352 lines
11 KiB
C
352 lines
11 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2012 by Blender Foundation.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): Sergey Sharybin
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "BLI_math.h"
|
|
|
|
/**************************************************************************
|
|
* INTERPOLATIONS
|
|
*
|
|
* Reference and docs:
|
|
* http://wiki.blender.org/index.php/User:Damiles#Interpolations_Algorithms
|
|
***************************************************************************/
|
|
|
|
/* BICUBIC Interpolation functions
|
|
* More info: http://wiki.blender.org/index.php/User:Damiles#Bicubic_pixel_interpolation
|
|
* function assumes out to be zero'ed, only does RGBA */
|
|
|
|
static float P(float k)
|
|
{
|
|
float p1, p2, p3, p4;
|
|
p1 = max_ff(k + 2.0f, 0.0f);
|
|
p2 = max_ff(k + 1.0f, 0.0f);
|
|
p3 = max_ff(k, 0.0f);
|
|
p4 = max_ff(k - 1.0f, 0.0f);
|
|
return (float)(1.0f / 6.0f) * (p1 * p1 * p1 - 4.0f * p2 * p2 * p2 + 6.0f * p3 * p3 * p3 - 4.0f * p4 * p4 * p4);
|
|
}
|
|
|
|
|
|
#if 0
|
|
/* older, slower function, works the same as above */
|
|
static float P(float k)
|
|
{
|
|
return (float)(1.0f / 6.0f) * (pow(MAX2(k + 2.0f, 0), 3.0f) - 4.0f * pow(MAX2(k + 1.0f, 0), 3.0f) + 6.0f * pow(MAX2(k, 0), 3.0f) - 4.0f * pow(MAX2(k - 1.0f, 0), 3.0f));
|
|
}
|
|
#endif
|
|
|
|
static void vector_from_float(const float *data, float vector[4], int components)
|
|
{
|
|
if (components == 1) {
|
|
vector[0] = data[0];
|
|
}
|
|
else if (components == 3) {
|
|
copy_v3_v3(vector, data);
|
|
}
|
|
else {
|
|
copy_v4_v4(vector, data);
|
|
}
|
|
}
|
|
|
|
static void vector_from_byte(const unsigned char *data, float vector[4], int components)
|
|
{
|
|
if (components == 1) {
|
|
vector[0] = data[0];
|
|
}
|
|
else if (components == 3) {
|
|
vector[0] = data[0];
|
|
vector[1] = data[1];
|
|
vector[2] = data[2];
|
|
}
|
|
else {
|
|
vector[0] = data[0];
|
|
vector[1] = data[1];
|
|
vector[2] = data[2];
|
|
vector[3] = data[3];
|
|
}
|
|
}
|
|
|
|
/* BICUBIC INTERPOLATION */
|
|
BLI_INLINE void bicubic_interpolation(const unsigned char *byte_buffer, const float *float_buffer,
|
|
unsigned char *byte_output, float *float_output, int width, int height,
|
|
int components, float u, float v)
|
|
{
|
|
int i, j, n, m, x1, y1;
|
|
float a, b, w, wx, wy[4], out[4];
|
|
|
|
/* sample area entirely outside image? */
|
|
if (ceil(u) < 0 || floor(u) > width - 1 || ceil(v) < 0 || floor(v) > height - 1) {
|
|
return;
|
|
}
|
|
|
|
i = (int)floor(u);
|
|
j = (int)floor(v);
|
|
a = u - i;
|
|
b = v - j;
|
|
|
|
zero_v4(out);
|
|
|
|
/* Optimized and not so easy to read */
|
|
|
|
/* avoid calling multiple times */
|
|
wy[0] = P(b - (-1));
|
|
wy[1] = P(b - 0);
|
|
wy[2] = P(b - 1);
|
|
wy[3] = P(b - 2);
|
|
|
|
for (n = -1; n <= 2; n++) {
|
|
x1 = i + n;
|
|
CLAMP(x1, 0, width - 1);
|
|
wx = P(n - a);
|
|
for (m = -1; m <= 2; m++) {
|
|
float data[4];
|
|
|
|
y1 = j + m;
|
|
CLAMP(y1, 0, height - 1);
|
|
/* normally we could do this */
|
|
/* w = P(n-a) * P(b-m); */
|
|
/* except that would call P() 16 times per pixel therefor pow() 64 times, better precalc these */
|
|
w = wx * wy[m + 1];
|
|
|
|
if (float_output) {
|
|
const float *float_data = float_buffer + width * y1 * components + components * x1;
|
|
|
|
vector_from_float(float_data, data, components);
|
|
}
|
|
