This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/extern/libmv/third_party/ssba/Math/v3d_optimization.cpp
Sergey Sharybin 27d42c63d9 Camera tracking integration
===========================

Commiting camera tracking integration gsoc project into trunk.

This commit includes:

- Bundled version of libmv library (with some changes against official repo,
  re-sync with libmv repo a bit later)
- New datatype ID called MovieClip which is optimized to work with movie
  clips (both of movie files and image sequences) and doing camera/motion
  tracking operations.
- New editor called Clip Editor which is currently used for motion/tracking
  stuff only, but which can be easily extended to work with masks too.

  This editor supports:
  * Loading movie files/image sequences
  * Build proxies with different size for loaded movie clip, also supports
    building undistorted proxies to increase speed of playback in
    undistorted mode.
  * Manual lens distortion mode calibration using grid and grease pencil
  * Supervised 2D tracking using two different algorithms KLT and SAD.
  * Basic algorithm for feature detection
  * Camera motion solving. scene orientation

- New constraints to "link" scene objects with solved motions from clip:

  * Follow Track (make object follow 2D motion of track with given name
    or parent object to reconstructed 3D position of track)
  * Camera Solver to make camera moving in the same way as reconstructed camera

This commit NOT includes changes from tomato branch:

- New nodes (they'll be commited as separated patch)
- Automatic image offset guessing for image input node and image editor
  (need to do more tests and gather more feedback)
- Code cleanup in libmv-capi. It's not so critical cleanup, just increasing
  readability and understanadability of code. Better to make this chaneg when
  Keir will finish his current patch.

More details about this project can be found on this page:
    http://wiki.blender.org/index.php/User:Nazg-gul/GSoC-2011

Further development of small features would be done in trunk, bigger/experimental
features would first be implemented in tomato branch.
2011-11-07 12:55:18 +00:00

956 lines
34 KiB
C++

/*
Copyright (c) 2008 University of North Carolina at Chapel Hill
This file is part of SSBA (Simple Sparse Bundle Adjustment).
SSBA is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.
SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along
with SSBA. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Math/v3d_optimization.h"
#if defined(V3DLIB_ENABLE_SUITESPARSE)
//# include "COLAMD/Include/colamd.h"
# include "colamd.h"
extern "C"
{
//# include "LDL/Include/ldl.h"
# include "ldl.h"
}
#endif
#include <iostream>
#include <map>
#define USE_BLOCK_REORDERING 1
#define USE_MULTIPLICATIVE_UPDATE 1
using namespace std;
namespace
{
using namespace V3D;
inline double
squaredResidual(VectorArray<double> const& e)
{
int const N = e.count();
int const M = e.size();
double res = 0.0;
for (int n = 0; n < N; ++n)
