The crash was caused by allocating an uninitialized amount of memory. This fix initializes a bunch of variables that could cause the error. It should be possible to also fix this in the function that actually uses the uninitialized memory, but that could cause unknown consequences that are a bit too risky for 3.0. Just initializing some variables should be safe though. For more details see D13369. Differential Revision: https://developer.blender.org/D13369
1418 lines
41 KiB
C++
1418 lines
41 KiB
C++
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright 2011, Blender Foundation.
|
|
*/
|
|
|
|
#include "COM_MixOperation.h"
|
|
|
|
namespace blender::compositor {
|
|
|
|
/* ******** Mix Base Operation ******** */
|
|
|
|
MixBaseOperation::MixBaseOperation()
|
|
{
|
|
this->add_input_socket(DataType::Value);
|
|
this->add_input_socket(DataType::Color);
|
|
this->add_input_socket(DataType::Color);
|
|
this->add_output_socket(DataType::Color);
|
|
input_value_operation_ = nullptr;
|
|
input_color1_operation_ = nullptr;
|
|
input_color2_operation_ = nullptr;
|
|
this->set_use_value_alpha_multiply(false);
|
|
this->set_use_clamp(false);
|
|
flags_.can_be_constant = true;
|
|
}
|
|
|
|
void MixBaseOperation::init_execution()
|
|
{
|
|
input_value_operation_ = this->get_input_socket_reader(0);
|
|
input_color1_operation_ = this->get_input_socket_reader(1);
|
|
input_color2_operation_ = this->get_input_socket_reader(2);
|
|
}
|
|
|
|
void MixBaseOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = valuem * (input_color1[0]) + value * (input_color2[0]);
|
|
output[1] = valuem * (input_color1[1]) + value * (input_color2[1]);
|
|
output[2] = valuem * (input_color1[2]) + value * (input_color2[2]);
|
|
output[3] = input_color1[3];
|
|
}
|
|
|
|
void MixBaseOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
|
|
{
|
|
NodeOperationInput *socket;
|
|
rcti temp_area = COM_AREA_NONE;
|
|
|
|
socket = this->get_input_socket(1);
|
|
bool determined = socket->determine_canvas(COM_AREA_NONE, temp_area);
|
|
if (determined) {
|
|
this->set_canvas_input_index(1);
|
|
}
|
|
else {
|
|
socket = this->get_input_socket(2);
|
|
determined = socket->determine_canvas(COM_AREA_NONE, temp_area);
|
|
if (determined) {
|
|
this->set_canvas_input_index(2);
|
|
}
|
|
else {
|
|
this->set_canvas_input_index(0);
|
|
}
|
|
}
|
|
NodeOperation::determine_canvas(preferred_area, r_area);
|
|
}
|
|
|
|
void MixBaseOperation::deinit_execution()
|
|
{
|
|
input_value_operation_ = nullptr;
|
|
input_color1_operation_ = nullptr;
|
|
input_color2_operation_ = nullptr;
|
|
}
|
|
|
|
void MixBaseOperation::update_memory_buffer_partial(MemoryBuffer *output,
|
|
const rcti &area,
|
|
Span<MemoryBuffer *> inputs)
|
|
{
|
|
const MemoryBuffer *input_value = inputs[0];
|
|
const MemoryBuffer *input_color1 = inputs[1];
|
|
const MemoryBuffer *input_color2 = inputs[2];
|
|
const int width = BLI_rcti_size_x(&area);
|
|
PixelCursor p;
|
|
p.out_stride = output->elem_stride;
|
|
p.value_stride = input_value->elem_stride;
|
|
p.color1_stride = input_color1->elem_stride;
|
|
p.color2_stride = input_color2->elem_stride;
|
|
for (int y = area.ymin; y < area.ymax; y++) {
|
|
p.out = output->get_elem(area.xmin, y);
|
|
p.row_end = p.out + width * output->elem_stride;
|
|
p.value = input_value->get_elem(area.xmin, y);
