This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/transform/transform_constraints.c
Antonis Ryakiotakis f745564e4e GSOC 2013 paint
Yep, at last it's here!

There are a few minor issues remaining but development can go on in
master after discussion at blender institute.

For full list of features see:

http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.72/Painting

Thanks to Sergey and Campbell for the extensive review and to the
countless artists that have given their input and reported issues during
development.
2014-07-21 12:02:05 +02:00

1101 lines
27 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/editors/transform/transform_constraints.c
* \ingroup edtransform
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "DNA_space_types.h"
#include "DNA_view3d_types.h"
#include "BIF_gl.h"
#include "BIF_glutil.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_string.h"
#include "BKE_context.h"
#include "ED_image.h"
#include "ED_view3d.h"
#include "BLF_translation.h"
#include "UI_resources.h"
#include "transform.h"
static void drawObjectConstraint(TransInfo *t);
/* ************************** CONSTRAINTS ************************* */
static void constraintAutoValues(TransInfo *t, float vec[3])
{
int mode = t->con.mode;
if (mode & CON_APPLY) {
float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f;
if ((mode & CON_AXIS0) == 0) {
vec[0] = nval;
}
if ((mode & CON_AXIS1) == 0) {
vec[1] = nval;
}
if ((mode & CON_AXIS2) == 0) {
vec[2] = nval;
}
}
}
void constraintNumInput(TransInfo *t, float vec[3])
{
int mode = t->con.mode;
if (mode & CON_APPLY) {
float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f;
if (getConstraintSpaceDimension(t) == 2) {
int axis = mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
if (axis == (CON_AXIS0 | CON_AXIS1)) {
/* vec[0] = vec[0]; */ /* same */
/* vec[1] = vec[1]; */ /* same */
vec[2] = nval;
}
else if (axis == (CON_AXIS1 | CON_AXIS2)) {
vec[2] = vec[1];
vec[1] = vec[0];
vec[0] = nval;
}
else if (axis == (CON_AXIS0 | CON_AXIS2)) {
/* vec[0] = vec[0]; */ /* same */
vec[2] = vec[1];
vec[1] = nval;
}
}
else if (getConstraintSpaceDimension(t) == 1) {
if (mode & CON_AXIS0) {
/* vec[0] = vec[0]; */ /* same */
vec[1] = nval;
vec[2] = nval;
}
else if (mode & CON_AXIS1) {
vec[1] = vec[0];
vec[0] = nval;
vec[2] = nval;
}
else if (mode & CON_AXIS2) {
vec[2] = vec[0];
vec[0] = nval;
vec[1] = nval;
}
}
}
}
static void postConstraintChecks(TransInfo *t, float vec[3], float pvec[3])
{
int i = 0;
mul_m3_v3(t->con.imtx, vec);
snapGridIncrement(t, vec);
if (t->flag & T_NULL_ONE) {
if (!(t->con.mode & CON_AXIS0))
vec[0] = 1.0f;
if (!(t->con.mode & CON_AXIS1))
vec[1] = 1.0f;
if (!(t->con.mode & CON_AXIS2))
vec[2] = 1.0f;
}
if (applyNumInput(&t->num, vec)) {
constraintNumInput(t, vec);
removeAspectRatio(t, vec);
}
/* autovalues is operator param, use that directly but not if snapping is forced */
if (t->flag & T_AUTOVALUES && (t->tsnap.status & SNAP_FORCED) == 0) {
mul_v3_m3v3(vec, t->con.imtx, t->auto_values);
constraintAutoValues(t, vec);
/* inverse transformation at the end */
}
if (t->con.mode & CON_AXIS0) {
pvec[i++] = vec[0];
}
if (t->con.mode & CON_AXIS1) {
pvec[i++] = vec[1];