for (int m = 0; m < M; ++m)
res += e[n][m] * e[n][m];
return res;
} // end squaredResidual()
} // end namespace <>
namespace V3D
{
int optimizerVerbosenessLevel = 0;
#if defined(V3DLIB_ENABLE_SUITESPARSE)
void
SparseLevenbergOptimizer::setupSparseJtJ()
{
int const nVaryingA = _nParametersA - _nNonvaryingA;
int const nVaryingB = _nParametersB - _nNonvaryingB;
int const nVaryingC = _paramDimensionC - _nNonvaryingC;
int const bColumnStart = nVaryingA*_paramDimensionA;
int const cColumnStart = bColumnStart + nVaryingB*_paramDimensionB;
int const nColumns = cColumnStart + nVaryingC;
_jointNonzerosW.clear();
_jointIndexW.resize(_nMeasurements);
#if 1
{
map<pair<int, int>, int> jointNonzeroMap;
for (size_t k = 0; k < _nMeasurements; ++k)
{
int const i = _correspondingParamA[k] - _nNonvaryingA;
int const j = _correspondingParamB[k] - _nNonvaryingB;
if (i >= 0 && j >= 0)
{
map<pair<int, int>, int>::const_iterator p = jointNonzeroMap.find(make_pair(i, j));
if (p == jointNonzeroMap.end())
{
jointNonzeroMap.insert(make_pair(make_pair(i, j), _jointNonzerosW.size()));
_jointIndexW[k] = _jointNonzerosW.size();
_jointNonzerosW.push_back(make_pair(i, j));
}
else
{
_jointIndexW[k] = (*p).second;
} // end if
} // end if
} // end for (k)
} // end scope
#else
for (size_t k = 0; k < _nMeasurements; ++k)
{
int const i = _correspondingParamA[k] - _nNonvaryingA;
int const j = _correspondingParamB[k] - _nNonvaryingB;
if (i >= 0 && j >= 0)
{
_jointIndexW[k] = _jointNonzerosW.size();
_jointNonzerosW.push_back(make_pair(i, j));
}
} // end for (k)
#endif
#if defined(USE_BLOCK_REORDERING)
int const bBlockColumnStart = nVaryingA;
int const cBlockColumnStart = bBlockColumnStart + nVaryingB;
int const nBlockColumns = cBlockColumnStart + ((nVaryingC > 0) ? 1 : 0);
//cout << "nBlockColumns = " << nBlockColumns << endl;
// For the column reordering we treat the columns belonging to one set
// of parameters as one (logical) column.
// Determine non-zeros of JtJ (we forget about the non-zero diagonal for now)
// Only consider nonzeros of Ai^t * Bj induced by the measurements.
vector<pair<int, int> > nz_blockJtJ(_jointNonzerosW.size());
for (int k = 0; k < _jointNonzerosW.size(); ++k)
{
nz_blockJtJ[k].first = _jointNonzerosW[k].second + bBlockColumnStart;
nz_blockJtJ[k].second = _jointNonzerosW[k].first;
}
if (nVaryingC > 0)
{
// We assume, that the global unknowns are linked to every other variable.
for (int i = 0; i < nVaryingA; ++i)
nz_blockJtJ.push_back(make_pair(cBlockColumnStart, i));
for (int j = 0; j < nVaryingB; ++j)
nz_blockJtJ.push_back(make_pair(cBlockColumnStart, j + bBlockColumnStart));
} // end if
int const nnzBlock = nz_blockJtJ.size();
vector<int> permBlockJtJ(nBlockColumns + 1);
if (nnzBlock > 0)
{
// cout << "nnzBlock = " << nnzBlock << endl;
CCS_Matrix<int> blockJtJ(nBlockColumns, nBlockColumns, nz_blockJtJ);
// cout << " nz_blockJtJ: " << endl;
// for (size_t k = 0; k < nz_blockJtJ.size(); ++k)
// cout << " " << nz_blockJtJ[k].first << ":" << nz_blockJtJ[k].second << endl;
// cout << endl;