|
|
p.color1 = input_color1->get_elem(area.xmin, y);
|
|
p.color2 = input_color2->get_elem(area.xmin, y);
|
|
update_memory_buffer_row(p);
|
|
}
|
|
}
|
|
|
|
void MixBaseOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
p.out[0] = value_m * p.color1[0] + value * p.color2[0];
|
|
p.out[1] = value_m * p.color1[1] + value * p.color2[1];
|
|
p.out[2] = value_m * p.color1[2] + value * p.color2[2];
|
|
p.out[3] = p.color1[3];
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Add Operation ******** */
|
|
|
|
void MixAddOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
output[0] = input_color1[0] + value * input_color2[0];
|
|
output[1] = input_color1[1] + value * input_color2[1];
|
|
output[2] = input_color1[2] + value * input_color2[2];
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixAddOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
p.out[0] = p.color1[0] + value * p.color2[0];
|
|
p.out[1] = p.color1[1] + value * p.color2[1];
|
|
p.out[2] = p.color1[2] + value * p.color2[2];
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Blend Operation ******** */
|
|
|
|
void MixBlendOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
float value;
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
value = input_value[0];
|
|
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = valuem * (input_color1[0]) + value * (input_color2[0]);
|
|
output[1] = valuem * (input_color1[1]) + value * (input_color2[1]);
|
|
output[2] = valuem * (input_color1[2]) + value * (input_color2[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixBlendOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
float value_m = 1.0f - value;
|
|
p.out[0] = value_m * p.color1[0] + value * p.color2[0];
|
|
p.out[1] = value_m * p.color1[1] + value * p.color2[1];
|
|
p.out[2] = value_m * p.color1[2] + value * p.color2[2];
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Burn Operation ******** */
|
|
|
|
void MixColorBurnOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
float tmp;
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
tmp = valuem + value * input_color2[0];
|
|
if (tmp <= 0.0f) {
|
|
output[0] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - input_color1[0]) / tmp;
|
|
if (tmp < 0.0f) {
|
|
output[0] = 0.0f;
|
|
}
|
|
else if (tmp > 1.0f) {
|
|
output[0] = 1.0f;
|
|
}
|
|
else {
|
|
output[0] = tmp;
|
|
}
|
|
}
|
|
|
|
tmp = valuem + value * input_color2[1];
|
|
if (tmp <= 0.0f) {
|
|
output[1] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - input_color1[1]) / tmp;
|
|
if (tmp < 0.0f) {
|
|
output[1] = 0.0f;
|
|
}
|
|
else if (tmp > 1.0f) {
|
|
output[1] = 1.0f;
|
|
}
|
|
else {
|
|
output[1] = tmp;
|
|
}
|
|
}
|
|
|
|
tmp = valuem + value * input_color2[2];
|
|
if (tmp <= 0.0f) {
|
|
output[2] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - input_color1[2]) / tmp;
|
|
if (tmp < 0.0f) {
|
|
output[2] = 0.0f;
|
|
}
|
|
else if (tmp > 1.0f) {
|
|
output[2] = 1.0f;
|
|
}
|
|
else {
|
|
output[2] = tmp;
|
|
}
|
|
}
|
|
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixColorBurnOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
float tmp = value_m + value * p.color2[0];
|
|
if (tmp <= 0.0f) {
|
|
p.out[0] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - p.color1[0]) / tmp;
|
|
p.out[0] = CLAMPIS(tmp, 0.0f, 1.0f);
|
|
}