else {
|
|
const unsigned char *byte_data = byte_buffer + width * y1 * components + components * x1;
|
|
|
|
vector_from_byte(byte_data, data, components);
|
|
}
|
|
|
|
if (components == 1) {
|
|
out[0] += data[0] * w;
|
|
}
|
|
else if (components == 3) {
|
|
out[0] += data[0] * w;
|
|
out[1] += data[1] * w;
|
|
out[2] += data[2] * w;
|
|
}
|
|
else {
|
|
out[0] += data[0] * w;
|
|
out[1] += data[1] * w;
|
|
out[2] += data[2] * w;
|
|
out[3] += data[3] * w;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Done with optimized part */
|
|
|
|
#if 0
|
|
/* older, slower function, works the same as above */
|
|
for (n = -1; n <= 2; n++) {
|
|
for (m = -1; m <= 2; m++) {
|
|
x1 = i + n;
|
|
y1 = j + m;
|
|
if (x1 > 0 && x1 < width && y1 > 0 && y1 < height) {
|
|
float data[4];
|
|
|
|
if (float_output) {
|
|
const float *float_data = float_buffer + width * y1 * components + components * x1;
|
|
|
|
vector_from_float(float_data, data, components);
|
|
}
|
|
else {
|
|
const unsigned char *byte_data = byte_buffer + width * y1 * components + components * x1;
|
|
|
|
vector_from_byte(byte_data, data, components);
|
|
}
|
|
|
|
if (components == 1) {
|
|
out[0] += data[0] * P(n - a) * P(b - m);
|
|
}
|
|
else if (components == 3) {
|
|
out[0] += data[0] * P(n - a) * P(b - m);
|
|
out[1] += data[1] * P(n - a) * P(b - m);
|
|
out[2] += data[2] * P(n - a) * P(b - m);
|
|
}
|
|
else {
|
|
out[0] += data[0] * P(n - a) * P(b - m);
|
|
out[1] += data[1] * P(n - a) * P(b - m);
|
|
out[2] += data[2] * P(n - a) * P(b - m);
|
|
out[3] += data[3] * P(n - a) * P(b - m);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (float_output) {
|
|
if (components == 1) {
|
|
float_output[0] = out[0];
|
|
}
|
|
else if (components == 3) {
|
|
copy_v3_v3(float_output, out);
|
|
}
|
|
else {
|
|
copy_v4_v4(float_output, out);
|
|
}
|
|
}
|
|
else {
|
|
if (components == 1) {
|
|
byte_output[0] = out[0] + 0.5f;
|
|
}
|
|
else if (components == 3) {
|
|
byte_output[0] = out[0] + 0.5f;
|
|
byte_output[1] = out[1] + 0.5f;
|
|
byte_output[2] = out[2] + 0.5f;
|
|
}
|
|
else {
|
|
byte_output[0] = out[0] + 0.5f;
|
|
byte_output[1] = out[1] + 0.5f;
|
|
byte_output[2] = out[2] + 0.5f;
|
|
byte_output[3] = out[3] + 0.5f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BLI_bicubic_interpolation_fl(const float *buffer, float *output, int width, int height,
|
|
int components, float u, float v)
|
|
{
|
|
bicubic_interpolation(NULL, buffer, NULL, output, width, height, components, u, v);
|
|
}
|
|
|
|
void BLI_bicubic_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height,
|
|
int components, float u, float v)
|
|
{
|
|
bicubic_interpolation(buffer, NULL, output, NULL, width, height, components, u, v);
|
|
}
|
|
|
|
/* BILINEAR INTERPOLATION */
|
|
BLI_INLINE void bilinear_interpolation(const unsigned char *byte_buffer, const float *float_buffer,
|
|
unsigned char *byte_output, float *float_output, int width, int height,
|
|
int components, float u, float v)
|
|
{
|
|
float a, b;
|
|
float a_b, ma_b, a_mb, ma_mb;
|
|
int y1, y2, x1, x2;
|
|
|
|
/* ImBuf in must have a valid rect or rect_float, assume this is already checked */
|
|
|
|
x1 = (int)floor(u);
|
|
x2 = (int)ceil(u);
|
|
y1 = (int)floor(v);
|
|
y2 = (int)ceil(v);
|
|
|
|
/* sample area entirely outside image? */
|
|
if (x2 < 0 || x1 > width - 1 || y2 < 0 || y1 > height - 1) {
|
|