}
if (t->con.mode & CON_AXIS2) {
pvec[i++] = vec[2];
}
mul_m3_v3(t->con.mtx, vec);
}
static void viewAxisCorrectCenter(TransInfo *t, float t_con_center[3])
{
if (t->spacetype == SPACE_VIEW3D) {
// View3D *v3d = t->sa->spacedata.first;
const float min_dist = 1.0f; /* v3d->near; */
float dir[3];
float l;
sub_v3_v3v3(dir, t_con_center, t->viewinv[3]);
if (dot_v3v3(dir, t->viewinv[2]) < 0.0f) {
negate_v3(dir);
}
project_v3_v3v3(dir, dir, t->viewinv[2]);
l = len_v3(dir);
if (l < min_dist) {
float diff[3];
normalize_v3_v3(diff, t->viewinv[2]);
mul_v3_fl(diff, min_dist - l);
sub_v3_v3(t_con_center, diff);
}
}
}
static void axisProjection(TransInfo *t, const float axis[3], const float in[3], float out[3])
{
float norm[3], vec[3], factor, angle;
float t_con_center[3];
if (is_zero_v3(in)) {
return;
}
copy_v3_v3(t_con_center, t->con.center);
/* checks for center being too close to the view center */
viewAxisCorrectCenter(t, t_con_center);
angle = fabsf(angle_v3v3(axis, t->viewinv[2]));
if (angle > (float)M_PI / 2.0f) {
angle = (float)M_PI - angle;
}
angle = RAD2DEGF(angle);
/* For when view is parallel to constraint... will cause NaNs otherwise
* So we take vertical motion in 3D space and apply it to the
* constraint axis. Nice for camera grab + MMB */
if (angle < 5.0f) {
project_v3_v3v3(vec, in, t->viewinv[1]);
factor = dot_v3v3(t->viewinv[1], vec) * 2.0f;
/* since camera distance is quite relative, use quadratic relationship. holding shift can compensate */
if (factor < 0.0f) factor *= -factor;
else factor *= factor;
copy_v3_v3(out, axis);
normalize_v3(out);
mul_v3_fl(out, -factor); /* -factor makes move down going backwards */
}
else {
float v[3], i1[3], i2[3];
float v2[3], v4[3];
float norm_center[3];
float plane[3];
getViewVector(t, t_con_center, norm_center);
cross_v3_v3v3(plane, norm_center, axis);
project_v3_v3v3(vec, in, plane);
sub_v3_v3v3(vec, in, vec);
add_v3_v3v3(v, vec, t_con_center);
getViewVector(t, v, norm);
/* give arbitrary large value if projection is impossible */
factor = dot_v3v3(axis, norm);
if (1.0f - fabsf(factor) < 0.0002f) {
copy_v3_v3(out, axis);
if (factor > 0) {
mul_v3_fl(out, 1000000000.0f);
}
else {
mul_v3_fl(out, -1000000000.0f);
}
}
else {
add_v3_v3v3(v2, t_con_center, axis);
add_v3_v3v3(v4, v, norm);
isect_line_line_v3(t_con_center, v2, v, v4, i1, i2);
sub_v3_v3v3(v, i2, v);
sub_v3_v3v3(out, i1, t_con_center);
/* possible some values become nan when
* viewpoint and object are both zero */
if (!finite(out[0])) out[0] = 0.0f;
if (!finite(out[1])) out[1] = 0.0f;
if (!finite(out[2])) out[2] = 0.0f;
}
}
}
static void planeProjection(TransInfo *t, const float in[3], float out[3])
{
float vec[3], factor, norm[3];
add_v3_v3v3(vec, in, t->con.center);
getViewVector(t, vec, norm);
sub_v3_v3v3(vec, out, in);
factor = dot_v3v3(vec, norm);
if (fabsf(factor) <= 0.001f) {
return; /* prevent divide by zero */
}
factor = dot_v3v3(vec, vec) / factor;
copy_v3_v3(vec, norm);
mul_v3_fl(vec, factor);
add_v3_v3v3(out, in, vec);
}
/*
* Generic callback for constant spatial constraints applied to linear motion
*
* The IN vector in projected into the constrained space and then further
* projected along the view vector.