|
|
|
|
tmp = value_m + value * p.color2[1];
|
|
if (tmp <= 0.0f) {
|
|
p.out[1] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - p.color1[1]) / tmp;
|
|
p.out[1] = CLAMPIS(tmp, 0.0f, 1.0f);
|
|
}
|
|
|
|
tmp = value_m + value * p.color2[2];
|
|
if (tmp <= 0.0f) {
|
|
p.out[2] = 0.0f;
|
|
}
|
|
else {
|
|
tmp = 1.0f - (1.0f - p.color1[2]) / tmp;
|
|
p.out[2] = CLAMPIS(tmp, 0.0f, 1.0f);
|
|
}
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Color Operation ******** */
|
|
|
|
void MixColorOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(input_color2[0], input_color2[1], input_color2[2], &colH, &colS, &colV);
|
|
if (colS != 0.0f) {
|
|
float rH, rS, rV;
|
|
float tmpr, tmpg, tmpb;
|
|
rgb_to_hsv(input_color1[0], input_color1[1], input_color1[2], &rH, &rS, &rV);
|
|
hsv_to_rgb(colH, colS, rV, &tmpr, &tmpg, &tmpb);
|
|
output[0] = (valuem * input_color1[0]) + (value * tmpr);
|
|
output[1] = (valuem * input_color1[1]) + (value * tmpg);
|
|
output[2] = (valuem * input_color1[2]) + (value * tmpb);
|
|
}
|
|
else {
|
|
copy_v3_v3(output, input_color1);
|
|
}
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixColorOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
|
|
if (colS != 0.0f) {
|
|
float rH, rS, rV;
|
|
float tmpr, tmpg, tmpb;
|
|
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
|
|
hsv_to_rgb(colH, colS, rV, &tmpr, &tmpg, &tmpb);
|
|
p.out[0] = (value_m * p.color1[0]) + (value * tmpr);
|
|
p.out[1] = (value_m * p.color1[1]) + (value * tmpg);
|
|
p.out[2] = (value_m * p.color1[2]) + (value * tmpb);
|
|
}
|
|
else {
|
|
copy_v3_v3(p.out, p.color1);
|
|
}
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Darken Operation ******** */
|
|
|
|
void MixDarkenOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = min_ff(input_color1[0], input_color2[0]) * value + input_color1[0] * valuem;
|
|
output[1] = min_ff(input_color1[1], input_color2[1]) * value + input_color1[1] * valuem;
|
|
output[2] = min_ff(input_color1[2], input_color2[2]) * value + input_color1[2] * valuem;
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixDarkenOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
float value_m = 1.0f - value;
|
|
p.out[0] = min_ff(p.color1[0], p.color2[0]) * value + p.color1[0] * value_m;
|
|
p.out[1] = min_ff(p.color1[1], p.color2[1]) * value + p.color1[1] * value_m;
|
|
p.out[2] = min_ff(p.color1[2], p.color2[2]) * value + p.color1[2] * value_m;
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Difference Operation ******** */
|
|
|
|
void MixDifferenceOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = valuem * input_color1[0] + value * fabsf(input_color1[0] - input_color2[0]);
|
|
output[1] = valuem * input_color1[1] + value * fabsf(input_color1[1] - input_color2[1]);
|
|
output[2] = valuem * input_color1[2] + value * fabsf(input_color1[2] - input_color2[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixDifferenceOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
p.out[0] = value_m * p.color1[0] + value * fabsf(p.color1[0] - p.color2[0]);
|
|
p.out[1] = value_m * p.color1[1] + value * fabsf(p.color1[1] - p.color2[1]);
|
|
p.out[2] = value_m * p.color1[2] + value * fabsf(p.color1[2] - p.color2[2]);
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Difference Operation ******** */
|
|
|
|
void MixDivideOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
if (input_color2[0] != 0.0f) {
|
|
output[0] = valuem * (input_color1[0]) + value * (input_color1[0]) / input_color2[0];
|
|
}
|
|
else {
|
|
output[0] = 0.0f;
|
|
}
|
|
if (input_color2[1] != 0.0f) {
|
|
output[1] = valuem * (input_color1[1]) + value * (input_color1[1]) / input_color2[1];
|
|
}
|
|
else {
|
|
output[1] = 0.0f;
|
|
}
|
|
if (input_color2[2] != 0.0f) {
|
|
output[2] = valuem * (input_color1[2]) + value * (input_color1[2]) / input_color2[2];
|
|
}
|
|
else {
|
|
output[2] = 0.0f;
|
|
}
|
|
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixDivideOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
if (p.color2[0] != 0.0f) {
|
|
p.out[0] = value_m * (p.color1[0]) + value * (p.color1[0]) / p.color2[0];
|
|
}
|
|
else {
|
|
p.out[0] = 0.0f;
|
|
}
|
|
if (p.color2[1] != 0.0f) {
|
|
p.out[1] = value_m * (p.color1[1]) + value * (p.color1[1]) / p.color2[1];
|
|
}
|
|
else {
|
|
p.out[1] = 0.0f;
|
|
}
|
|
if (p.color2[2] != 0.0f) {
|
|
p.out[2] = value_m * (p.color1[2]) + value * (p.color1[2]) / p.color2[2];
|
|
}
|
|
else {
|
|
p.out[2] = 0.0f;
|
|
}
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Dodge Operation ******** */
|
|
|
|
void MixDodgeOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
float tmp;
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
|
|
if (input_color1[0] != 0.0f) {
|
|
tmp = 1.0f - value * input_color2[0];
|
|
if (tmp <= 0.0f) {
|
|
output[0] = 1.0f;
|
|
}
|
|
else {
|
|
tmp = input_color1[0] / tmp;
|
|
if (tmp > 1.0f) {
|
|
output[0] = 1.0f;
|
|
}
|
|
else {
|
|
output[0] = tmp;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
output[0] = 0.0f;
|
|
}
|
|
|
|
if (input_color1[1] != 0.0f) {
|
|
tmp = 1.0f - value * input_color2[1];
|
|
if (tmp <= 0.0f) {
|
|
output[1] = 1.0f;
|
|
}
|
|
else {
|
|
tmp = input_color1[1] / tmp;
|
|
if (tmp > 1.0f) {
|
|
output[1] = 1.0f;
|
|
}
|
|
else {
|
|
output[1] = tmp;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
output[1] = 0.0f;
|
|
}
|
|
|
|
if (input_color1[2] != 0.0f) {
|
|
tmp = 1.0f - value * input_color2[2];
|
|
if (tmp <= 0.0f) {
|
|
output[2] = 1.0f;
|
|
}
|
|
else {
|
|
tmp = input_color1[2] / tmp;
|
|
if (tmp > 1.0f) {
|
|
output[2] = 1.0f;
|
|
}
|
|
else {
|
|
output[2] = tmp;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
output[2] = 0.0f;
|
|
}
|
|
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixDodgeOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
|
|
float tmp;
|
|
if (p.color1[0] != 0.0f) {
|
|
tmp = 1.0f - value * p.color2[0];
|
|
if (tmp <= 0.0f) {
|
|
p.out[0] = 1.0f;
|
|
}
|
|
else {
|
|
p.out[0] = p.color1[0] / tmp;
|
|
CLAMP_MAX(p.out[0], 1.0f);
|
|
}
|
|
}
|
|
else {
|
|
p.out[0] = 0.0f;
|
|
}
|
|
|
|
if (p.color1[1] != 0.0f) {
|
|
tmp = 1.0f - value * p.color2[1];
|
|
if (tmp <= 0.0f) {
|
|
p.out[1] = 1.0f;
|
|
}
|
|
else {
|
|
p.out[1] = p.color1[1] / tmp;
|
|
CLAMP_MAX(p.out[1], 1.0f);
|
|
}
|
|
}
|
|
else {
|
|
p.out[1] = 0.0f;
|
|
}
|
|
|
|
if (p.color1[2] != 0.0f) {
|
|
tmp = 1.0f - value * p.color2[2];
|
|
if (tmp <= 0.0f) {
|
|
p.out[2] = 1.0f;
|
|
}
|
|
else {
|
|
p.out[2] = p.color1[2] / tmp;
|
|
CLAMP_MAX(p.out[2], 1.0f);
|
|
}
|
|
}
|
|
else {
|
|
p.out[2] = 0.0f;
|
|
}
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Glare Operation ******** */
|
|
|
|
void MixGlareOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
float value, input_weight, glare_weight;
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
value = input_value[0];
|
|
/* Linear interpolation between 3 cases:
|
|
* value=-1:output=input value=0:output=input+glare value=1:output=glare
|
|
*/
|
|
if (value < 0.0f) {
|
|
input_weight = 1.0f;
|
|
glare_weight = 1.0f + value;
|
|
}
|
|
else {
|
|
input_weight = 1.0f - value;
|
|
glare_weight = 1.0f;
|
|
}
|
|
output[0] = input_weight * MAX2(input_color1[0], 0.0f) + glare_weight * input_color2[0];
|
|
output[1] = input_weight * MAX2(input_color1[1], 0.0f) + glare_weight * input_color2[1];
|
|
output[2] = input_weight * MAX2(input_color1[2], 0.0f) + glare_weight * input_color2[2];
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixGlareOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
const float value = p.value[0];
|
|
/* Linear interpolation between 3 cases:
|
|
* value=-1:output=input value=0:output=input+glare value=1:output=glare
|
|
*/
|
|
float input_weight;
|
|
float glare_weight;
|
|
if (value < 0.0f) {
|
|
input_weight = 1.0f;
|
|
glare_weight = 1.0f + value;
|
|
}
|
|
else {
|
|
input_weight = 1.0f - value;
|
|
glare_weight = 1.0f;
|
|
}
|
|
p.out[0] = input_weight * MAX2(p.color1[0], 0.0f) + glare_weight * p.color2[0];
|
|
p.out[1] = input_weight * MAX2(p.color1[1], 0.0f) + glare_weight * p.color2[1];
|
|
p.out[2] = input_weight * MAX2(p.color1[2], 0.0f) + glare_weight * p.color2[2];
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Hue Operation ******** */
|
|
|
|
void MixHueOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(input_color2[0], input_color2[1], input_color2[2], &colH, &colS, &colV);
|
|
if (colS != 0.0f) {
|
|
float rH, rS, rV;
|
|
float tmpr, tmpg, tmpb;
|
|
rgb_to_hsv(input_color1[0], input_color1[1], input_color1[2], &rH, &rS, &rV);
|
|
hsv_to_rgb(colH, rS, rV, &tmpr, &tmpg, &tmpb);
|
|
output[0] = valuem * (input_color1[0]) + value * tmpr;
|
|
output[1] = valuem * (input_color1[1]) + value * tmpg;
|
|
output[2] = valuem * (input_color1[2]) + value * tmpb;
|
|
}
|
|
else {
|
|
copy_v3_v3(output, input_color1);
|
|
}
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixHueOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
|
|
if (colS != 0.0f) {
|
|
float rH, rS, rV;
|
|
float tmpr, tmpg, tmpb;
|
|
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
|
|
hsv_to_rgb(colH, rS, rV, &tmpr, &tmpg, &tmpb);
|
|
p.out[0] = value_m * p.color1[0] + value * tmpr;
|
|
p.out[1] = value_m * p.color1[1] + value * tmpg;
|
|
p.out[2] = value_m * p.color1[2] + value * tmpb;
|
|
}
|
|
else {
|
|
copy_v3_v3(p.out, p.color1);
|
|
}
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Lighten Operation ******** */
|
|
|
|
void MixLightenOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float tmp;
|
|
tmp = value * input_color2[0];
|
|
if (tmp > input_color1[0]) {
|
|
output[0] = tmp;
|
|
}
|
|
else {
|
|
output[0] = input_color1[0];
|
|
}
|
|
tmp = value * input_color2[1];
|
|
if (tmp > input_color1[1]) {
|
|
output[1] = tmp;
|
|
}
|
|
else {
|
|
output[1] = input_color1[1];
|
|
}
|
|
tmp = value * input_color2[2];
|
|
if (tmp > input_color1[2]) {
|
|
output[2] = tmp;
|
|
}
|
|
else {
|
|
output[2] = input_color1[2];
|
|
}
