This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenlib/intern/threads.c
Ton Roosendaal 2f8708da02 Three-in-one commit:
- Compositor now is threaded
Enable it with the Scene buttons "Threads". This will handle over nodes to
individual threads to be calculated. However, if nodes depend on others
they have to wait. The current system only threads per entire node, not for
calculating results in parts.

I've reshuffled the node execution code to evaluate 'changed' events, and
prepare the entire tree to become simply parsed for open jobs with a call
to   node = getExecutableNode()
By default, even without 'thread' option active, all node execution is
done within a separate thread.

Also fixed issues in yesterdays commit for 'event based' calculations, it
didn't do animated images, or execute (on rendering) the correct nodes
when you don't have Render-Result nodes included.

- Added generic Thread support in blenlib/ module
The renderer and the node system now both use same code for controlling the
threads. This has been moved to a new C file in blenlib/intern/threads.c.
Check this c file for an extensive doc and example how to use it.

The current implementation for Compositing allows unlimited amount of
threads. For rendering it is still tied to two threads, although it is
pretty easy to extend to 4 already. People with giant amounts of cpus can
poke me once for tests. :)

- Bugfix in creating group nodes
Group node definitions demand a clear separation of 'internal sockets' and
'external sockets'. The first are sockets being linked internally, the latter
are sockets exposed as sockets for the group itself.
When sockets were linked both internal and external, Blender crashed. It is
solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00

184 lines
4.3 KiB
C

/**
*
* $Id:
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2006 Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_threads.h"
#include "SDL_thread.h"
/* ********** basic thread control API ************
Many thread cases have an X amount of jobs, and only an Y amount of
threads are useful (typically amount of cpus)
This code can be used to start a maximum amount of 'thread slots', which
then can be filled in a loop with an idle timer.
A sample loop can look like this (pseudo c);
ListBase lb;
int maxthreads= 2;
int cont= 1;
BLI_init_threads(&lb, do_something_func, maxthreads);
while(cont) {
if(BLI_available_threads(&lb) && !(escape loop event)) {
// get new job (data pointer)
// tag job 'processed
BLI_insert_thread(&lb, job);
}
else PIL_sleep_ms(50);
// find if a job is ready, this the do_something_func() should write in job somewhere
cont= 0;
for(go over all jobs)
if(job is ready) {
if(job was not removed) {
BLI_remove_thread(&lb, job);
}
}
else cont= 1;
}
// conditions to exit loop
if(if escape loop event) {
if(BLI_available_threadslots(&lb)==maxthreads)
break;
}
}
BLI_end_threads(&lb);
************************************************ */
/* just a max for security reasons */
#define RE_MAX_THREAD 8
typedef struct ThreadSlot {
struct ThreadSlot *next, *prev;
int (*do_thread)(void *);
void *callerdata;
SDL_Thread *sdlthread;
int avail;
} ThreadSlot;
static ThreadSlot threadslots[RE_MAX_THREAD];
void BLI_init_threads(ListBase *threadbase, int (*do_thread)(void *), int tot)
{
int a;
if(threadbase==NULL)
return;
threadbase->first= threadbase->last= NULL;
if(tot>RE_MAX_THREAD) tot= RE_MAX_THREAD;
else if(tot<1) tot= 1;
for(a=0; a<tot; a++) {
ThreadSlot *tslot= MEM_callocN(sizeof(ThreadSlot), "threadslot");
BLI_addtail(threadbase, tslot);
tslot->do_thread= do_thread;
}
}
/* amount of available threads */
int BLI_available_threads(ListBase *threadbase)
{
ThreadSlot *tslot;
int counter=0;
for(tslot= threadbase->first; tslot; tslot= tslot->next) {
if(tslot->sdlthread==NULL)
counter++;
}
return counter;
}
/* returns thread number, for sample patterns or threadsafe tables */
int BLI_available_thread_index(ListBase *threadbase)
{
ThreadSlot *tslot;
int counter=0;
for(tslot= threadbase->first; tslot; tslot= tslot->next, counter++) {
if(tslot->sdlthread==NULL)
return counter;
}
return 0;
}
void BLI_insert_thread(ListBase *threadbase, void *callerdata)
{
ThreadSlot *tslot;
for(tslot= threadbase->first; tslot; tslot= tslot->next) {
if(tslot->sdlthread==NULL) {
tslot->callerdata= callerdata;
tslot->sdlthread= SDL_CreateThread(tslot->do_thread, tslot->callerdata);
return;
}
}
printf("ERROR: could not insert thread slot\n");
}
void BLI_remove_thread(ListBase *threadbase, void *callerdata)
{
ThreadSlot *tslot;
for(tslot= threadbase->first; tslot; tslot= tslot->next) {
if(tslot->callerdata==callerdata) {
tslot->callerdata= NULL;
SDL_WaitThread(tslot->sdlthread, NULL);
tslot->sdlthread= NULL;
}
}
}
void BLI_end_threads(ListBase *threadbase)
{
ThreadSlot *tslot;
for(tslot= threadbase->first; tslot; tslot= tslot->next) {
if(tslot->sdlthread) {
SDL_WaitThread(tslot->sdlthread, NULL);
}
}
BLI_freelistN(threadbase);
}
/* eof */