This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/boxpack2d.c
Campbell Barton f70d2c65d8 rename api functions...
- minf, maxf, mini, maxi --> min_ff, max_ff, min_ii, max_ii
2012-10-23 13:28:22 +00:00

440 lines
13 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenlib/intern/boxpack2d.c
* \ingroup bli
*/
#include <stdlib.h> /* for qsort */
#include "MEM_guardedalloc.h"
#include "BLI_boxpack2d.h"
/* BoxPacker for backing 2D rectangles into a square
*
* The defined Below are for internal use only */
typedef struct BoxVert {
float x;
float y;
short free;
struct BoxPack *trb; /* top right box */
struct BoxPack *blb; /* bottom left box */
struct BoxPack *brb; /* bottom right box */
struct BoxPack *tlb; /* top left box */
/* Store last intersecting boxes here
* speedup intersection testing */
struct BoxPack *isect_cache[4];
int index;
} BoxVert;
/* free vert flags */
#define EPSILON 0.0000001f
#define BLF 1
#define TRF 2
#define TLF 4
#define BRF 8
#define CORNERFLAGS (BLF | TRF | TLF | BRF)
#define BL 0
#define TR 1
#define TL 2
#define BR 3
#define BOXLEFT(b) ((b)->v[BL]->x)
#define BOXRIGHT(b) ((b)->v[TR]->x)
#define BOXBOTTOM(b) ((b)->v[BL]->y)
#define BOXTOP(b) ((b)->v[TR]->y)
#define BOXAREA(b) ((b)->w * (b)->h)
#define UPDATE_V34X(b) ((b)->v[TL]->x = (b)->v[BL]->x); \
((b)->v[BR]->x = (b)->v[TR]->x)
#define UPDATE_V34Y(b) ((b)->v[TL]->y = (b)->v[TR]->y); \
((b)->v[BR]->y = (b)->v[BL]->y)
/* UNUSED */
// #define UPDATE_V34(b) UPDATE_V34X(b); UPDATE_V34Y(b)
#define SET_BOXLEFT(b, f) (b)->v[TR]->x = f + (b)->w; \
(b)->v[BL]->x = f; \
UPDATE_V34X(b)
#define SET_BOXRIGHT(b, f) (b)->v[BL]->x = f - (b)->w; \
(b)->v[TR]->x = f; \
UPDATE_V34X(b)
#define SET_BOXBOTTOM(b, f) (b)->v[TR]->y = f + (b)->h; \
(b)->v[BL]->y = f; \
UPDATE_V34Y(b)
#define SET_BOXTOP(b, f) (b)->v[BL]->y = f - (b)->h; \
(b)->v[TR]->y = f; \
UPDATE_V34Y(b)
#define BOXINTERSECT(b1, b2) \
!(BOXLEFT(b1) + EPSILON >= BOXRIGHT(b2) || \
BOXBOTTOM(b1) + EPSILON >= BOXTOP(b2) || \
BOXRIGHT(b1) - EPSILON <= BOXLEFT(b2) || \
BOXTOP(b1) - EPSILON <= BOXBOTTOM(b2))
/* compiler should inline */
static float max_ff(const float a, const float b) { return b > a ? b : a; }
#if 0
#define BOXDEBUG(b) \
printf("\tBox Debug i %i, w:%.3f h:%.3f x:%.3f y:%.3f\n", \
b->index, b->w, b->h, b->x, b->y)
#endif
/* qsort function - sort largest to smallest */
static int box_areasort(const void *p1, const void *p2)
{
const BoxPack *b1 = p1, *b2 = p2;
const float a1 = BOXAREA(b1);
const float a2 = BOXAREA(b2);
if (a1 < a2) return 1;
else if (a1 > a2) return -1;
return 0;
}
/* qsort vertex sorting function
* sorts from lower left to top right It uses the current box's width and height
* as offsets when sorting, this has the result of not placing boxes outside
* the bounds of the existing backed area where possible
* */
static float box_width;
static float box_height;
static BoxVert *vertarray;
static int vertex_sort(const void *p1, const void *p2)
{
BoxVert *v1, *v2;
float a1, a2;
v1 = vertarray + ((int *)p1)[0];
v2 = vertarray + ((int *)p2)[0];
a1 = max_ff(v1->x + box_width, v1->y + box_height);
a2 = max_ff(v2->x + box_width, v2->y + box_height);
/* sort largest to smallest */
if (a1 > a2) return 1;
else if (a1 < a2) return -1;
return 0;
}
/* Main boxpacking function accessed from other functions
* This sets boxes x,y to positive values, sorting from 0,0 outwards.