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixLightenOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
|
|
float tmp = value * p.color2[0];
|
|
p.out[0] = MAX2(tmp, p.color1[0]);
|
|
|
|
tmp = value * p.color2[1];
|
|
p.out[1] = MAX2(tmp, p.color1[1]);
|
|
|
|
tmp = value * p.color2[2];
|
|
p.out[2] = MAX2(tmp, p.color1[2]);
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Linear Light Operation ******** */
|
|
|
|
void MixLinearLightOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
if (input_color2[0] > 0.5f) {
|
|
output[0] = input_color1[0] + value * (2.0f * (input_color2[0] - 0.5f));
|
|
}
|
|
else {
|
|
output[0] = input_color1[0] + value * (2.0f * (input_color2[0]) - 1.0f);
|
|
}
|
|
if (input_color2[1] > 0.5f) {
|
|
output[1] = input_color1[1] + value * (2.0f * (input_color2[1] - 0.5f));
|
|
}
|
|
else {
|
|
output[1] = input_color1[1] + value * (2.0f * (input_color2[1]) - 1.0f);
|
|
}
|
|
if (input_color2[2] > 0.5f) {
|
|
output[2] = input_color1[2] + value * (2.0f * (input_color2[2] - 0.5f));
|
|
}
|
|
else {
|
|
output[2] = input_color1[2] + value * (2.0f * (input_color2[2]) - 1.0f);
|
|
}
|
|
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixLinearLightOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
if (p.color2[0] > 0.5f) {
|
|
p.out[0] = p.color1[0] + value * (2.0f * (p.color2[0] - 0.5f));
|
|
}
|
|
else {
|
|
p.out[0] = p.color1[0] + value * (2.0f * (p.color2[0]) - 1.0f);
|
|
}
|
|
if (p.color2[1] > 0.5f) {
|
|
p.out[1] = p.color1[1] + value * (2.0f * (p.color2[1] - 0.5f));
|
|
}
|
|
else {
|
|
p.out[1] = p.color1[1] + value * (2.0f * (p.color2[1]) - 1.0f);
|
|
}
|
|
if (p.color2[2] > 0.5f) {
|
|
p.out[2] = p.color1[2] + value * (2.0f * (p.color2[2] - 0.5f));
|
|
}
|
|
else {
|
|
p.out[2] = p.color1[2] + value * (2.0f * (p.color2[2]) - 1.0f);
|
|
}
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Multiply Operation ******** */
|
|
|
|
void MixMultiplyOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
output[0] = input_color1[0] * (valuem + value * input_color2[0]);
|
|
output[1] = input_color1[1] * (valuem + value * input_color2[1]);
|
|
output[2] = input_color1[2] * (valuem + value * input_color2[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixMultiplyOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
p.out[0] = p.color1[0] * (value_m + value * p.color2[0]);
|
|
p.out[1] = p.color1[1] * (value_m + value * p.color2[1]);
|
|
p.out[2] = p.color1[2] * (value_m + value * p.color2[2]);
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Overlay Operation ******** */
|
|
|
|
void MixOverlayOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
|
|
float valuem = 1.0f - value;
|
|
|
|
if (input_color1[0] < 0.5f) {
|
|
output[0] = input_color1[0] * (valuem + 2.0f * value * input_color2[0]);
|
|
}
|
|
else {
|
|
output[0] = 1.0f -
|
|
(valuem + 2.0f * value * (1.0f - input_color2[0])) * (1.0f - input_color1[0]);
|
|
}
|
|
if (input_color1[1] < 0.5f) {
|
|
output[1] = input_color1[1] * (valuem + 2.0f * value * input_color2[1]);
|
|
}
|
|
else {
|
|
output[1] = 1.0f -
|
|
(valuem + 2.0f * value * (1.0f - input_color2[1])) * (1.0f - input_color1[1]);
|
|
}
|
|
if (input_color1[2] < 0.5f) {
|
|
output[2] = input_color1[2] * (valuem + 2.0f * value * input_color2[2]);
|
|
}
|
|
else {
|
|
output[2] = 1.0f -
|
|
