This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/vector.c

981 lines
29 KiB
C

/*
* $Id$
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Mathutils.h"
#include "BLI_blenlib.h"
#include "BKE_utildefines.h"
#include "BLI_arithb.h"
#include "gen_utils.h"
/*-------------------------DOC STRINGS ---------------------------*/
char Vector_Zero_doc[] = "() - set all values in the vector to 0";
char Vector_Normalize_doc[] = "() - normalize the vector";
char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
char Vector_toPoint_doc[] = "() - create a new Point Object from this vector";
char Vector_ToTrackQuat_doc[] = "(track, up) - extract a quaternion from the vector and the track and up axis";
char Vector_copy_doc[] = "() - return a copy of the vector";
/*-----------------------METHOD DEFINITIONS ----------------------*/
struct PyMethodDef Vector_methods[] = {
{"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
{"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc},
{"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc},
{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
{"toPoint", (PyCFunction) Vector_toPoint, METH_NOARGS, Vector_toPoint_doc},
{"toTrackQuat", ( PyCFunction ) Vector_ToTrackQuat, METH_VARARGS, Vector_ToTrackQuat_doc},
{"copy", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc},
{"__copy__", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc},
{NULL, NULL, 0, NULL}
};
/*-----------------------------METHODS----------------------------
--------------------------Vector.toPoint()----------------------
create a new point object to represent this vector */
PyObject *Vector_toPoint(VectorObject * self)
{
float coord[3];
int x;
if(self->size < 2 || self->size > 3) {
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector.toPoint(): inappropriate vector size - expects 2d or 3d vector\n");
}
for(x = 0; x < self->size; x++){
coord[x] = self->vec[x];
}
return newPointObject(coord, self->size, Py_NEW);
}
/*----------------------------Vector.zero() ----------------------
set the vector data to 0,0,0 */
PyObject *Vector_Zero(VectorObject * self)
{
int x;
for(x = 0; x < self->size; x++) {
self->vec[x] = 0.0f;
}
return EXPP_incr_ret((PyObject*)self);
}
/*----------------------------Vector.normalize() -----------------
normalize the vector data to a unit vector */
PyObject *Vector_Normalize(VectorObject * self)
{
int x;
float norm = 0.0f;
for(x = 0; x < self->size; x++) {
norm += self->vec[x] * self->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < self->size; x++) {
self->vec[x] /= norm;
}
return EXPP_incr_ret((PyObject*)self);
}
/*----------------------------Vector.resize2D() ------------------
resize the vector to x,y */
PyObject *Vector_Resize2D(VectorObject * self)
{
if(self->data.blend_data){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"vector.resize2d(): cannot resize wrapped data - only python vectors\n");
}
self->data.py_data =
PyMem_Realloc(self->data.py_data, (sizeof(float) * 2));
if(self->data.py_data == NULL) {
return EXPP_ReturnPyObjError(PyExc_MemoryError,
"vector.resize2d(): problem allocating pointer space\n\n");
}
self->vec = self->data.py_data; /*force*/
self->size = 2;
return EXPP_incr_ret((PyObject*)self);
}
/*----------------------------Vector.resize3D() ------------------
resize the vector to x,y,z */
PyObject *Vector_Resize3D(VectorObject * self)
{
if(self->data.blend_data){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"vector.resize3d(): cannot resize wrapped data - only python vectors\n");
}
self->data.py_data =
PyMem_Realloc(self->data.py_data, (sizeof(float) * 3));
if(self->data.py_data == NULL) {
return EXPP_ReturnPyObjError(PyExc_MemoryError,
"vector.resize3d(): problem allocating pointer space\n\n");
}
self->vec = self->data.py_data; /*force*/
if(self->size == 2){
self->data.py_data[2] = 0.0f;
}
self->size = 3;
return EXPP_incr_ret((PyObject*)self);
}
/*----------------------------Vector.resize4D() ------------------
resize the vector to x,y,z,w */
PyObject *Vector_Resize4D(VectorObject * self)
{
if(self->data.blend_data){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"vector.resize4d(): cannot resize wrapped data - only python vectors\n");