int * colStarts = (int *)blockJtJ.getColumnStarts();
int * rowIdxs = (int *)blockJtJ.getRowIndices();
// cout << "blockJtJ_colStarts = ";
// for (int k = 0; k <= nBlockColumns; ++k) cout << colStarts[k] << " ";
// cout << endl;
// cout << "blockJtJ_rowIdxs = ";
// for (int k = 0; k < nnzBlock; ++k) cout << rowIdxs[k] << " ";
// cout << endl;
int stats[COLAMD_STATS];
symamd(nBlockColumns, rowIdxs, colStarts, &permBlockJtJ[0], (double *) NULL, stats, &calloc, &free);
if (optimizerVerbosenessLevel >= 2) symamd_report(stats);
}
else
{
for (int k = 0; k < permBlockJtJ.size(); ++k) permBlockJtJ[k] = k;
} // end if
// cout << "permBlockJtJ = ";
// for (int k = 0; k < permBlockJtJ.size(); ++k)
// cout << permBlockJtJ[k] << " ";
// cout << endl;
// From the determined symbolic permutation with logical variables, determine the actual ordering
_perm_JtJ.resize(nVaryingA*_paramDimensionA + nVaryingB*_paramDimensionB + nVaryingC + 1);
int curDstCol = 0;
for (int k = 0; k < permBlockJtJ.size()-1; ++k)
{
int const srcCol = permBlockJtJ[k];
if (srcCol < nVaryingA)
{
for (int n = 0; n < _paramDimensionA; ++n)
_perm_JtJ[curDstCol + n] = srcCol*_paramDimensionA + n;
curDstCol += _paramDimensionA;
}
else if (srcCol >= bBlockColumnStart && srcCol < cBlockColumnStart)
{
int const bStart = nVaryingA*_paramDimensionA;
int const j = srcCol - bBlockColumnStart;
for (int n = 0; n < _paramDimensionB; ++n)
_perm_JtJ[curDstCol + n] = bStart + j*_paramDimensionB + n;
curDstCol += _paramDimensionB;
}
else if (srcCol == cBlockColumnStart)
{
int const cStart = nVaryingA*_paramDimensionA + nVaryingB*_paramDimensionB;
for (int n = 0; n < nVaryingC; ++n)
_perm_JtJ[curDstCol + n] = cStart + n;
curDstCol += nVaryingC;
}
else
{
cerr << "Should not reach " << __LINE__ << ":" << __LINE__ << "!" << endl;
assert(false);
}
}
#else
vector<pair<int, int> > nz, nzL;
this->serializeNonZerosJtJ(nz);
for (int k = 0; k < nz.size(); ++k)
{
// Swap rows and columns, since serializeNonZerosJtJ() generates the
// upper triangular part but symamd wants the lower triangle.
nzL.push_back(make_pair(nz[k].second, nz[k].first));
}
_perm_JtJ.resize(nColumns+1);
if (nzL.size() > 0)
{
CCS_Matrix<int> symbJtJ(nColumns, nColumns, nzL);
int * colStarts = (int *)symbJtJ.getColumnStarts();
int * rowIdxs = (int *)symbJtJ.getRowIndices();
// cout << "symbJtJ_colStarts = ";
// for (int k = 0; k <= nColumns; ++k) cout << colStarts[k] << " ";
// cout << endl;
// cout << "symbJtJ_rowIdxs = ";
// for (int k = 0; k < nzL.size(); ++k) cout << rowIdxs[k] << " ";
// cout << endl;
int stats[COLAMD_STATS];
symamd(nColumns, rowIdxs, colStarts, &_perm_JtJ[0], (double *) NULL, stats, &calloc, &free);
if (optimizerVerbosenessLevel >= 2) symamd_report(stats);
}
else
{
for (int k = 0; k < _perm_JtJ.size(); ++k) _perm_JtJ[k] = k;
} //// end if
#endif
_perm_JtJ.back() = _perm_JtJ.size() - 1;
// cout << "_perm_JtJ = ";
// for (int k = 0; k < _perm_JtJ.size(); ++k) cout << _perm_JtJ[k] << " ";
// cout << endl;
// Finally, compute the inverse of the full permutation.