* There is no limit to the space boxes may take, only that they will be packed
* tightly into the lower left hand corner (0,0)
*
* boxarray - a pre allocated array of boxes.
* only the 'box->x' and 'box->y' are set, 'box->w' and 'box->h' are used,
* 'box->index' is not used at all, the only reason its there
* is that the box array is sorted by area and programs need to be able
* to have some way of writing the boxes back to the original data.
* len - the number of boxes in the array.
* tot_width and tot_height are set so you can normalize the data.
* */
void BLI_box_pack_2D(BoxPack *boxarray, const int len, float *tot_width, float *tot_height)
{
BoxVert *vert; /* the current vert */
int box_index, verts_pack_len, i, j, k, isect;
int quad_flags[4] = {BLF, TRF, TLF, BRF}; /* use for looping */
BoxPack *box, *box_test; /*current box and another for intersection tests*/
int *vertex_pack_indices; /*an array of indices used for sorting verts*/
if (!len) {
*tot_width = 0.0f;
*tot_height = 0.0f;
return;
}
/* Sort boxes, biggest first */
qsort(boxarray, len, sizeof(BoxPack), box_areasort);
/* add verts to the boxes, these are only used internally */
vert = vertarray = MEM_mallocN(len * 4 * sizeof(BoxVert), "BoxPack Verts");
vertex_pack_indices = MEM_mallocN(len * 3 * sizeof(int), "BoxPack Indices");
for (box = boxarray, box_index = 0, i = 0; box_index < len; box_index++, box++) {
vert->blb = vert->brb = vert->tlb =
vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = CORNERFLAGS & ~TRF;
vert->trb = box;
vert->index = i; i++;
box->v[BL] = vert; vert++;
vert->trb = vert->brb = vert->tlb =
vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = CORNERFLAGS & ~BLF;
vert->blb = box;
vert->index = i; i++;
box->v[TR] = vert; vert++;
vert->trb = vert->blb = vert->tlb =
vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = CORNERFLAGS & ~BRF;
vert->brb = box;
vert->index = i; i++;
box->v[TL] = vert; vert++;
vert->trb = vert->blb = vert->brb =
vert->isect_cache[0] = vert->isect_cache[1] =
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = CORNERFLAGS & ~TLF;
vert->tlb = box;
vert->index = i; i++;
box->v[BR] = vert; vert++;
}
vert = NULL;
/* Pack the First box!
* then enter the main box-packing loop */
box = boxarray; /* get the first box */
/* First time, no boxes packed */
box->v[BL]->free = 0; /* Can't use any if these */
box->v[BR]->free &= ~(BLF | BRF);
box->v[TL]->free &= ~(BLF | TLF);
*tot_width = box->w;
*tot_height = box->h;
/* This sets all the vertex locations */
SET_BOXLEFT(box, 0.0f);
SET_BOXBOTTOM(box, 0.0f);
box->x = box->y = 0.0f;
for (i = 0; i < 3; i++)
vertex_pack_indices[i] = box->v[i + 1]->index;
verts_pack_len = 3;
box++; /* next box, needed for the loop below */
/* ...done packing the first box */
/* Main boxpacking loop */
for (box_index = 1; box_index < len; box_index++, box++) {
/* These static floatds are used for sorting */
box_width = box->w;
box_height = box->h;
qsort(vertex_pack_indices, verts_pack_len, sizeof(int), vertex_sort);
/* Pack the box in with the others */
/* sort the verts */
isect = 1;
for (i = 0; i < verts_pack_len && isect; i++) {
vert = vertarray + vertex_pack_indices[i];
/* printf("\ttesting vert %i %i %i %f %f\n", i,
* vert->free, verts_pack_len, vert->x, vert->y); */
/* This vert has a free quadrant
* Test if we can place the box here
* vert->free & quad_flags[j] - Checks
* */
for (j = 0; (j < 4) && isect; j++) {
if (vert->free & quad_flags[j]) {
switch (j) {
case BL:
SET_BOXRIGHT(box, vert->x);
SET_BOXTOP(box, vert->y);
break;
case TR:
SET_BOXLEFT(box, vert->x);
SET_BOXBOTTOM(box, vert->y);
break;
case TL:
SET_BOXRIGHT(box, vert->x);
SET_BOXBOTTOM(box, vert->y);
break;
case BR:
SET_BOXLEFT(box, vert->x);
SET_BOXTOP(box, vert->y);
break;
}
/* Now we need to check that the box intersects