}
self->data.py_data =
PyMem_Realloc(self->data.py_data, (sizeof(float) * 4));
if(self->data.py_data == NULL) {
return EXPP_ReturnPyObjError(PyExc_MemoryError,
"vector.resize4d(): problem allocating pointer space\n\n");
}
self->vec = self->data.py_data; /*force*/
if(self->size == 2){
self->data.py_data[2] = 0.0f;
self->data.py_data[3] = 1.0f;
}else if(self->size == 3){
self->data.py_data[3] = 1.0f;
}
self->size = 4;
return EXPP_incr_ret((PyObject*)self);
}
/*----------------------------Vector.toTrackQuat(track, up) ----------------------
extract a quaternion from the vector and the track and up axis */
PyObject *Vector_ToTrackQuat( VectorObject * self, PyObject * args )
{
float vec[3];
char *strack, *sup;
short track = 2, up = 1;
if( !PyArg_ParseTuple ( args, "|ss", &strack, &sup ) ) {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected optional two strings\n" );
}
if (self->size != 3) {
return EXPP_ReturnPyObjError( PyExc_TypeError, "only for 3D vectors\n" );
}
if (strack) {
if (strlen(strack) == 2) {
if (strack[0] == '-') {
switch(strack[1]) {
case 'X':
case 'x':
track = 3;
break;
case 'Y':
case 'y':
track = 4;
break;
case 'z':
case 'Z':
track = 5;
break;
default:
return EXPP_ReturnPyObjError( PyExc_ValueError,
"only X, -X, Y, -Y, Z or -Z for track axis\n" );
}
}
else {
return EXPP_ReturnPyObjError( PyExc_ValueError,
"only X, -X, Y, -Y, Z or -Z for track axis\n" );
}
}
else if (strlen(strack) == 1) {
switch(strack[0]) {
case '-':
case 'X':
case 'x':
track = 0;
break;
case 'Y':
case 'y':
track = 1;
break;
case 'z':
case 'Z':
track = 2;
break;
default:
return EXPP_ReturnPyObjError( PyExc_ValueError,
"only X, -X, Y, -Y, Z or -Z for track axis\n" );
}
}
else {
return EXPP_ReturnPyObjError( PyExc_ValueError,
"only X, -X, Y, -Y, Z or -Z for track axis\n" );
}
}
if (sup) {
if (strlen(sup) == 1) {
switch(*sup) {
case 'X':
case 'x':
up = 0;
break;
case 'Y':
case 'y':
up = 1;
break;
case 'z':
case 'Z':
up = 2;
break;
default:
return EXPP_ReturnPyObjError( PyExc_ValueError,
"only X, Y or Z for up axis\n" );
}
}
else {
return EXPP_ReturnPyObjError( PyExc_ValueError,
"only X, Y or Z for up axis\n" );
}
}
if (track == up) {
return EXPP_ReturnPyObjError( PyExc_ValueError,
"Can't have the same axis for track and up\n" );
}
/*
flip vector around, since vectoquat expect a vector from target to tracking object
and the python function expects the inverse (a vector to the target).
*/
vec[0] = -self->vec[0];
vec[1] = -self->vec[1];
vec[2] = -self->vec[2];
return newQuaternionObject(vectoquat(vec, track, up), Py_NEW);
}
/*----------------------------Vector.copy() --------------------------------------
return a copy of the vector */
PyObject *Vector_copy(VectorObject * self)
{
return newVectorObject(self->vec, self->size, Py_NEW);
}
/*----------------------------dealloc()(internal) ----------------
free the py_object */
static void Vector_dealloc(VectorObject * self)
{
Py_XDECREF(self->coerced_object);
/*only free py_data*/
if(self->data.py_data){
PyMem_Free(self->data.py_data);
}
PyObject_DEL(self);
}
/*----------------------------getattr()(internal) ----------------
object.attribute access (get)*/
static PyObject *Vector_getattr(VectorObject * self, char *name)
{
int x;
double dot = 0.0f;
if(STREQ(name,"x")){
return PyFloat_FromDouble(self->vec[0]);
}else if(STREQ(name, "y")){
return PyFloat_FromDouble(self->vec[1]);
}else if(STREQ(name, "z")){
if(self->size > 2){
return PyFloat_FromDouble(self->vec[2]);
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"vector.z: error, cannot get this axis for a 2D vector\n");
}
}else if(STREQ(name, "w")){
if(self->size > 3){
return PyFloat_FromDouble(self->vec[3]);
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"vector.w: error, cannot get this axis for a 3D vector\n");
}
}else if(STREQ2(name, "length", "magnitude")) {
for(x = 0; x < self->size; x++){
dot += (self->vec[x] * self->vec[x]);
}
return PyFloat_FromDouble(sqrt(dot));
}
if(STREQ(name, "wrapped")){
if(self->wrapped == Py_WRAP)
return EXPP_incr_ret((PyObject *)Py_True);
else
return EXPP_incr_ret((PyObject *)Py_False);
}
