To convert old code to the current convention and use a single code style.
158 lines
5.6 KiB
C++
158 lines
5.6 KiB
C++
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright 2011, Blender Foundation.
|
|
*/
|
|
|
|
#include "COM_BokehImageOperation.h"
|
|
|
|
namespace blender::compositor {
|
|
|
|
BokehImageOperation::BokehImageOperation()
|
|
{
|
|
this->add_output_socket(DataType::Color);
|
|
delete_data_ = false;
|
|
}
|
|
void BokehImageOperation::init_execution()
|
|
{
|
|
center_[0] = get_width() / 2;
|
|
center_[1] = get_height() / 2;
|
|
inverse_rounding_ = 1.0f - data_->rounding;
|
|
circular_distance_ = get_width() / 2;
|
|
flap_rad_ = (float)(M_PI * 2) / data_->flaps;
|
|
flap_rad_add_ = data_->angle;
|
|
while (flap_rad_add_ < 0.0f) {
|
|
flap_rad_add_ += (float)(M_PI * 2.0);
|
|
}
|
|
while (flap_rad_add_ > (float)M_PI) {
|
|
flap_rad_add_ -= (float)(M_PI * 2.0);
|
|
}
|
|
}
|
|
void BokehImageOperation::detemine_start_point_of_flap(float r[2], int flap_number, float distance)
|
|
{
|
|
r[0] = sinf(flap_rad_ * flap_number + flap_rad_add_) * distance + center_[0];
|
|
r[1] = cosf(flap_rad_ * flap_number + flap_rad_add_) * distance + center_[1];
|
|
}
|
|
float BokehImageOperation::is_inside_bokeh(float distance, float x, float y)
|
|
{
|
|
float inside_bokeh = 0.0f;
|
|
const float deltaX = x - center_[0];
|
|
const float deltaY = y - center_[1];
|
|
float closest_point[2];
|
|
float line_p1[2];
|
|
float line_p2[2];
|
|
float point[2];
|
|
point[0] = x;
|
|
point[1] = y;
|
|
|
|
const float distance_to_center = len_v2v2(point, center_);
|
|
const float bearing = (atan2f(deltaX, deltaY) + (float)(M_PI * 2.0));
|
|
int flap_number = (int)((bearing - flap_rad_add_) / flap_rad_);
|
|
|
|
detemine_start_point_of_flap(line_p1, flap_number, distance);
|
|
detemine_start_point_of_flap(line_p2, flap_number + 1, distance);
|
|
closest_to_line_v2(closest_point, point, line_p1, line_p2);
|
|
|
|
const float distance_line_to_center = len_v2v2(center_, closest_point);
|
|
const float distance_rounding_to_center = inverse_rounding_ * distance_line_to_center +
|
|
data_->rounding * distance;
|
|
|
|
const float catadioptric_distance_to_center = distance_rounding_to_center * data_->catadioptric;
|
|
if (distance_rounding_to_center >= distance_to_center &&
|
|
catadioptric_distance_to_center <= distance_to_center) {
|
|
if (distance_rounding_to_center - distance_to_center < 1.0f) {
|
|
inside_bokeh = (distance_rounding_to_center - distance_to_center);
|
|
}
|
|
else if (data_->catadioptric != 0.0f &&
|
|
distance_to_center - catadioptric_distance_to_center < 1.0f) {
|
|
inside_bokeh = (distance_to_center - catadioptric_distance_to_center);
|
|
}
|
|
else {
|
|
inside_bokeh = 1.0f;
|
|
}
|
|
}
|
|
return inside_bokeh;
|
|
}
|
|
void BokehImageOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler /*sampler*/)
|
|
{
|
|
float shift = data_->lensshift;
|
|
float shift2 = shift / 2.0f;
|
|
float distance = circular_distance_;
|
|
float inside_bokeh_max = is_inside_bokeh(distance, x, y);
|
|
float inside_bokeh_med = is_inside_bokeh(distance - fabsf(shift2 * distance), x, y);
|
|
float inside_bokeh_min = is_inside_bokeh(distance - fabsf(shift * distance), x, y);
|
|
if (shift < 0) {
|
|
output[0] = inside_bokeh_max;
|
|
output[1] = inside_bokeh_med;
|
|
output[2] = inside_bokeh_min;
|
|
}
|
|
else {
|
|
output[0] = inside_bokeh_min;
|
|
output[1] = inside_bokeh_med;
|
|
output[2] = inside_bokeh_max;
|
|
}
|
|
output[3] = (inside_bokeh_max + inside_bokeh_med + inside_bokeh_min) / 3.0f;
|
|
}
|
|
|
|
void BokehImageOperation::update_memory_buffer_partial(MemoryBuffer *output,
|
|
const rcti &area,
|
|
Span<MemoryBuffer *> UNUSED(inputs))
|
|
{
|
|
const float shift = data_->lensshift;
|
|
const float shift2 = shift / 2.0f;
|
|
const float distance = circular_distance_;
|
|
for (BuffersIterator<float> it = output->iterate_with({}, area); !it.is_end(); ++it) {
|
|
const float inside_bokeh_max = is_inside_bokeh(distance, it.x, it.y);
|
|
const float inside_bokeh_med = is_inside_bokeh(
|
|
distance - fabsf(shift2 * distance), it.x, it.y);
|
|
const float inside_bokeh_min = is_inside_bokeh(distance - fabsf(shift * distance), it.x, it.y);
|
|
if (shift < 0) {
|
|
it.out[0] = inside_bokeh_max;
|
|
it.out[1] = inside_bokeh_med;
|
|
it.out[2] = inside_bokeh_min;
|
|
}
|
|
else {
|
|
it.out[0] = inside_bokeh_min;
|
|
it.out[1] = inside_bokeh_med;
|
|
it.out[2] = inside_bokeh_max;
|
|
}
|
|
it.out[3] = (inside_bokeh_max + inside_bokeh_med + inside_bokeh_min) / 3.0f;
|
|
}
|
|
}
|
|
|
|
void BokehImageOperation::deinit_execution()
|
|
{
|
|
if (delete_data_) {
|
|
if (data_) {
|
|
delete data_;
|
|
data_ = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BokehImageOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
|
|
{
|
|
BLI_rcti_init(&r_area,
|
|
preferred_area.xmin,
|
|
preferred_area.xmin + COM_BLUR_BOKEH_PIXELS,
|
|
preferred_area.ymin,
|
|
preferred_area.ymin + COM_BLUR_BOKEH_PIXELS);
|
|
}
|
|
|
|
} // namespace blender::compositor
|