return;
|
|
}
|
|
|
|
if (float_output) {
|
|
const float *row1, *row2, *row3, *row4;
|
|
float empty[4] = {0.0f, 0.0f, 0.0f, 0.0f};
|
|
|
|
/* sample including outside of edges of image */
|
|
if (x1 < 0 || y1 < 0) row1 = empty;
|
|
else row1 = float_buffer + width * y1 * components + components * x1;
|
|
|
|
if (x1 < 0 || y2 > height - 1) row2 = empty;
|
|
else row2 = float_buffer + width * y2 * components + components * x1;
|
|
|
|
if (x2 > width - 1 || y1 < 0) row3 = empty;
|
|
else row3 = float_buffer + width * y1 * components + components * x2;
|
|
|
|
if (x2 > width - 1 || y2 > height - 1) row4 = empty;
|
|
else row4 = float_buffer + width * y2 * components + components * x2;
|
|
|
|
a = u - floorf(u);
|
|
b = v - floorf(v);
|
|
a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b);
|
|
|
|
if (components == 1) {
|
|
float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
|
|
}
|
|
else if (components == 3) {
|
|
float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
|
|
float_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
|
|
float_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
|
|
}
|
|
else {
|
|
float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
|
|
float_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
|
|
float_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
|
|
float_output[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3];
|
|
}
|
|
}
|
|
else {
|
|
const unsigned char *row1, *row2, *row3, *row4;
|
|
unsigned char empty[4] = {0, 0, 0, 0};
|
|
|
|
/* sample including outside of edges of image */
|
|
if (x1 < 0 || y1 < 0) row1 = empty;
|
|
else row1 = byte_buffer + width * y1 * components + components * x1;
|
|
|
|
if (x1 < 0 || y2 > height - 1) row2 = empty;
|
|
else row2 = byte_buffer + width * y2 * components + components * x1;
|
|
|
|
if (x2 > width - 1 || y1 < 0) row3 = empty;
|
|
else row3 = byte_buffer + width * y1 * components + components * x2;
|
|
|
|
if (x2 > width - 1 || y2 > height - 1) row4 = empty;
|
|
else row4 = byte_buffer + width * y2 * components + components * x2;
|
|
|
|
a = u - floorf(u);
|
|
b = v - floorf(v);
|
|
a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b);
|
|
|
|
if (components == 1) {
|
|
byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0] + 0.5f;
|
|
}
|
|
else if (components == 3) {
|
|
byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0] + 0.5f;
|
|
byte_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1] + 0.5f;
|
|
byte_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2] + 0.5f;
|
|
}
|
|
else {
|
|
byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0] + 0.5f;
|
|
byte_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1] + 0.5f;
|
|
byte_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2] + 0.5f;
|
|
byte_output[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3] + 0.5f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BLI_bilinear_interpolation_fl(const float *buffer, float *output, int width, int height,
|
|
int components, float u, float v)
|
|
{
|
|
bilinear_interpolation(NULL, buffer, NULL, output, width, height, components, u, v);
|
|
}
|
|
|
|
void BLI_bilinear_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height,
|
|
int components, float u, float v)
|
|
{
|
|
bilinear_interpolation(buffer, NULL, output, NULL, width, height, components, u, v);
|
|
}
|