* (in perspective mode, the view vector is relative to the position on screen)
*
*/
static void applyAxisConstraintVec(TransInfo *t, TransData *td, const float in[3], float out[3], float pvec[3])
{
copy_v3_v3(out, in);
if (!td && t->con.mode & CON_APPLY) {
mul_m3_v3(t->con.pmtx, out);
// With snap, a projection is alright, no need to correct for view alignment
if (!(t->tsnap.mode != SCE_SNAP_MODE_INCREMENT && activeSnap(t))) {
if (getConstraintSpaceDimension(t) == 2) {
if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) {
planeProjection(t, in, out);
}
}
else if (getConstraintSpaceDimension(t) == 1) {
float c[3];
if (t->con.mode & CON_AXIS0) {
copy_v3_v3(c, t->con.mtx[0]);
}
else if (t->con.mode & CON_AXIS1) {
copy_v3_v3(c, t->con.mtx[1]);
}
else if (t->con.mode & CON_AXIS2) {
copy_v3_v3(c, t->con.mtx[2]);
}
axisProjection(t, c, in, out);
}
}
postConstraintChecks(t, out, pvec);
}
}
/*
* Generic callback for object based spatial constraints applied to linear motion
*
* At first, the following is applied to the first data in the array
* The IN vector in projected into the constrained space and then further
* projected along the view vector.
* (in perspective mode, the view vector is relative to the position on screen)
*
* Further down, that vector is mapped to each data's space.
*/
static void applyObjectConstraintVec(TransInfo *t, TransData *td, const float in[3], float out[3], float pvec[3])
{
copy_v3_v3(out, in);
if (t->con.mode & CON_APPLY) {
if (!td) {
mul_m3_v3(t->con.pmtx, out);
if (getConstraintSpaceDimension(t) == 2) {
if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) {
planeProjection(t, in, out);
}
}
else if (getConstraintSpaceDimension(t) == 1) {
float c[3];
if (t->con.mode & CON_AXIS0) {
copy_v3_v3(c, t->con.mtx[0]);
}
else if (t->con.mode & CON_AXIS1) {
copy_v3_v3(c, t->con.mtx[1]);
}
else if (t->con.mode & CON_AXIS2) {
copy_v3_v3(c, t->con.mtx[2]);
}
axisProjection(t, c, in, out);
}
postConstraintChecks(t, out, pvec);
copy_v3_v3(out, pvec);
}
else {
int i = 0;
out[0] = out[1] = out[2] = 0.0f;
if (t->con.mode & CON_AXIS0) {
out[0] = in[i++];
}
if (t->con.mode & CON_AXIS1) {
out[1] = in[i++];
}
if (t->con.mode & CON_AXIS2) {
out[2] = in[i++];
}
mul_m3_v3(td->axismtx, out);
if (t->flag & T_EDIT) {
mul_m3_v3(t->obedit_mat, out);
}
}
}
}
/*
* Generic callback for constant spatial constraints applied to resize motion
*/
static void applyAxisConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
{
if (!td && t->con.mode & CON_APPLY) {
float tmat[3][3];
if (!(t->con.mode & CON_AXIS0)) {
smat[0][0] = 1.0f;
}
if (!(t->con.mode & CON_AXIS1)) {
smat[1][1] = 1.0f;
}
if (!(t->con.mode & CON_AXIS2)) {
smat[2][2] = 1.0f;
}
mul_m3_m3m3(tmat, smat, t->con.imtx);
mul_m3_m3m3(smat, t->con.mtx, tmat);
}
}
/*
* Callback for object based spatial constraints applied to resize motion
*/
static void applyObjectConstraintSize(TransInfo *t, TransData *td, float smat[3][3])
{
if (td && t->con.mode & CON_APPLY) {
float tmat[3][3];
float imat[3][3];
invert_m3_m3(imat, td->axismtx);
if (!(t->con.mode & CON_AXIS0)) {
smat[0][0] = 1.0f;
}
if (!(t->con.mode & CON_AXIS1)) {
smat[1][1] = 1.0f;
}
if (!(t->con.mode & CON_AXIS2)) {
smat[2][2] = 1.0f;
}
mul_m3_m3m3(tmat, smat, imat);
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, t->obedit_mat, smat);
}
mul_m3_m3m3(smat, td->axismtx, tmat);
}
}
/*
* Generic callback for constant spatial constraints applied to rotations
*
* The rotation axis is copied into VEC.