(valuem + 2.0f * value * (1.0f - input_color2[2])) * (1.0f - input_color1[2]);
|
|
}
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixOverlayOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
if (p.color1[0] < 0.5f) {
|
|
p.out[0] = p.color1[0] * (value_m + 2.0f * value * p.color2[0]);
|
|
}
|
|
else {
|
|
p.out[0] = 1.0f - (value_m + 2.0f * value * (1.0f - p.color2[0])) * (1.0f - p.color1[0]);
|
|
}
|
|
if (p.color1[1] < 0.5f) {
|
|
p.out[1] = p.color1[1] * (value_m + 2.0f * value * p.color2[1]);
|
|
}
|
|
else {
|
|
p.out[1] = 1.0f - (value_m + 2.0f * value * (1.0f - p.color2[1])) * (1.0f - p.color1[1]);
|
|
}
|
|
if (p.color1[2] < 0.5f) {
|
|
p.out[2] = p.color1[2] * (value_m + 2.0f * value * p.color2[2]);
|
|
}
|
|
else {
|
|
p.out[2] = 1.0f - (value_m + 2.0f * value * (1.0f - p.color2[2])) * (1.0f - p.color1[2]);
|
|
}
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Saturation Operation ******** */
|
|
|
|
void MixSaturationOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
float rH, rS, rV;
|
|
rgb_to_hsv(input_color1[0], input_color1[1], input_color1[2], &rH, &rS, &rV);
|
|
if (rS != 0.0f) {
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(input_color2[0], input_color2[1], input_color2[2], &colH, &colS, &colV);
|
|
hsv_to_rgb(rH, (valuem * rS + value * colS), rV, &output[0], &output[1], &output[2]);
|
|
}
|
|
else {
|
|
copy_v3_v3(output, input_color1);
|
|
}
|
|
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixSaturationOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
float rH, rS, rV;
|
|
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
|
|
if (rS != 0.0f) {
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
|
|
hsv_to_rgb(rH, (value_m * rS + value * colS), rV, &p.out[0], &p.out[1], &p.out[2]);
|
|
}
|
|
else {
|
|
copy_v3_v3(p.out, p.color1);
|
|
}
|
|
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Screen Operation ******** */
|
|
|
|
void MixScreenOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
output[0] = 1.0f - (valuem + value * (1.0f - input_color2[0])) * (1.0f - input_color1[0]);
|
|
output[1] = 1.0f - (valuem + value * (1.0f - input_color2[1])) * (1.0f - input_color1[1]);
|
|
output[2] = 1.0f - (valuem + value * (1.0f - input_color2[2])) * (1.0f - input_color1[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixScreenOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
|
|
p.out[0] = 1.0f - (value_m + value * (1.0f - p.color2[0])) * (1.0f - p.color1[0]);
|
|
p.out[1] = 1.0f - (value_m + value * (1.0f - p.color2[1])) * (1.0f - p.color1[1]);
|
|
p.out[2] = 1.0f - (value_m + value * (1.0f - p.color2[2])) * (1.0f - p.color1[2]);
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Soft Light Operation ******** */
|
|
|
|
void MixSoftLightOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
float scr, scg, scb;
|
|
|
|
/* first calculate non-fac based Screen mix */
|
|
scr = 1.0f - (1.0f - input_color2[0]) * (1.0f - input_color1[0]);
|
|
scg = 1.0f - (1.0f - input_color2[1]) * (1.0f - input_color1[1]);
|
|
scb = 1.0f - (1.0f - input_color2[2]) * (1.0f - input_color1[2]);
|
|
|
|
output[0] = valuem * (input_color1[0]) +
|
|
value * (((1.0f - input_color1[0]) * input_color2[0] * (input_color1[0])) +
|
|
(input_color1[0] * scr));
|
|
output[1] = valuem * (input_color1[1]) +
|
|
value * (((1.0f - input_color1[1]) * input_color2[1] * (input_color1[1])) +
