This patch allows the Voronoi node to operate in 1D, 2D, and 4D space. It also adds a Randomness input to control the randomness of the texture. Additionally, it adds three new modes of operation: - Smooth F1: A smooth version of F1 Voronoi with no discontinuities. - Distance To Edge: Returns the distance to the edges of the cells. - N-Sphere Radius: Returns the radius of the n-sphere inscribed in the cells. In other words, it is half the distance between the closest feature point and the feature point closest to it. And it removes the following three modes of operation: - F3. - F4. - Cracks. The Distance metric is now called Euclidean, and it computes the actual euclidean distance as opposed to the old method of computing the squared euclidean distance. This breaks backward compatibility in many ways, including the base case. Reviewers: brecht, JacquesLucke Differential Revision: https://developer.blender.org/D5743
265 lines
7.0 KiB
C++
265 lines
7.0 KiB
C++
/*
|
|
* Copyright 2011-2017 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef __UTIL_MATH_FLOAT2_H__
|
|
#define __UTIL_MATH_FLOAT2_H__
|
|
|
|
#ifndef __UTIL_MATH_H__
|
|
# error "Do not include this file directly, include util_types.h instead."
|
|
#endif
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/*******************************************************************************
|
|
* Declaration.
|
|
*/
|
|
|
|
#ifndef __KERNEL_OPENCL__
|
|
ccl_device_inline float2 operator-(const float2 &a);
|
|
ccl_device_inline float2 operator*(const float2 &a, const float2 &b);
|
|
ccl_device_inline float2 operator*(const float2 &a, float f);
|
|
ccl_device_inline float2 operator*(float f, const float2 &a);
|
|
ccl_device_inline float2 operator/(float f, const float2 &a);
|
|
ccl_device_inline float2 operator/(const float2 &a, float f);
|
|
ccl_device_inline float2 operator/(const float2 &a, const float2 &b);
|
|
ccl_device_inline float2 operator+(const float2 &a, const float f);
|
|
ccl_device_inline float2 operator+(const float2 &a, const float2 &b);
|
|
ccl_device_inline float2 operator-(const float2 &a, const float f);
|
|
ccl_device_inline float2 operator-(const float2 &a, const float2 &b);
|
|
ccl_device_inline float2 operator+=(float2 &a, const float2 &b);
|
|
ccl_device_inline float2 operator*=(float2 &a, const float2 &b);
|
|
ccl_device_inline float2 operator*=(float2 &a, float f);
|
|
ccl_device_inline float2 operator/=(float2 &a, const float2 &b);
|
|
ccl_device_inline float2 operator/=(float2 &a, float f);
|
|
|
|
ccl_device_inline bool operator==(const float2 &a, const float2 &b);
|
|
ccl_device_inline bool operator!=(const float2 &a, const float2 &b);
|
|
|
|
ccl_device_inline bool is_zero(const float2 &a);
|
|
ccl_device_inline float average(const float2 &a);
|
|
ccl_device_inline float distance(const float2 &a, const float2 &b);
|
|
ccl_device_inline float dot(const float2 &a, const float2 &b);
|
|
ccl_device_inline float cross(const float2 &a, const float2 &b);
|
|
ccl_device_inline float len(const float2 &a);
|
|
ccl_device_inline float2 normalize(const float2 &a);
|
|
ccl_device_inline float2 normalize_len(const float2 &a, float *t);
|
|
ccl_device_inline float2 safe_normalize(const float2 &a);
|
|
ccl_device_inline float2 min(const float2 &a, const float2 &b);
|
|
ccl_device_inline float2 max(const float2 &a, const float2 &b);
|
|
ccl_device_inline float2 clamp(const float2 &a, const float2 &mn, const float2 &mx);
|
|
ccl_device_inline float2 fabs(const float2 &a);
|
|
ccl_device_inline float2 as_float2(const float4 &a);
|
|
ccl_device_inline float2 interp(const float2 &a, const float2 &b, float t);
|
|
ccl_device_inline float2 floor(const float2 &a);
|
|
#endif /* !__KERNEL_OPENCL__ */
|
|
|
|
ccl_device_inline float2 safe_divide_float2_float(const float2 a, const float b);
|
|
|
|
/*******************************************************************************
|
|
* Definition.