*
* In the case of single axis constraints, the rotation axis is directly the one constrained to.
* For planar constraints (2 axis), the rotation axis is the normal of the plane.
*
* The following only applies when CON_NOFLIP is not set.
* The vector is then modified to always point away from the screen (in global space)
* This insures that the rotation is always logically following the mouse.
* (ie: not doing counterclockwise rotations when the mouse moves clockwise).
*/
static void applyAxisConstraintRot(TransInfo *t, TransData *td, float vec[3], float *angle)
{
if (!td && t->con.mode & CON_APPLY) {
int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
switch (mode) {
case CON_AXIS0:
case (CON_AXIS1 | CON_AXIS2):
copy_v3_v3(vec, t->con.mtx[0]);
break;
case CON_AXIS1:
case (CON_AXIS0 | CON_AXIS2):
copy_v3_v3(vec, t->con.mtx[1]);
break;
case CON_AXIS2:
case (CON_AXIS0 | CON_AXIS1):
copy_v3_v3(vec, t->con.mtx[2]);
break;
}
/* don't flip axis if asked to or if num input */
if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) {
*angle = -(*angle);
}
}
}
}
/*
* Callback for object based spatial constraints applied to rotations
*
* The rotation axis is copied into VEC.
*
* In the case of single axis constraints, the rotation axis is directly the one constrained to.
* For planar constraints (2 axis), the rotation axis is the normal of the plane.
*
* The following only applies when CON_NOFLIP is not set.
* The vector is then modified to always point away from the screen (in global space)
* This insures that the rotation is always logically following the mouse.
* (ie: not doing counterclockwise rotations when the mouse moves clockwise).
*/
static void applyObjectConstraintRot(TransInfo *t, TransData *td, float vec[3], float *angle)
{
if (t->con.mode & CON_APPLY) {
int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
float tmp_axismtx[3][3];
float (*axismtx)[3];
/* on setup call, use first object */
if (td == NULL) {
td = t->data;
}
if (t->flag & T_EDIT) {
mul_m3_m3m3(tmp_axismtx, t->obedit_mat, td->axismtx);
axismtx = tmp_axismtx;
}
else {
axismtx = td->axismtx;
}
switch (mode) {
case CON_AXIS0:
case (CON_AXIS1 | CON_AXIS2):
copy_v3_v3(vec, axismtx[0]);
break;
case CON_AXIS1:
case (CON_AXIS0 | CON_AXIS2):
copy_v3_v3(vec, axismtx[1]);
break;
case CON_AXIS2:
case (CON_AXIS0 | CON_AXIS1):
copy_v3_v3(vec, axismtx[2]);
break;
}
if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) {
if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) {
*angle = -(*angle);
}
}
}
}
/*--------------------- INTERNAL SETUP CALLS ------------------*/
void setConstraint(TransInfo *t, float space[3][3], int mode, const char text[])
{
BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
copy_m3_m3(t->con.mtx, space);
t->con.mode = mode;
getConstraintMatrix(t);
startConstraint(t);
t->con.drawExtra = NULL;
t->con.applyVec = applyAxisConstraintVec;
t->con.applySize = applyAxisConstraintSize;
t->con.applyRot = applyAxisConstraintRot;
t->redraw = TREDRAW_HARD;
}
/* applies individual td->axismtx constraints */
void setAxisMatrixConstraint(TransInfo *t, int mode, const char text[])
{
if (t->total == 1) {
float axismtx[3][3];
if (t->flag & T_EDIT) {
mul_m3_m3m3(axismtx, t->obedit_mat, t->data->axismtx);
}
else {
copy_m3_m3(axismtx, t->data->axismtx);
}
setConstraint(t, axismtx, mode, text);
}
else {
BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
copy_m3_m3(t->con.mtx, t->data->axismtx);
t->con.mode = mode;
getConstraintMatrix(t);
startConstraint(t);
t->con.drawExtra = drawObjectConstraint;
t->con.applyVec = applyObjectConstraintVec;
t->con.applySize = applyObjectConstraintSize;
t->con.applyRot = applyObjectConstraintRot;
t->redraw = TREDRAW_HARD;
}
}
void setLocalConstraint(TransInfo *t, int mode, const char text[])
{
/* edit-mode now allows local transforms too */
if (t->flag & T_EDIT) {
setConstraint(t, t->obedit_mat, mode, text);
}
else {
setAxisMatrixConstraint(t, mode, text);
}
}
/*
* Set the constraint according to the user defined orientation
*
* ftext is a format string passed to BLI_snprintf. It will add the name of
* the orientation where %s is (logically).