return Py_FindMethod(Vector_methods, (PyObject *) self, name);
}
/*----------------------------setattr()(internal) ----------------
object.attribute access (set) */
static int Vector_setattr(VectorObject * self, char *name, PyObject * v)
{
PyObject *f = NULL;
f = PyNumber_Float(v);
if(f == NULL) { /* parsed item not a number */
return EXPP_ReturnIntError(PyExc_TypeError,
"vector.attribute = x: argument not a number\n");
}
if(STREQ(name,"x")){
self->vec[0] = (float)PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "y")){
self->vec[1] = (float)PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "z")){
if(self->size > 2){
self->vec[2] = (float)PyFloat_AS_DOUBLE(f);
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"vector.z = x: error, cannot set this axis for a 2D vector\n");
}
}else if(STREQ(name, "w")){
if(self->size > 3){
self->vec[3] = (float)PyFloat_AS_DOUBLE(f);
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"vector.w = x: error, cannot set this axis for a 2D vector\n");
}
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"vector.attribute = x: unknown attribute\n");
}
Py_DECREF(f);
return 0;
}
/*----------------------------print object (internal)-------------
print the object to screen */
static PyObject *Vector_repr(VectorObject * self)
{
int i;
char buffer[48], str[1024];
BLI_strncpy(str,"[",1024);
for(i = 0; i < self->size; i++){
if(i < (self->size - 1)){
sprintf(buffer, "%.6f, ", self->vec[i]);
strcat(str,buffer);
}else{
sprintf(buffer, "%.6f", self->vec[i]);
strcat(str,buffer);
}
}
strcat(str, "](vector)");
return PyString_FromString(str);
}
/*---------------------SEQUENCE PROTOCOLS------------------------
----------------------------len(object)------------------------
sequence length*/
static int Vector_len(VectorObject * self)
{
return self->size;
}
/*----------------------------object[]---------------------------
sequence accessor (get)*/
static PyObject *Vector_item(VectorObject * self, int i)
{
if(i < 0 || i >= self->size)
return EXPP_ReturnPyObjError(PyExc_IndexError,
"vector[index]: out of range\n");
return PyFloat_FromDouble(self->vec[i]);
}
/*----------------------------object[]-------------------------
sequence accessor (set)*/
static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
{
PyObject *f = NULL;
f = PyNumber_Float(ob);
if(f == NULL) { /* parsed item not a number */
return EXPP_ReturnIntError(PyExc_TypeError,
"vector[index] = x: index argument not a number\n");
}
if(i < 0 || i >= self->size){
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_IndexError,
"vector[index] = x: assignment index out of range\n");
}
self->vec[i] = (float)PyFloat_AS_DOUBLE(f);
Py_DECREF(f);
return 0;
}
/*----------------------------object[z:y]------------------------
sequence slice (get) */
static PyObject *Vector_slice(VectorObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
CLAMP(begin, 0, self->size);
CLAMP(end, 0, self->size);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
PyFloat_FromDouble(self->vec[count]));
}
return list;
}
/*----------------------------object[z:y]------------------------
sequence slice (set) */
static int Vector_ass_slice(VectorObject * self, int begin, int end,
PyObject * seq)
{
int i, y, size = 0;
float vec[4];
PyObject *v, *f;
CLAMP(begin, 0, self->size);
CLAMP(end, 0, self->size);
begin = MIN2(begin,end);
size = PySequence_Length(seq);
if(size != (end - begin)){
return EXPP_ReturnIntError(PyExc_TypeError,
"vector[begin:end] = []: size mismatch in slice assignment\n");
}
for (i = 0; i < size; i++) {
v = PySequence_GetItem(seq, i);
if (v == NULL) { /* Failed to read sequence */
return EXPP_ReturnIntError(PyExc_RuntimeError,
"vector[begin:end] = []: unable to read sequence\n");
}
f = PyNumber_Float(v);
if(f == NULL) { /* parsed item not a number */
Py_DECREF(v);
return EXPP_ReturnIntError(PyExc_TypeError,
"vector[begin:end] = []: sequence argument not a number\n");
}
vec[i] = (float)PyFloat_AS_DOUBLE(f);
EXPP_decr2(f,v);
}
/*parsed well - now set in vector*/
for(y = 0; y < size; y++){
self->vec[begin + y] = vec[y];
}
return 0;
}
/*------------------------NUMERIC PROTOCOLS----------------------