|
|
*/
|
|
|
|
#ifndef __KERNEL_OPENCL__
|
|
ccl_device_inline float2 operator-(const float2 &a)
|
|
{
|
|
return make_float2(-a.x, -a.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator*(const float2 &a, const float2 &b)
|
|
{
|
|
return make_float2(a.x * b.x, a.y * b.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator*(const float2 &a, float f)
|
|
{
|
|
return make_float2(a.x * f, a.y * f);
|
|
}
|
|
|
|
ccl_device_inline float2 operator*(float f, const float2 &a)
|
|
{
|
|
return make_float2(a.x * f, a.y * f);
|
|
}
|
|
|
|
ccl_device_inline float2 operator/(float f, const float2 &a)
|
|
{
|
|
return make_float2(f / a.x, f / a.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator/(const float2 &a, float f)
|
|
{
|
|
float invf = 1.0f / f;
|
|
return make_float2(a.x * invf, a.y * invf);
|
|
}
|
|
|
|
ccl_device_inline float2 operator/(const float2 &a, const float2 &b)
|
|
{
|
|
return make_float2(a.x / b.x, a.y / b.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator+(const float2 &a, const float f)
|
|
{
|
|
return a + make_float2(f, f);
|
|
}
|
|
|
|
ccl_device_inline float2 operator+(const float2 &a, const float2 &b)
|
|
{
|
|
return make_float2(a.x + b.x, a.y + b.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator-(const float2 &a, const float f)
|
|
{
|
|
return a - make_float2(f, f);
|
|
}
|
|
|
|
ccl_device_inline float2 operator-(const float2 &a, const float2 &b)
|
|
{
|
|
return make_float2(a.x - b.x, a.y - b.y);
|
|
}
|
|
|
|
ccl_device_inline float2 operator+=(float2 &a, const float2 &b)
|
|
{
|
|
return a = a + b;
|
|
}
|
|
|
|
ccl_device_inline float2 operator*=(float2 &a, const float2 &b)
|
|
{
|
|
return a = a * b;
|
|
}
|
|
|
|
ccl_device_inline float2 operator*=(float2 &a, float f)
|
|
{
|
|
return a = a * f;
|
|
}
|
|
|
|
ccl_device_inline float2 operator/=(float2 &a, const float2 &b)
|
|
{
|
|
return a = a / b;
|
|
}
|
|
|
|
ccl_device_inline float2 operator/=(float2 &a, float f)
|
|
{
|
|
float invf = 1.0f / f;
|
|
return a = a * invf;
|
|
}
|
|
|
|
ccl_device_inline bool operator==(const float2 &a, const float2 &b)
|
|
{
|
|
return (a.x == b.x && a.y == b.y);
|
|
}
|
|
|
|
ccl_device_inline bool operator!=(const float2 &a, const float2 &b)
|
|
{
|
|
return !(a == b);
|
|
}
|
|
|
|
ccl_device_inline bool is_zero(const float2 &a)
|
|
{
|
|
return (a.x == 0.0f && a.y == 0.0f);
|
|
}
|
|
|
|
ccl_device_inline float average(const float2 &a)
|
|
{
|
|
return (a.x + a.y) * (1.0f / 2.0f);
|
|
}
|
|
|
|
ccl_device_inline float distance(const float2 &a, const float2 &b)
|
|
{
|
|
return len(a - b);
|
|
}
|
|
|
|
ccl_device_inline float dot(const float2 &a, const float2 &b)
|
|
{
|
|
return a.x * b.x + a.y * b.y;
|
|
}
|
|
|
|
ccl_device_inline float cross(const float2 &a, const float2 &b)
|
|
{
|
|
return (a.x * b.y - a.y * b.x);
|
|
}
|
|
|
|
ccl_device_inline float len(const float2 &a)
|
|
{
|
|
return sqrtf(dot(a, a));
|
|
}
|
|
|
|
ccl_device_inline float2 normalize(const float2 &a)
|
|
{
|
|
return a / len(a);
|
|
}
|
|
|
|
ccl_device_inline float2 normalize_len(const float2 &a, float *t)
|
|
{
|
|
*t = len(a);
|
|
return a / (*t);
|
|
}
|
|
|
|
ccl_device_inline float2 safe_normalize(const float2 &a)
|
|
{
|
|
float t = len(a);
|
|
return (t != 0.0f) ? a / t : a;
|
|
}
|
|
|
|
ccl_device_inline float2 min(const float2 &a, const float2 &b)
|
|
{
|
|
return make_float2(min(a.x, b.x), min(a.y, b.y));
|
|
}
|
|
|
|
ccl_device_inline float2 max(const float2 &a, const float2 &b)
|
|
{
|
|
return make_float2(max(a.x, b.x), max(a.y, b.y));
|
|
}
|
|
|
|
ccl_device_inline float2 clamp(const float2 &a, const float2 &mn, const float2 &mx)
|
|
{
|
|
return min(max(a, mn), mx);
|
|
}
|
|
|
|
ccl_device_inline float2 fabs(const float2 &a)
|
|
{
|
|
return make_float2(fabsf(a.x), fabsf(a.y));
|
|
}
|
|
|
|
ccl_device_inline float2 as_float2(const float4 &a)
|
|
{
|
|
return make_float2(a.x, a.y);
|
|
}
|
|
|
|
ccl_device_inline float2 interp(const float2 &a, const float2 &b, float t)
|
|
{
|
|
return a + t * (b - a);
|
|
}
|
|
|
|
ccl_device_inline float2 mix(const float2 &a, const float2 &b, float t)
|
|
{
|
|
return a + t * (b - a);
|
|
}
|
|
|
|
ccl_device_inline float2 floor(const float2 &a)
|
|
{
|
|
return make_float2(floorf(a.x), floorf(a.y));
|
|
}
|
|
|
|
#endif /* !__KERNEL_OPENCL__ */
|
|
|
|
ccl_device_inline float2 safe_divide_float2_float(const float2 a, const float b)
|
|
{
|
|
return (b != 0.0f) ? a / b : make_float2(0.0f, 0.0f);
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __UTIL_MATH_FLOAT2_H__ */
|