*/
void setUserConstraint(TransInfo *t, short orientation, int mode, const char ftext[])
{
char text[40];
switch (orientation) {
case V3D_MANIP_GLOBAL:
{
float mtx[3][3];
BLI_snprintf(text, sizeof(text), ftext, IFACE_("global"));
unit_m3(mtx);
setConstraint(t, mtx, mode, text);
break;
}
case V3D_MANIP_LOCAL:
BLI_snprintf(text, sizeof(text), ftext, IFACE_("local"));
setLocalConstraint(t, mode, text);
break;
case V3D_MANIP_NORMAL:
BLI_snprintf(text, sizeof(text), ftext, IFACE_("normal"));
if (checkUseAxisMatrix(t)) {
setAxisMatrixConstraint(t, mode, text);
}
else {
setConstraint(t, t->spacemtx, mode, text);
}
break;
case V3D_MANIP_VIEW:
BLI_snprintf(text, sizeof(text), ftext, IFACE_("view"));
setConstraint(t, t->spacemtx, mode, text);
break;
case V3D_MANIP_GIMBAL:
BLI_snprintf(text, sizeof(text), ftext, IFACE_("gimbal"));
setConstraint(t, t->spacemtx, mode, text);
break;
default: /* V3D_MANIP_CUSTOM */
BLI_snprintf(text, sizeof(text), ftext, t->spacename);
setConstraint(t, t->spacemtx, mode, text);
break;
}
t->con.orientation = orientation;
t->con.mode |= CON_USER;
}
/*----------------- DRAWING CONSTRAINTS -------------------*/
void drawConstraint(TransInfo *t)
{
TransCon *tc = &(t->con);
if (!ELEM(t->spacetype, SPACE_VIEW3D, SPACE_IMAGE, SPACE_NODE))
return;
if (!(tc->mode & CON_APPLY))
return;
if (t->flag & T_USES_MANIPULATOR)
return;
if (t->flag & T_NO_CONSTRAINT)
return;
/* nasty exception for Z constraint in camera view */
// TRANSFORM_FIX_ME
// if ((t->flag & T_OBJECT) && G.vd->camera==OBACT && G.vd->persp==V3D_CAMOB)
// return;
if (tc->drawExtra) {
tc->drawExtra(t);
}
else {
if (tc->mode & CON_SELECT) {
float vec[3];
char col2[3] = {255, 255, 255};
int depth_test_enabled;
convertViewVec(t, vec, (t->mval[0] - t->con.imval[0]), (t->mval[1] - t->con.imval[1]));
add_v3_v3(vec, tc->center);
drawLine(t, tc->center, tc->mtx[0], 'X', 0);
drawLine(t, tc->center, tc->mtx[1], 'Y', 0);
drawLine(t, tc->center, tc->mtx[2], 'Z', 0);
glColor3ubv((GLubyte *)col2);
depth_test_enabled = glIsEnabled(GL_DEPTH_TEST);
if (depth_test_enabled)
glDisable(GL_DEPTH_TEST);
setlinestyle(1);
glBegin(GL_LINE_STRIP);
glVertex3fv(tc->center);
glVertex3fv(vec);
glEnd();
setlinestyle(0);
if (depth_test_enabled)
glEnable(GL_DEPTH_TEST);
}
if (tc->mode & CON_AXIS0) {
drawLine(t, tc->center, tc->mtx[0], 'X', DRAWLIGHT);
}
if (tc->mode & CON_AXIS1) {
drawLine(t, tc->center, tc->mtx[1], 'Y', DRAWLIGHT);
}
if (tc->mode & CON_AXIS2) {
drawLine(t, tc->center, tc->mtx[2], 'Z', DRAWLIGHT);
}
}
}
/* called from drawview.c, as an extra per-window draw option */
void drawPropCircle(const struct bContext *C, TransInfo *t)
