This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/mathutils/mathutils_interpolate.c
Campbell Barton e12c08e8d1 ClangFormat: apply to source, most of intern
Apply clang format as proposed in T53211.

For details on usage and instructions for migrating branches
without conflicts, see:

https://wiki.blender.org/wiki/Tools/ClangFormat
2019-04-17 06:21:24 +02:00

131 lines
3.5 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup pymathutils
*/
#include <Python.h>
#include "mathutils.h"
#include "mathutils_interpolate.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#ifndef MATH_STANDALONE /* define when building outside blender */
# include "MEM_guardedalloc.h"
#endif
/*-------------------------DOC STRINGS ---------------------------*/
PyDoc_STRVAR(M_Interpolate_doc, "The Blender interpolate module");
/* ---------------------------------WEIGHT CALCULATION ----------------------- */
#ifndef MATH_STANDALONE
PyDoc_STRVAR(M_Interpolate_poly_3d_calc_doc,
".. function:: poly_3d_calc(veclist, pt)\n"
"\n"
" Calculate barycentric weights for a point on a polygon.\n"
"\n"
" :arg veclist: list of vectors\n"
" :arg pt: point"
" :rtype: list of per-vector weights\n");
static PyObject *M_Interpolate_poly_3d_calc(PyObject *UNUSED(self), PyObject *args)
{
float fp[3];
float(*vecs)[3];
Py_ssize_t len;
PyObject *point, *veclist, *ret;
int i;
if (!PyArg_ParseTuple(args, "OO!:poly_3d_calc", &veclist, &vector_Type, &point)) {
return NULL;
}
if (BaseMath_ReadCallback((VectorObject *)point) == -1) {
return NULL;
}
fp[0] = ((VectorObject *)point)->vec[0];
fp[1] = ((VectorObject *)point)->vec[1];
if (((VectorObject *)point)->size > 2) {
fp[2] = ((VectorObject *)point)->vec[2];
}
else {
/* if its a 2d vector then set the z to be zero */
fp[2] = 0.0f;
}
len = mathutils_array_parse_alloc_v(((float **)&vecs), 3, veclist, __func__);
if (len == -1) {
return NULL;
}
if (len) {
float *weights = MEM_mallocN(sizeof(float) * len, __func__);
interp_weights_poly_v3(weights, vecs, len, fp);
ret = PyList_New(len);
for (i = 0; i < len; i++) {
PyList_SET_ITEM(ret, i, PyFloat_FromDouble(weights[i]));
}
MEM_freeN(weights);
PyMem_Free(vecs);
}
else {
ret = PyList_New(0);
}
return ret;
}
#endif /* MATH_STANDALONE */
static PyMethodDef M_Interpolate_methods[] = {
#ifndef MATH_STANDALONE
{"poly_3d_calc",
(PyCFunction)M_Interpolate_poly_3d_calc,
METH_VARARGS,
M_Interpolate_poly_3d_calc_doc},
#endif
{NULL, NULL, 0, NULL},
};
static struct PyModuleDef M_Interpolate_module_def = {
PyModuleDef_HEAD_INIT,
"mathutils.interpolate", /* m_name */
M_Interpolate_doc, /* m_doc */
0, /* m_size */
M_Interpolate_methods, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
/*----------------------------MODULE INIT-------------------------*/
PyMODINIT_FUNC PyInit_mathutils_interpolate(void)
{
PyObject *submodule = PyModule_Create(&M_Interpolate_module_def);
return submodule;
}