|
|
(input_color1[1] * scg));
|
|
output[2] = valuem * (input_color1[2]) +
|
|
value * (((1.0f - input_color1[2]) * input_color2[2] * (input_color1[2])) +
|
|
(input_color1[2] * scb));
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixSoftLightOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
const float value_m = 1.0f - value;
|
|
float scr, scg, scb;
|
|
|
|
/* First calculate non-fac based Screen mix. */
|
|
scr = 1.0f - (1.0f - p.color2[0]) * (1.0f - p.color1[0]);
|
|
scg = 1.0f - (1.0f - p.color2[1]) * (1.0f - p.color1[1]);
|
|
scb = 1.0f - (1.0f - p.color2[2]) * (1.0f - p.color1[2]);
|
|
|
|
p.out[0] = value_m * p.color1[0] +
|
|
value * ((1.0f - p.color1[0]) * p.color2[0] * p.color1[0] + p.color1[0] * scr);
|
|
p.out[1] = value_m * p.color1[1] +
|
|
value * ((1.0f - p.color1[1]) * p.color2[1] * p.color1[1] + p.color1[1] * scg);
|
|
p.out[2] = value_m * p.color1[2] +
|
|
value * ((1.0f - p.color1[2]) * p.color2[2] * p.color1[2] + p.color1[2] * scb);
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Subtract Operation ******** */
|
|
|
|
void MixSubtractOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
output[0] = input_color1[0] - value * (input_color2[0]);
|
|
output[1] = input_color1[1] - value * (input_color2[1]);
|
|
output[2] = input_color1[2] - value * (input_color2[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixSubtractOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
p.out[0] = p.color1[0] - value * p.color2[0];
|
|
p.out[1] = p.color1[1] - value * p.color2[1];
|
|
p.out[2] = p.color1[2] - value * p.color2[2];
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
/* ******** Mix Value Operation ******** */
|
|
|
|
void MixValueOperation::execute_pixel_sampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
float input_color1[4];
|
|
float input_color2[4];
|
|
float input_value[4];
|
|
|
|
input_value_operation_->read_sampled(input_value, x, y, sampler);
|
|
input_color1_operation_->read_sampled(input_color1, x, y, sampler);
|
|
input_color2_operation_->read_sampled(input_color2, x, y, sampler);
|
|
|
|
float value = input_value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= input_color2[3];
|
|
}
|
|
float valuem = 1.0f - value;
|
|
|
|
float rH, rS, rV;
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(input_color1[0], input_color1[1], input_color1[2], &rH, &rS, &rV);
|
|
rgb_to_hsv(input_color2[0], input_color2[1], input_color2[2], &colH, &colS, &colV);
|
|
hsv_to_rgb(rH, rS, (valuem * rV + value * colV), &output[0], &output[1], &output[2]);
|
|
output[3] = input_color1[3];
|
|
|
|
clamp_if_needed(output);
|
|
}
|
|
|
|
void MixValueOperation::update_memory_buffer_row(PixelCursor &p)
|
|
{
|
|
while (p.out < p.row_end) {
|
|
float value = p.value[0];
|
|
if (this->use_value_alpha_multiply()) {
|
|
value *= p.color2[3];
|
|
}
|
|
float value_m = 1.0f - value;
|
|
|
|
float rH, rS, rV;
|
|
float colH, colS, colV;
|
|
rgb_to_hsv(p.color1[0], p.color1[1], p.color1[2], &rH, &rS, &rV);
|
|
rgb_to_hsv(p.color2[0], p.color2[1], p.color2[2], &colH, &colS, &colV);
|
|
hsv_to_rgb(rH, rS, (value_m * rV + value * colV), &p.out[0], &p.out[1], &p.out[2]);
|
|
p.out[3] = p.color1[3];
|
|
|
|
clamp_if_needed(p.out);
|
|
p.next();
|
|
}
|
|
}
|
|
|
|
} // namespace blender::compositor
|