{
if (t->flag & T_PROP_EDIT) {
RegionView3D *rv3d = CTX_wm_region_view3d(C);
float tmat[4][4], imat[4][4];
float center[3];
int depth_test_enabled;
UI_ThemeColor(TH_GRID);
if (t->spacetype == SPACE_VIEW3D && rv3d != NULL) {
copy_m4_m4(tmat, rv3d->viewmat);
invert_m4_m4(imat, tmat);
}
else {
unit_m4(tmat);
unit_m4(imat);
}
glPushMatrix();
copy_v3_v3(center, t->center);
if ((t->spacetype == SPACE_VIEW3D) && t->obedit) {
mul_m4_v3(t->obedit->obmat, center); /* because t->center is in local space */
}
else if (t->spacetype == SPACE_IMAGE) {
float aspx, aspy;
if (t->options & CTX_MASK) {
/* untested - mask aspect is TODO */
ED_space_image_get_aspect(t->sa->spacedata.first, &aspx, &aspy);
}
else if (t->options & CTX_PAINT_CURVE) {
aspx = aspy = 1.0;
}
else {
ED_space_image_get_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
}
glScalef(1.0f / aspx, 1.0f / aspy, 1.0);
}
depth_test_enabled = glIsEnabled(GL_DEPTH_TEST);
if (depth_test_enabled)
glDisable(GL_DEPTH_TEST);
set_inverted_drawing(1);
drawcircball(GL_LINE_LOOP, center, t->prop_size, imat);
set_inverted_drawing(0);
if (depth_test_enabled)
glEnable(GL_DEPTH_TEST);
glPopMatrix();
}
}
static void drawObjectConstraint(TransInfo *t)
{
/* Draw the first one lighter because that's the one who controls the others.
* Meaning the transformation is projected on that one and just copied on the others
* constraint space.
* In a nutshell, the object with light axis is controlled by the user and the others follow.
* Without drawing the first light, users have little clue what they are doing.
*/
short options = DRAWLIGHT;
TransData *td = t->data;
int i;
float tmp_axismtx[3][3];
for (i = 0; i < t->total; i++, td++) {
float co[3];
float (*axismtx)[3];
if (t->flag & T_PROP_EDIT) {
/* we're sorted, so skip the rest */
if (td->factor == 0.0f) {
break;
}
}
if (t->flag & T_OBJECT) {
copy_v3_v3(co, td->ob->obmat[3]);
axismtx = td->axismtx;
}
else if (t->flag & T_EDIT) {
mul_v3_m4v3(co, t->obedit->obmat, td->center);
mul_m3_m3m3(tmp_axismtx, t->obedit_mat, td->axismtx);
axismtx = tmp_axismtx;
}
else if (t->flag & T_POSE) {
mul_v3_m4v3(co, t->poseobj->obmat, td->center);
axismtx = td->axismtx;
}
else {
copy_v3_v3(co, td->center);
axismtx = td->axismtx;
}
if (t->con.mode & CON_AXIS0) {
drawLine(t, co, axismtx[0], 'X', options);
}
if (t->con.mode & CON_AXIS1) {
drawLine(t, co, axismtx[1], 'Y', options);
}
if (t->con.mode & CON_AXIS2) {
drawLine(t, co, axismtx[2], 'Z', options);
}
options &= ~DRAWLIGHT;
}
}
/*--------------------- START / STOP CONSTRAINTS ---------------------- */
void startConstraint(TransInfo *t)
