuildValue( "ff", 0.0, 0.0);
|
|
|
|
error = boxPack_FromPyObject(boxlist, &boxarray);
|
|
if (error!=0) return NULL;
|
|
|
|
/* Non Python function */
|
|
boxPack2D(boxarray, len, &tot_width, &tot_height);
|
|
|
|
boxPack_ToPyObject(boxlist, &boxarray);
|
|
|
|
return Py_BuildValue( "ff", tot_width, tot_height);
|
|
}
|
|
|
|
static PyObject *M_Geometry_BezierInterp(PyObject *UNUSED(self), PyObject* args)
|
|
{
|
|
VectorObject *vec_k1, *vec_h1, *vec_k2, *vec_h2;
|
|
int resolu;
|
|
int dims;
|
|
int i;
|
|
float *coord_array, *fp;
|
|
PyObject *list;
|
|
|
|
float k1[4] = {0.0, 0.0, 0.0, 0.0};
|
|
float h1[4] = {0.0, 0.0, 0.0, 0.0};
|
|
float k2[4] = {0.0, 0.0, 0.0, 0.0};
|
|
float h2[4] = {0.0, 0.0, 0.0, 0.0};
|
|
|
|
|
|
if( !PyArg_ParseTuple ( args, "O!O!O!O!i",
|
|
&vector_Type, &vec_k1,
|
|
&vector_Type, &vec_h1,
|
|
&vector_Type, &vec_h2,
|
|
&vector_Type, &vec_k2, &resolu) || (resolu<=1)
|
|
) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 4 vector types and an int greater then 1" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(vec_k1) || !BaseMath_ReadCallback(vec_h1) || !BaseMath_ReadCallback(vec_k2) || !BaseMath_ReadCallback(vec_h2))
|
|
return NULL;
|
|
|
|
dims= MAX4(vec_k1->size, vec_h1->size, vec_h2->size, vec_k2->size);
|
|
|
|
for(i=0; i < vec_k1->size; i++) k1[i]= vec_k1->vec[i];
|
|
for(i=0; i < vec_h1->size; i++) h1[i]= vec_h1->vec[i];
|
|
for(i=0; i < vec_k2->size; i++) k2[i]= vec_k2->vec[i];
|
|
for(i=0; i < vec_h2->size; i++) h2[i]= vec_h2->vec[i];
|
|
|
|
coord_array = MEM_callocN(dims * (resolu) * sizeof(float), "BezierInterp");
|
|
for(i=0; i<dims; i++) {
|
|
forward_diff_bezier(k1[i], h1[i], h2[i], k2[i], coord_array+i, resolu-1, sizeof(float)*dims);
|
|
}
|
|
|
|
list= PyList_New(resolu);
|
|
fp= coord_array;
|
|
for(i=0; i<resolu; i++, fp= fp+dims) {
|
|
PyList_SET_ITEM(list, i, newVectorObject(fp, dims, Py_NEW, NULL));
|
|
}
|
|
MEM_freeN(coord_array);
|
|
return list;
|
|
}
|
|
|
|
static PyObject *M_Geometry_BarycentricTransform(PyObject *UNUSED(self), PyObject *args)
|
|
{
|
|
VectorObject *vec_pt;
|
|
VectorObject *vec_t1_tar, *vec_t2_tar, *vec_t3_tar;
|
|
VectorObject *vec_t1_src, *vec_t2_src, *vec_t3_src;
|
|
float vec[3];
|
|
|
|
if( !PyArg_ParseTuple ( args, "O!O!O!O!O!O!O!",
|
|
&vector_Type, &vec_pt,
|
|
&vector_Type, &vec_t1_src,
|
|
&vector_Type, &vec_t2_src,
|
|
&vector_Type, &vec_t3_src,
|
|
&vector_Type, &vec_t1_tar,
|
|
&vector_Type, &vec_t2_tar,
|
|
&vector_Type, &vec_t3_tar) || ( vec_pt->size != 3 ||
|
|
vec_t1_src->size != 3 ||
|
|
vec_t2_src->size != 3 ||
|
|
vec_t3_src->size != 3 ||
|
|
vec_t1_tar->size != 3 ||
|
|
vec_t2_tar->size != 3 ||
|
|
vec_t3_tar->size != 3)
|
|
) {
|
|
PyErr_SetString(PyExc_TypeError, "expected 7, 3D vector types" );
|
|
return NULL;
|
|
}
|
|
|
|
barycentric_transform(vec, vec_pt->vec,
|
|
vec_t1_tar->vec, vec_t2_tar->vec, vec_t3_tar->vec,
|
|
vec_t1_src->vec, vec_t2_src->vec, vec_t3_src->vec);
|
|
|
|
return newVectorObject(vec, 3, Py_NEW, NULL);
|
|
}
|
|
|
|
struct PyMethodDef M_Geometry_methods[] = {
|
|
{"Intersect", ( PyCFunction ) M_Geometry_Intersect, METH_VARARGS, M_Geometry_Intersect_doc},
|
|
{"TriangleArea", ( PyCFunction ) M_Geometry_TriangleArea, METH_VARARGS, M_Geometry_TriangleArea_doc},
|
|
{"TriangleNormal", ( PyCFunction ) M_Geometry_TriangleNormal, METH_VARARGS, M_Geometry_TriangleNormal_doc},
|
|
{"QuadNormal", ( PyCFunction ) M_Geometry_QuadNormal, METH_VARARGS, M_Geometry_QuadNormal_doc},
|
|
{"LineIntersect", ( PyCFunction ) M_Geometry_LineIntersect, METH_VARARGS, M_Geometry_LineIntersect_doc},
|
|
{"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_O, M_Geometry_PolyFill_doc},
|
|
{"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc},
|
|
{"ClosestPointOnLine", ( PyCFunction ) M_Geometry_ClosestPointOnLine, METH_VARARGS, M_Geometry_ClosestPointOnLine_doc},
|
|
{"PointInTriangle2D", ( PyCFunction ) M_Geometry_PointInTriangle2D, METH_VARARGS, M_Geometry_PointInTriangle2D_doc},
|
|
{"PointInQuad2D", ( PyCFunction ) M_Geometry_PointInQuad2D, METH_VARARGS, M_Geometry_PointInQuad2D_doc},
|
|
{"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_O, M_Geometry_BoxPack2D_doc},
|
|
{"BezierInterp", ( PyCFunction ) M_Geometry_BezierInterp, METH_VARARGS, M_Geometry_BezierInterp_doc},
|
|
{"BarycentricTransform", ( PyCFunction ) M_Geometry_BarycentricTransform, METH_VARARGS, M_Geometry_BarycentricTransform_doc},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
|
|
static struct PyModuleDef M_Geometry_module_def = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"mathutils.geometry", /* m_name */
|
|
M_Geometry_doc, /* m_doc */
|
|
0, /* m_size */
|
|
M_Geometry_methods, /* m_methods */
|
|
0, /* m_reload */
|
|
0, /* m_traverse */
|
|
0, /* m_clear */
|
|
0, /* m_free */
|
|
};
|
|
|
|
/*----------------------------MODULE INIT-------------------------*/
|
|
PyMODINIT_FUNC BPyInit_mathutils_geometry(void)
|
|
{
|
|
PyObject *submodule= PyModule_Create(&M_Geometry_module_def);
|
|
return submodule;
|
|
}
|