* with any other boxes
* Assume no intersection... */
isect = 0;
if ( /* Constrain boxes to positive X/Y values */
BOXLEFT(box) < 0.0f || BOXBOTTOM(box) < 0.0f ||
/* check for last intersected */
(vert->isect_cache[j] &&
BOXINTERSECT(box, vert->isect_cache[j])))
{
/* Here we check that the last intersected
* box will intersect with this one using
* isect_cache that can store a pointer to a
* box for each quadrant
* big speedup */
isect = 1;
}
else {
/* do a full search for colliding box
* this is really slow, some spatially divided
* data-structure would be better */
for (box_test = boxarray; box_test != box; box_test++) {
if (BOXINTERSECT(box, box_test)) {
/* Store the last intersecting here as cache
* for faster checking next time around */
vert->isect_cache[j] = box_test;
isect = 1;
break;
}
}
}
if (!isect) {
/* maintain the total width and height */
(*tot_width) = max_ff(BOXRIGHT(box), (*tot_width));
(*tot_height) = max_ff(BOXTOP(box), (*tot_height));
/* Place the box */
vert->free &= ~quad_flags[j];
switch (j) {
case TR:
box->v[BL] = vert;
vert->trb = box;
break;
case TL:
box->v[BR] = vert;
vert->tlb = box;
break;
case BR:
box->v[TL] = vert;
vert->brb = box;
break;
case BL:
box->v[TR] = vert;
vert->blb = box;
break;
}
/* Mask free flags for verts that are
* on the bottom or side so we don't get
* boxes outside the given rectangle ares
*
* We can do an else/if here because only the first
* box can be at the very bottom left corner */
if (BOXLEFT(box) <= 0) {
box->v[TL]->free &= ~(TLF | BLF);
box->v[BL]->free &= ~(TLF | BLF);
}
else if (BOXBOTTOM(box) <= 0) {
box->v[BL]->free &= ~(BRF | BLF);
box->v[BR]->free &= ~(BRF | BLF);
}
/* The following block of code does a logical
* check with 2 adjacent boxes, its possible to
* flag verts on one or both of the boxes
* as being used by checking the width or
* height of both boxes */
if (vert->tlb && vert->trb && (box == vert->tlb || box == vert->trb)) {
if (vert->tlb->h > vert->trb->h) {
vert->trb->v[TL]->free &= ~(TLF | BLF);
}
else if (vert->tlb->h < vert->trb->h) {
vert->tlb->v[TR]->free &= ~(TRF | BRF);
}
else { /*same*/
vert->tlb->v[TR]->free &= ~BLF;
vert->trb->v[TL]->free &= ~BRF;
}
}
else if (vert->blb && vert->brb && (box == vert->blb || box == vert->brb)) {
if (vert->blb->h > vert->brb->h) {
vert->brb->v[BL]->free &= ~(TLF | BLF);
}
else if (vert->blb->h < vert->brb->h) {
vert->blb->v[BR]->free &= ~(TRF | BRF);
}
else { /*same*/
vert->blb->v[BR]->free &= ~TRF;
vert->brb->v[BL]->free &= ~TLF;
}
}
/* Horizontal */
if (vert->tlb && vert->blb && (box == vert->tlb || box == vert->blb)) {
if (vert->tlb->w > vert->blb->w) {
vert->blb->v[TL]->free &= ~(TLF | TRF);
}
else if (vert->tlb->w < vert->blb->w) {
vert->tlb->v[BL]->free &= ~(BLF | BRF);
}
else { /*same*/
vert->blb->v[TL]->free &= ~TRF;
vert->tlb->v[BL]->free &= ~BRF;
}
}
else if (vert->trb && vert->brb && (box == vert->trb || box == vert->brb)) {
if (vert->trb->w > vert->brb->w) {
vert->brb->v[TR]->free &= ~(TLF | TRF);
}
else if (vert->trb->w < vert->brb->w) {
vert->trb->v[BR]->free &= ~(BLF | BRF);
}
else { /*same*/
vert->brb->v[TR]->free &= ~TLF;
vert->trb->v[BR]->free &= ~BLF;
}
}
/* End logical check */
for (k = 0; k < 4; k++) {
if (box->v[k] != vert) {
vertex_pack_indices[verts_pack_len] = box->v[k]->index;
verts_pack_len++;
}
}
/* The Box verts are only used internally
* Update the box x and y since thats what external
* functions will see */
box->x = BOXLEFT(box);
box->y = BOXBOTTOM(box);
}
}
}
}
}
/* free all the verts, not really needed because they shouldn't be
* touched anymore but accessing the pointers would crash blender */
for (box_index = 0; box_index < len; box_index++) {
box = boxarray + box_index;
box->v[0] = box->v[1] = box->v[2] = box->v[3] = NULL;
}
MEM_freeN(vertex_pack_indices);
MEM_freeN(vertarray);
}