{
t->con.mode |= CON_APPLY;
*t->con.text = ' ';
t->num.idx_max = min_ii(getConstraintSpaceDimension(t) - 1, t->idx_max);
}
void stopConstraint(TransInfo *t)
{
t->con.mode &= ~(CON_APPLY | CON_SELECT);
*t->con.text = '\0';
t->num.idx_max = t->idx_max;
}
void getConstraintMatrix(TransInfo *t)
{
float mat[3][3];
invert_m3_m3(t->con.imtx, t->con.mtx);
unit_m3(t->con.pmtx);
if (!(t->con.mode & CON_AXIS0)) {
t->con.pmtx[0][0] =
t->con.pmtx[0][1] =
t->con.pmtx[0][2] = 0.0f;
}
if (!(t->con.mode & CON_AXIS1)) {
t->con.pmtx[1][0] =
t->con.pmtx[1][1] =
t->con.pmtx[1][2] = 0.0f;
}
if (!(t->con.mode & CON_AXIS2)) {
t->con.pmtx[2][0] =
t->con.pmtx[2][1] =
t->con.pmtx[2][2] = 0.0f;
}
mul_m3_m3m3(mat, t->con.pmtx, t->con.imtx);
mul_m3_m3m3(t->con.pmtx, t->con.mtx, mat);
}
/*------------------------- MMB Select -------------------------------*/
void initSelectConstraint(TransInfo *t, float mtx[3][3])
{
copy_m3_m3(t->con.mtx, mtx);
t->con.mode |= CON_APPLY;
t->con.mode |= CON_SELECT;
setNearestAxis(t);
t->con.drawExtra = NULL;
t->con.applyVec = applyAxisConstraintVec;
t->con.applySize = applyAxisConstraintSize;
t->con.applyRot = applyAxisConstraintRot;
}
void selectConstraint(TransInfo *t)
{
if (t->con.mode & CON_SELECT) {
setNearestAxis(t);
startConstraint(t);
}
}
void postSelectConstraint(TransInfo *t)
{
if (!(t->con.mode & CON_SELECT))
return;
t->con.mode &= ~CON_AXIS0;
t->con.mode &= ~CON_AXIS1;
t->con.mode &= ~CON_AXIS2;
t->con.mode &= ~CON_SELECT;
setNearestAxis(t);
startConstraint(t);
t->redraw = TREDRAW_HARD;
}
static void setNearestAxis2d(TransInfo *t)
{
/* no correction needed... just use whichever one is lower */
if (abs(t->mval[0] - t->con.imval[0]) < abs(t->mval[1] - t->con.imval[1])) {
t->con.mode |= CON_AXIS1;
BLI_strncpy(t->con.text, IFACE_(" along Y axis"), sizeof(t->con.text));
}
else {
t->con.mode |= CON_AXIS0;
BLI_strncpy(t->con.text, IFACE_(" along X axis"), sizeof(t->con.text));
}
}
static void setNearestAxis3d(TransInfo *t)
{
float zfac;
float mvec[3], proj[3];
float len[3];
int i;
/* calculate mouse movement */
mvec[0] = (float)(t->mval[0] - t->con.imval[0]);
mvec[1] = (float)(t->mval[1] - t->con.imval[1]);
mvec[2] = 0.0f;
/* we need to correct axis length for the current zoomlevel of view,
* this to prevent projected values to be clipped behind the camera
* and to overflow the short integers.
* The formula used is a bit stupid, just a simplification of the subtraction
* of two 2D points 30 pixels apart (that's the last factor in the formula) after
* projecting them with ED_view3d_win_to_delta and then get the length of that vector.