_invPerm_JtJ.resize(_perm_JtJ.size());
for (size_t k = 0; k < _perm_JtJ.size(); ++k)
_invPerm_JtJ[_perm_JtJ[k]] = k;
vector<pair<int, int> > nz_JtJ;
this->serializeNonZerosJtJ(nz_JtJ);
for (int k = 0; k < nz_JtJ.size(); ++k)
{
int const i = nz_JtJ[k].first;
int const j = nz_JtJ[k].second;
int pi = _invPerm_JtJ[i];
int pj = _invPerm_JtJ[j];
// Swap values if in lower triangular part
if (pi > pj) std::swap(pi, pj);
nz_JtJ[k].first = pi;
nz_JtJ[k].second = pj;
}
int const nnz = nz_JtJ.size();
// cout << "nz_JtJ = ";
// for (int k = 0; k < nnz; ++k) cout << nz_JtJ[k].first << ":" << nz_JtJ[k].second << " ";
// cout << endl;
_JtJ.create(nColumns, nColumns, nz_JtJ);
// cout << "_colStart_JtJ = ";
// for (int k = 0; k < _JtJ.num_cols(); ++k) cout << _JtJ.getColumnStarts()[k] << " ";
// cout << endl;
// cout << "_rowIdxs_JtJ = ";
// for (int k = 0; k < nnz; ++k) cout << _JtJ.getRowIndices()[k] << " ";
// cout << endl;
vector<int> workFlags(nColumns);
_JtJ_Lp.resize(nColumns+1);
_JtJ_Parent.resize(nColumns);
_JtJ_Lnz.resize(nColumns);
ldl_symbolic(nColumns, (int *)_JtJ.getColumnStarts(), (int *)_JtJ.getRowIndices(),
&_JtJ_Lp[0], &_JtJ_Parent[0], &_JtJ_Lnz[0],
&workFlags[0], NULL, NULL);
if (optimizerVerbosenessLevel >= 1)
cout << "SparseLevenbergOptimizer: Nonzeros in LDL decomposition: " << _JtJ_Lp[nColumns] << endl;
} // end SparseLevenbergOptimizer::setupSparseJtJ()
void
SparseLevenbergOptimizer::serializeNonZerosJtJ(vector<pair<int, int> >& dst) const
{
int const nVaryingA = _nParametersA - _nNonvaryingA;
int const nVaryingB = _nParametersB - _nNonvaryingB;
int const nVaryingC = _paramDimensionC - _nNonvaryingC;
int const bColumnStart = nVaryingA*_paramDimensionA;
int const cColumnStart = bColumnStart + nVaryingB*_paramDimensionB;
dst.clear();
// Add the diagonal block matrices (only the upper triangular part).
// Ui submatrices of JtJ
for (int i = 0; i < nVaryingA; ++i)
{
int const i0 = i * _paramDimensionA;
for (int c = 0; c < _paramDimensionA; ++c)
for (int r = 0; r <= c; ++r)
dst.push_back(make_pair(i0 + r, i0 + c));
}
// Vj submatrices of JtJ
for (int j = 0; j < nVaryingB; ++j)
{
int const j0 = j*_paramDimensionB + bColumnStart;
for (int c = 0; c < _paramDimensionB; ++c)
for (int r = 0; r <= c; ++r)
dst.push_back(make_pair(j0 + r, j0 + c));
}
// Z submatrix of JtJ
for (int c = 0; c < nVaryingC; ++c)
for (int r = 0; r <= c; ++r)
dst.push_back(make_pair(cColumnStart + r, cColumnStart + c));
// Add the elements i and j linked by an observation k
// W submatrix of JtJ
for (size_t n = 0; n < _jointNonzerosW.size(); ++n)
{
int const i0 = _jointNonzerosW[n].first;
int const j0 = _jointNonzerosW[n].second;
int const r0 = i0*_paramDimensionA;
int const c0 = j0*_paramDimensionB + bColumnStart;
for (int r = 0; r < _paramDimensionA; ++r)
for (int c = 0; c < _paramDimensionB; ++c)
dst.push_back(make_pair(r0 + r, c0 + c));
} // end for (n)
if (nVaryingC > 0)
{
// Finally, add the dense columns linking i (resp. j) with the global parameters.