------------------------obj + obj------------------------------
addition*/
static PyObject *Vector_add(PyObject * v1, PyObject * v2)
{
int x, size;
float vec[4];
VectorObject *vec1 = NULL, *vec2 = NULL;
PointObject *pt = NULL;
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(!vec1->coerced_object){
if(vec2->coerced_object){
if(PointObject_Check(vec2->coerced_object)){ /*VECTOR + POINT*/
/*Point translation*/
pt = (PointObject*)vec2->coerced_object;
size = vec1->size;
if(pt->size == size){
for(x = 0; x < size; x++){
vec[x] = vec1->vec[x] + pt->coord[x];
}
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: arguments are the wrong size....\n");
}
return newPointObject(vec, size, Py_NEW);
}
}else{ /*VECTOR + VECTOR*/
if(vec1->size != vec2->size){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: vectors must have the same dimensions for this operation\n");
}
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] + vec2->vec[x];
}
return newVectorObject(vec, size, Py_NEW);
}
}
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: arguments not valid for this operation....\n");
}
/*------------------------obj - obj------------------------------
subtraction*/
static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
{
int x, size;
float vec[4];
VectorObject *vec1 = NULL, *vec2 = NULL;
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(vec1->coerced_object || vec2->coerced_object){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector subtraction: arguments not valid for this operation....\n");
}
if(vec1->size != vec2->size){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector subtraction: vectors must have the same dimensions for this operation\n");
}
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] - vec2->vec[x];
}
return newVectorObject(vec, size, Py_NEW);
}
/*------------------------obj * obj------------------------------
mulplication*/
static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
{
int x, size;
float vec[4], scalar;
double dot = 0.0f;
VectorObject *vec1 = NULL, *vec2 = NULL;
PyObject *f = NULL, *retObj = NULL;
MatrixObject *mat = NULL;
QuaternionObject *quat = NULL;
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(vec1->coerced_object){
if (PyFloat_Check(vec1->coerced_object) ||
PyInt_Check(vec1->coerced_object)){ /* FLOAT/INT * VECTOR */
f = PyNumber_Float(vec1->coerced_object);
if(f == NULL) { /* parsed item not a number */
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: arguments not acceptable for this operation\n");
}
scalar = (float)PyFloat_AS_DOUBLE(f);
size = vec2->size;
for(x = 0; x < size; x++) {
vec[x] = vec2->vec[x] * scalar;
}
Py_DECREF(f);
return newVectorObject(vec, size, Py_NEW);
}
}else{
if(vec2->coerced_object){
if(MatrixObject_Check(vec2->coerced_object)){ /*VECTOR * MATRIX*/
mat = (MatrixObject*)vec2->coerced_object;
return retObj = row_vector_multiplication(vec1, mat);
}else if (PyFloat_Check(vec2->coerced_object) ||
PyInt_Check(vec2->coerced_object)){ /* VECTOR * FLOAT/INT */
f = PyNumber_Float(vec2->coerced_object);
if(f == NULL) { /* parsed item not a number */
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: arguments not acceptable for this operation\n");
}
scalar = (float)PyFloat_AS_DOUBLE(f);
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] * scalar;
}
Py_DECREF(f);
return newVectorObject(vec, size, Py_NEW);
}else if(QuaternionObject_Check(vec2->coerced_object)){ /*VECTOR * QUATERNION*/
quat = (QuaternionObject*)vec2->coerced_object;
if(vec1->size != 3){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
}
return quat_rotation((PyObject*)vec1, (PyObject*)quat);
}
}else{ /*VECTOR * VECTOR*/
if(vec1->size != vec2->size){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector multiplication: vectors must have the same dimensions for this operation\n");
}
size = vec1->size;
/*dot product*/
for(x = 0; x < size; x++) {
dot += vec1->vec[x] * vec2->vec[x];
}
return PyFloat_FromDouble(dot);
}
}
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: arguments not acceptable for this operation\n");
}
/*------------------------obj / obj------------------------------
divide*/
static PyObject *Vector_div(PyObject * v1, PyObject * v2)