*/
zfac = mul_project_m4_v3_zfac(t->persmat, t->center);
zfac = len_v3(t->persinv[0]) * 2.0f / t->ar->winx * zfac * 30.0f;
for (i = 0; i < 3; i++) {
float axis[3], axis_2d[2];
copy_v3_v3(axis, t->con.mtx[i]);
mul_v3_fl(axis, zfac);
/* now we can project to get window coordinate */
add_v3_v3(axis, t->con.center);
projectFloatView(t, axis, axis_2d);
sub_v2_v2v2(axis, axis_2d, t->center2d);
axis[2] = 0.0f;
if (normalize_v3(axis) > 1e-3f) {
project_v3_v3v3(proj, mvec, axis);
sub_v3_v3v3(axis, mvec, proj);
len[i] = normalize_v3(axis);
}
else {
len[i] = 1e10f;
}
}
if (len[0] <= len[1] && len[0] <= len[2]) {
if (t->modifiers & MOD_CONSTRAINT_PLANE) {
t->con.mode |= (CON_AXIS1 | CON_AXIS2);
BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" locking %s X axis"), t->spacename);
}
else {
t->con.mode |= CON_AXIS0;
BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" along %s X axis"), t->spacename);
}
}
else if (len[1] <= len[0] && len[1] <= len[2]) {
if (t->modifiers & MOD_CONSTRAINT_PLANE) {
t->con.mode |= (CON_AXIS0 | CON_AXIS2);
BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" locking %s Y axis"), t->spacename);
}
else {
t->con.mode |= CON_AXIS1;
BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" along %s Y axis"), t->spacename);
}
}
else if (len[2] <= len[1] && len[2] <= len[0]) {
if (t->modifiers & MOD_CONSTRAINT_PLANE) {
t->con.mode |= (CON_AXIS0 | CON_AXIS1);
BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" locking %s Z axis"), t->spacename);
}
else {
t->con.mode |= CON_AXIS2;
BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" along %s Z axis"), t->spacename);
}
}
}
void setNearestAxis(TransInfo *t)
{
/* clear any prior constraint flags */
t->con.mode &= ~CON_AXIS0;
t->con.mode &= ~CON_AXIS1;
t->con.mode &= ~CON_AXIS2;
/* constraint setting - depends on spacetype */
if (t->spacetype == SPACE_VIEW3D) {
/* 3d-view */
setNearestAxis3d(t);
}
else {
/* assume that this means a 2D-Editor */
setNearestAxis2d(t);
}
getConstraintMatrix(t);
}
/*-------------- HELPER FUNCTIONS ----------------*/
char constraintModeToChar(TransInfo *t)
{
if ((t->con.mode & CON_APPLY) == 0) {
return '\0';
}
switch (t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2)) {
case (CON_AXIS0):
case (CON_AXIS1 | CON_AXIS2):
return 'X';
case (CON_AXIS1):
case (CON_AXIS0 | CON_AXIS2):
return 'Y';
case (CON_AXIS2):
case (CON_AXIS0 | CON_AXIS1):
return 'Z';
default:
return '\0';
}
}
bool isLockConstraint(TransInfo *t)
{
int mode = t->con.mode;
if ((mode & (CON_AXIS0 | CON_AXIS1)) == (CON_AXIS0 | CON_AXIS1))
return true;
if ((mode & (CON_AXIS1 | CON_AXIS2)) == (CON_AXIS1 | CON_AXIS2))
return true;
if ((mode & (CON_AXIS0 | CON_AXIS2)) == (CON_AXIS0 | CON_AXIS2))
return true;
return false;
}
/*
* Returns the dimension of the constraint space.
*
* For that reason, the flags always needs to be set to properly evaluate here,
* even if they aren't actually used in the callback function. (Which could happen
* for weird constraints not yet designed. Along a path for example.)
*/
int getConstraintSpaceDimension(TransInfo *t)
{
int n = 0;
if (t->con.mode & CON_AXIS0)
n++;
if (t->con.mode & CON_AXIS1)
n++;
if (t->con.mode & CON_AXIS2)
n++;
return n;
/*
* Someone willing to do it cryptically could do the following instead:
*
* return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2);
*
* Based on the assumptions that the axis flags are one after the other and start at 1
*/
}