This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/kernels/cuda/kernel.cu
Stefan Werner e58c6cf0c6 Cycles: Added Cryptomatte output.
This allows for extra output passes that encode automatic object and material masks
for the entire scene. It is an implementation of the Cryptomatte standard as
introduced by Psyop. A good future extension would be to add a manifest to the
export and to do plenty of testing to ensure that it is fully compatible with other
renderers and compositing programs that use Cryptomatte.

Internally, it adds the ability for Cycles to have several passes of the same type
that are distinguished by their name.

Differential Revision: https://developer.blender.org/D3538
2018-10-28 05:37:41 -04:00

160 lines
4.7 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* CUDA kernel entry points */
#ifdef __CUDA_ARCH__
#include "kernel/kernel_compat_cuda.h"
#include "kernel_config.h"
#include "util/util_atomic.h"
#include "kernel/kernel_math.h"
#include "kernel/kernel_types.h"
#include "kernel/kernel_globals.h"
#include "kernel/kernel_color.h"
#include "kernel/kernels/cuda/kernel_cuda_image.h"
#include "kernel/kernel_film.h"
#include "kernel/kernel_path.h"
#include "kernel/kernel_path_branched.h"
#include "kernel/kernel_bake.h"
#include "kernel/kernel_work_stealing.h"
/* kernels */
extern "C" __global__ void
CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
kernel_cuda_path_trace(WorkTile *tile, uint total_work_size)
{
int work_index = ccl_global_id(0);
bool thread_is_active = work_index < total_work_size;
uint x, y, sample;
KernelGlobals kg;
if(thread_is_active) {
get_work_pixel(tile, work_index, &x, &y, &sample);
kernel_path_trace(&kg, tile->buffer, sample, x, y, tile->offset, tile->stride);
}
if(kernel_data.film.cryptomatte_passes) {
__syncthreads();
if(thread_is_active) {
kernel_cryptomatte_post(&kg, tile->buffer, sample, x, y, tile->offset, tile->stride);
}
}
}
#ifdef __BRANCHED_PATH__
extern "C" __global__ void
CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_BRANCHED_MAX_REGISTERS)
kernel_cuda_branched_path_trace(WorkTile *tile, uint total_work_size)
{
int work_index = ccl_global_id(0);
bool thread_is_active = work_index < total_work_size;
uint x, y, sample;
KernelGlobals kg;
if(thread_is_active) {
get_work_pixel(tile, work_index, &x, &y, &sample);
kernel_branched_path_trace(&kg, tile->buffer, sample, x, y, tile->offset, tile->stride);
}
if(kernel_data.film.cryptomatte_passes) {
__syncthreads();
if(thread_is_active) {
kernel_cryptomatte_post(&kg, tile->buffer, sample, x, y, tile->offset, tile->stride);
}
}
}
#endif
extern "C" __global__ void
CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
kernel_cuda_convert_to_byte(uchar4 *rgba, float *buffer, float sample_scale, int sx, int sy, int sw, int sh, int offset, int stride)
{
int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
int y = sy + blockDim.y*blockIdx.y + threadIdx.y;
if(x < sx + sw && y < sy + sh) {
kernel_film_convert_to_byte(NULL, rgba, buffer, sample_scale, x, y, offset, stride);
}
}
extern "C" __global__ void
CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
kernel_cuda_convert_to_half_float(uchar4 *rgba, float *buffer, float sample_scale, int sx, int sy, int sw, int sh, int offset, int stride)
{
int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
int y = sy + blockDim.y*blockIdx.y + threadIdx.y;
if(x < sx + sw && y < sy + sh) {
kernel_film_convert_to_half_float(NULL, rgba, buffer, sample_scale, x, y, offset, stride);
}
}
extern "C" __global__ void
CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
kernel_cuda_displace(uint4 *input,
float4 *output,
int type,
int sx,
int sw,
int offset,
int sample)
{
int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
if(x < sx + sw) {
KernelGlobals kg;
kernel_displace_evaluate(&kg, input, output, x);
}
}
extern "C" __global__ void
CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
kernel_cuda_background(uint4 *input,
float4 *output,
int type,
int sx,
int sw,
int offset,
int sample)
{
int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
if(x < sx + sw) {
KernelGlobals kg;
kernel_background_evaluate(&kg, input, output, x);
}
}
#ifdef __BAKING__
extern "C" __global__ void
CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
kernel_cuda_bake(uint4 *input, float4 *output, int type, int filter, int sx, int sw, int offset, int sample)
{
int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
if(x < sx + sw) {
KernelGlobals kg;
kernel_bake_evaluate(&kg, input, output, (ShaderEvalType)type, filter, x, offset, sample);
}
}
#endif
#endif