{
int x, size;
float vec[4], scalar;
VectorObject *vec1 = NULL, *vec2 = NULL;
PyObject *f = NULL;
if(!VectorObject_Check(v1)) { /* not a vector */
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector division: Vector must be divided by a float\n");
}
vec1 = (VectorObject*)v1; /* vector */
vec2 = (VectorObject*)v2; /* fliat/int, somehow we need to use a vector to acess it */
f = PyNumber_Float(vec2->coerced_object); /* why do we need to go through coerced_object - Cam */
if(f == NULL) { /* parsed item not a number*/
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector division: Vector must be divided by a float\n");
}
scalar = (float)PyFloat_AS_DOUBLE(f);
Py_DECREF(f);
if(scalar==0.0) { /* not a vector */
return EXPP_ReturnPyObjError(PyExc_ZeroDivisionError,
"Vector division: divide by zero error.\n");
}
if (PyFloat_Check(vec2->coerced_object) ||
PyInt_Check(vec2->coerced_object)){ /* VECTOR / (FLOAT or INT)*/
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] / scalar;
}
return newVectorObject(vec, size, Py_NEW);
}
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector division: arguments not acceptable for this operation\n");
}
/*-------------------------- -obj -------------------------------
returns the negative of this object*/
static PyObject *Vector_neg(VectorObject *self)
{
int x;
float vec[4];
for(x = 0; x < self->size; x++){
vec[x] = -self->vec[x];
}
return newVectorObject(vec, self->size, Py_NEW);
}
/*------------------------coerce(obj, obj)-----------------------
coercion of unknown types to type VectorObject for numeric protocols
Coercion() is called whenever a math operation has 2 operands that
it doesn't understand how to evaluate. 2+Matrix for example. We want to
evaluate some of these operations like: (vector * 2), however, for math
to proceed, the unknown operand must be cast to a type that python math will
understand. (e.g. in the case above case, 2 must be cast to a vector and
then call vector.multiply(vector, scalar_cast_as_vector)*/
static int Vector_coerce(PyObject ** v1, PyObject ** v2)
{
if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) ||
QuaternionObject_Check(*v2) || PointObject_Check(*v2)) {
PyObject *coerced = EXPP_incr_ret(*v2);
*v2 = newVectorObject(NULL,3,Py_NEW);
((VectorObject*)*v2)->coerced_object = coerced;
Py_INCREF (*v1);
return 0;
}
return EXPP_ReturnIntError(PyExc_TypeError,
"vector.coerce(): unknown operand - can't coerce for numeric protocols");
}
/*------------------------tp_doc*/
static char VectorObject_doc[] = "This is a wrapper for vector objects.";
/*------------------------vec_magnitude (internal)*/
static double vec_magnitude(float *data, int size)
{
double dot = 0.0f;
int i;
for(i=0; i<size; i++){
dot += data[i];
}
return (double)sqrt(dot);
}
/*------------------------tp_richcmpr
returns -1 execption, 0 false, 1 true */
PyObject* Vector_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
VectorObject *vecA = NULL, *vecB = NULL;
int result = 0;
float epsilon = .000001f;
double lenA,lenB;
if (!VectorObject_Check(objectA) || !VectorObject_Check(objectB)){
if (comparison_type == Py_NE){
return EXPP_incr_ret(Py_True);
}else{
return EXPP_incr_ret(Py_False);
}
}
vecA = (VectorObject*)objectA;
vecB = (VectorObject*)objectB;
if (vecA->size != vecB->size){
if (comparison_type == Py_NE){
return EXPP_incr_ret(Py_True);
}else{
return EXPP_incr_ret(Py_False);
}
}
switch (comparison_type){
case Py_LT:
lenA = vec_magnitude(vecA->vec, vecA->size);
lenB = vec_magnitude(vecB->vec, vecB->size);
if( lenA < lenB ){
result = 1;
}
break;
case Py_LE:
lenA = vec_magnitude(vecA->vec, vecA->size);
lenB = vec_magnitude(vecB->vec, vecB->size);
if( lenA < lenB ){
result = 1;
}else{
result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
}
break;
case Py_EQ:
result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1);
break;
case Py_NE:
result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1);
if (result == 0){
result = 1;
}else{
result = 0;
}
break;
case Py_GT:
lenA = vec_magnitude(vecA->vec, vecA->size);
lenB = vec_magnitude(vecB->vec, vecB->size);
if( lenA > lenB ){
result = 1;
}
break;