// X submatrix of JtJ
for (int i = 0; i < nVaryingA; ++i)
{
int const i0 = i*_paramDimensionA;
for (int r = 0; r < _paramDimensionA; ++r)
for (int c = 0; c < nVaryingC; ++c)
dst.push_back(make_pair(i0 + r, cColumnStart + c));
}
// Y submatrix of JtJ
for (int j = 0; j < nVaryingB; ++j)
{
int const j0 = j*_paramDimensionB + bColumnStart;
for (int r = 0; r < _paramDimensionB; ++r)
for (int c = 0; c < nVaryingC; ++c)
dst.push_back(make_pair(j0 + r, cColumnStart + c));
}
} // end if
} // end SparseLevenbergOptimizer::serializeNonZerosJtJ()
void
SparseLevenbergOptimizer::fillSparseJtJ(MatrixArray<double> const& Ui,
MatrixArray<double> const& Vj,
MatrixArray<double> const& Wn,
Matrix<double> const& Z,
Matrix<double> const& X,
Matrix<double> const& Y)
{
int const nVaryingA = _nParametersA - _nNonvaryingA;
int const nVaryingB = _nParametersB - _nNonvaryingB;
int const nVaryingC = _paramDimensionC - _nNonvaryingC;
int const bColumnStart = nVaryingA*_paramDimensionA;
int const cColumnStart = bColumnStart + nVaryingB*_paramDimensionB;
int const nCols = _JtJ.num_cols();
int const nnz = _JtJ.getNonzeroCount();
// The following has to replicate the procedure as in serializeNonZerosJtJ()
int serial = 0;
double * values = _JtJ.getValues();
int const * destIdxs = _JtJ.getDestIndices();
// Add the diagonal block matrices (only the upper triangular part).
// Ui submatrices of JtJ
for (int i = 0; i < nVaryingA; ++i)
{
int const i0 = i * _paramDimensionA;
for (int c = 0; c < _paramDimensionA; ++c)
for (int r = 0; r <= c; ++r, ++serial)
values[destIdxs[serial]] = Ui[i][r][c];
}
// Vj submatrices of JtJ
for (int j = 0; j < nVaryingB; ++j)
{
int const j0 = j*_paramDimensionB + bColumnStart;
for (int c = 0; c < _paramDimensionB; ++c)
for (int r = 0; r <= c; ++r, ++serial)
values[destIdxs[serial]] = Vj[j][r][c];
}
// Z submatrix of JtJ
for (int c = 0; c < nVaryingC; ++c)
for (int r = 0; r <= c; ++r, ++serial)
values[destIdxs[serial]] = Z[r][c];
// Add the elements i and j linked by an observation k
// W submatrix of JtJ
for (size_t n = 0; n < _jointNonzerosW.size(); ++n)
{
for (int r = 0; r < _paramDimensionA; ++r)
for (int c = 0; c < _paramDimensionB; ++c, ++serial)
values[destIdxs[serial]] = Wn[n][r][c];
} // end for (k)
if (nVaryingC > 0)
{
// Finally, add the dense columns linking i (resp. j) with the global parameters.
// X submatrix of JtJ
for (int i = 0; i < nVaryingA; ++i)
{
int const r0 = i * _paramDimensionA;
for (int r = 0; r < _paramDimensionA; ++r)
for (int c = 0; c < nVaryingC; ++c, ++serial)
values[destIdxs[serial]] = X[r0+r][c];
}
// Y submatrix of JtJ
for (int j = 0; j < nVaryingB; ++j)
{
int const r0 = j * _paramDimensionB;
for (int r = 0; r < _paramDimensionB; ++r)
for (int c = 0; c < nVaryingC; ++c, ++serial)
values[destIdxs[serial]] = Y[r0+r][c];
}
} // end if
} // end SparseLevenbergOptimizer::fillSparseJtJ()
void
SparseLevenbergOptimizer::minimize()
{
status = LEVENBERG_OPTIMIZER_TIMEOUT;
bool computeDerivatives = true;
int const nVaryingA = _nParametersA - _nNonvaryingA;
int const nVaryingB = _nParametersB - _nNonvaryingB;
int const nVaryingC = _paramDimensionC - _nNonvaryingC;
if (nVaryingA == 0 && nVaryingB == 0 && nVaryingC == 0)
{
// No degrees of freedom, nothing to optimize.
status = LEVENBERG_OPTIMIZER_CONVERGED;
return;
}
this->setupSparseJtJ();
Vector<double> weights(_nMeasurements);
MatrixArray<double> Ak(_nMeasurements, _measurementDimension, _paramDimensionA);
MatrixArray<double> Bk(_nMeasurements, _measurementDimension, _paramDimensionB);
MatrixArray<double> Ck(_nMeasurements, _measurementDimension, _paramDimensionC);
MatrixArray<double> Ui(nVaryingA, _paramDimensionA, _paramDimensionA);
MatrixArray<double> Vj(nVaryingB, _paramDimensionB, _paramDimensionB);
// Wn = Ak^t*Bk
MatrixArray<double> Wn(_jointNonzerosW.size(), _paramDimensionA, _paramDimensionB);
Matrix<double> Z(nVaryingC, nVaryingC);
// X = A^t*C
Matrix<double> X(nVaryingA*_paramDimensionA, nVaryingC);
// Y = B^t*C
Matrix<double> Y(nVaryingB*_paramDimensionB, nVaryingC);
VectorArray<double> residuals(_nMeasurements, _measurementDimension);
VectorArray<double> residuals2(_nMeasurements, _measurementDimension);
VectorArray<double> diagUi(nVaryingA, _paramDimensionA);
VectorArray<double> diagVj(nVaryingB, _paramDimensionB);
Vector<double> diagZ(nVaryingC);
VectorArray<double> At_e(nVaryingA, _paramDimensionA);
VectorArray<double> Bt_e(nVaryingB, _paramDimensionB);
Vector<double> Ct_e(nVaryingC);
Vector<double> Jt_e(nVaryingA*_paramDimensionA + nVaryingB*_paramDimensionB + nVaryingC);
Vector<double> delta(nVaryingA*_paramDimensionA + nVaryingB*_paramDimensionB + nVaryingC);
Vector<double> deltaPerm(nVaryingA*_paramDimensionA + nVaryingB*_paramDimensionB + nVaryingC);
VectorArray<double> deltaAi(_nParametersA, _paramDimensionA);
VectorArray<double> deltaBj(_nParametersB, _paramDimensionB);
Vector<double> deltaC(_paramDimensionC);
double err = 0.0;
for (currentIteration = 0; currentIteration < maxIterations; ++currentIteration)
{
if (optimizerVerbosenessLevel >= 2)
cout << "SparseLevenbergOptimizer: currentIteration: " << currentIteration << endl;
if (computeDerivatives)
{
this->evalResidual(residuals);
this->fillWeights(residuals, weights);
for (int k = 0; k < _nMeasurements; ++k)
scaleVectorIP(weights[k], residuals[k]);
err = squaredResidual(residuals);
if (optimizerVerbosenessLevel >= 1) cout << "SparseLevenbergOptimizer: |residual|^2 = " << err << endl;
if (optimizerVerbosenessLevel >= 2) cout << "SparseLevenbergOptimizer: lambda = " << lambda << endl;
for (int k = 0; k < residuals.count(); ++k) scaleVectorIP(-1.0, residuals[k]);
this->setupJacobianGathering();
this->fillAllJacobians(weights, Ak, Bk, Ck);
// Compute the different parts of J^t*e
if (nVaryingA > 0)
{
for (int i = 0; i < nVaryingA; ++i) makeZeroVector(At_e[i]);
Vector<double> tmp(_paramDimensionA);
for (int k = 0; k < _nMeasurements; ++k)
{
int const i = _correspondingParamA[k] - _nNonvaryingA;
if (i < 0) continue;
multiply_At_v(Ak[k], residuals[k], tmp);
addVectors(tmp, At_e[i], At_e[i]);
} // end for (k)
} // end if
if (nVaryingB > 0)
{
for (int j = 0; j < nVaryingB; ++j) makeZeroVector(Bt_e[j]);
Vector<double> tmp(_paramDimensionB);
for (int k = 0; k < _nMeasurements; ++k)
{
int const j = _correspondingParamB[k] - _nNonvaryingB;
if (j < 0) continue;
multiply_At_v(Bk[k], residuals[k], tmp);
addVectors(tmp, Bt_e[j], Bt_e[j]);
} // end for (k)
} // end if
if (nVaryingC > 0)
{
makeZeroVector(Ct_e);
Vector<double> tmp(_paramDimensionC);
for (int k = 0; k < _nMeasurements; ++k)
{
multiply_At_v(Ck[k], residuals[k], tmp);
for (int l = 0; l < nVaryingC; ++l) Ct_e[l] += tmp[_nNonvaryingC + l];
}
} // end if
int pos = 0;
for (int i = 0; i < nVaryingA; ++i)
for (int l = 0; l < _paramDimensionA; ++l, ++pos)
Jt_e[pos] = At_e[i][l];
for (int j = 0; j < nVaryingB; ++j)
for (int l = 0; l < _paramDimensionB; ++l, ++pos)
Jt_e[pos] = Bt_e[j][l];
for (int l = 0; l < nVaryingC; ++l, ++pos)
Jt_e[pos] = Ct_e[l];
// cout << "Jt_e = ";
// for (int k = 0; k < Jt_e.size(); ++k) cout << Jt_e[k] << " ";
// cout << endl;
if (this->applyGradientStoppingCriteria(norm_Linf(Jt_e)))
{
status = LEVENBERG_OPTIMIZER_CONVERGED;
goto end;
}
// The lhs J^t*J consists of several parts:
// [ U W X ]
// J^t*J = [ W^t V Y ]
// [ X^t Y^t Z ],
// where U, V and W are block-sparse matrices (due to the sparsity of A and B).