case Py_GE:
lenA = vec_magnitude(vecA->vec, vecA->size);
lenB = vec_magnitude(vecB->vec, vecB->size);
if( lenA > lenB ){
result = 1;
}else{
result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
}
break;
default:
printf("The result of the comparison could not be evaluated");
break;
}
if (result == 1){
return EXPP_incr_ret(Py_True);
}else{
return EXPP_incr_ret(Py_False);
}
}
/*-----------------PROTCOL DECLARATIONS--------------------------*/
static PySequenceMethods Vector_SeqMethods = {
(inquiry) Vector_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */
(intargfunc) Vector_item, /* sq_item */
(intintargfunc) Vector_slice, /* sq_slice */
(intobjargproc) Vector_ass_item, /* sq_ass_item */
(intintobjargproc) Vector_ass_slice, /* sq_ass_slice */
};
static PyNumberMethods Vector_NumMethods = {
(binaryfunc) Vector_add, /* __add__ */
(binaryfunc) Vector_sub, /* __sub__ */
(binaryfunc) Vector_mul, /* __mul__ */
(binaryfunc) Vector_div, /* __div__ */
(binaryfunc) 0, /* __mod__ */
(binaryfunc) 0, /* __divmod__ */
(ternaryfunc) 0, /* __pow__ */
(unaryfunc) Vector_neg, /* __neg__ */
(unaryfunc) 0, /* __pos__ */
(unaryfunc) 0, /* __abs__ */
(inquiry) 0, /* __nonzero__ */
(unaryfunc) 0, /* __invert__ */
(binaryfunc) 0, /* __lshift__ */
(binaryfunc) 0, /* __rshift__ */
(binaryfunc) 0, /* __and__ */
(binaryfunc) 0, /* __xor__ */
(binaryfunc) 0, /* __or__ */
(coercion) Vector_coerce, /* __coerce__ */
(unaryfunc) 0, /* __int__ */
(unaryfunc) 0, /* __long__ */
(unaryfunc) 0, /* __float__ */
(unaryfunc) 0, /* __oct__ */
(unaryfunc) 0, /* __hex__ */
};
/*------------------PY_OBECT DEFINITION--------------------------*/
PyTypeObject vector_Type = {
PyObject_HEAD_INIT(NULL) /*tp_head*/
0, /*tp_internal*/
"vector", /*tp_name*/
sizeof(VectorObject), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Vector_dealloc, /*tp_dealloc*/
0, /*tp_print*/
(getattrfunc)Vector_getattr, /*tp_getattr*/
(setattrfunc) Vector_setattr, /*tp_setattr*/
0, /*tp_compare*/
(reprfunc) Vector_repr, /*tp_repr*/
&Vector_NumMethods, /*tp_as_number*/
&Vector_SeqMethods, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
VectorObject_doc, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
(richcmpfunc)Vector_richcmpr, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
0, /*tp_methods*/
0, /*tp_members*/
0, /*tp_getset*/
0, /*tp_base*/
0, /*tp_dict*/
0, /*tp_descr_get*/
0, /*tp_descr_set*/
0, /*tp_dictoffset*/
0, /*tp_init*/
0, /*tp_alloc*/
0, /*tp_new*/
0, /*tp_free*/
0, /*tp_is_gc*/
0, /*tp_bases*/
0, /*tp_mro*/
0, /*tp_cache*/
0, /*tp_subclasses*/
0, /*tp_weaklist*/
0 /*tp_del*/
};
/*------------------------newVectorObject (internal)-------------
creates a new vector object
pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newVectorObject(float *vec, int size, int type)
{
VectorObject *self;
int x;
vector_Type.ob_type = &PyType_Type;
self = PyObject_NEW(VectorObject, &vector_Type);
self->data.blend_data = NULL;
self->data.py_data = NULL;
if(size > 4 || size < 2)
return NULL;
self->size = size;
self->coerced_object = NULL;
if(type == Py_WRAP){
self->data.blend_data = vec;
self->vec = self->data.blend_data;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(size * sizeof(float));
self->vec = self->data.py_data;
if(!vec) { /*new empty*/
for(x = 0; x < size; x++){
self->vec[x] = 0.0f;
}
if(size == 4) /* do the homogenous thing */
self->vec[3] = 1.0f;
}else{
for(x = 0; x < size; x++){
self->vec[x] = vec[x];
}
}
self->wrapped = Py_NEW;
}else{ /*bad type*/
return NULL;
}
return (PyObject *) self;
}
/*
#############################DEPRECATED################################
#######################################################################
----------------------------Vector.negate() --------------------
set the vector to it's negative -x, -y, -z */
PyObject *Vector_Negate(VectorObject * self)
{
int x;
for(x = 0; x < self->size; x++) {
self->vec[x] = -(self->vec[x]);
}
/*printf("Vector.negate(): Deprecated: use -vector instead\n");*/
return EXPP_incr_ret((PyObject*)self);
}
/*###################################################################
###########################DEPRECATED##############################*/