// X, Y and Z contain only a few columns (the number of global parameters).
if (nVaryingA > 0)
{
// Compute Ui
Matrix<double> U(_paramDimensionA, _paramDimensionA);
for (int i = 0; i < nVaryingA; ++i) makeZeroMatrix(Ui[i]);
for (int k = 0; k < _nMeasurements; ++k)
{
int const i = _correspondingParamA[k] - _nNonvaryingA;
if (i < 0) continue;
multiply_At_A(Ak[k], U);
addMatricesIP(U, Ui[i]);
} // end for (k)
} // end if
if (nVaryingB > 0)
{
// Compute Vj
Matrix<double> V(_paramDimensionB, _paramDimensionB);
for (int j = 0; j < nVaryingB; ++j) makeZeroMatrix(Vj[j]);
for (int k = 0; k < _nMeasurements; ++k)
{
int const j = _correspondingParamB[k] - _nNonvaryingB;
if (j < 0) continue;
multiply_At_A(Bk[k], V);
addMatricesIP(V, Vj[j]);
} // end for (k)
} // end if
if (nVaryingC > 0)
{
Matrix<double> ZZ(_paramDimensionC, _paramDimensionC);
Matrix<double> Zsum(_paramDimensionC, _paramDimensionC);
makeZeroMatrix(Zsum);
for (int k = 0; k < _nMeasurements; ++k)
{
multiply_At_A(Ck[k], ZZ);
addMatricesIP(ZZ, Zsum);
} // end for (k)
// Ignore the non-varying parameters
for (int i = 0; i < nVaryingC; ++i)
for (int j = 0; j < nVaryingC; ++j)
Z[i][j] = Zsum[i+_nNonvaryingC][j+_nNonvaryingC];
} // end if
if (nVaryingA > 0 && nVaryingB > 0)
{
for (int n = 0; n < Wn.count(); ++n) makeZeroMatrix(Wn[n]);
Matrix<double> W(_paramDimensionA, _paramDimensionB);
for (int k = 0; k < _nMeasurements; ++k)
{
int const n = _jointIndexW[k];
if (n >= 0)
{
int const i0 = _jointNonzerosW[n].first;
int const j0 = _jointNonzerosW[n].second;
multiply_At_B(Ak[k], Bk[k], W);
addMatricesIP(W, Wn[n]);
} // end if
} // end for (k)
} // end if
if (nVaryingA > 0 && nVaryingC > 0)
{
Matrix<double> XX(_paramDimensionA, _paramDimensionC);
makeZeroMatrix(X);
for (int k = 0; k < _nMeasurements; ++k)
{
int const i = _correspondingParamA[k] - _nNonvaryingA;
// Ignore the non-varying parameters
if (i < 0) continue;
multiply_At_B(Ak[k], Ck[k], XX);
for (int r = 0; r < _paramDimensionA; ++r)
for (int c = 0; c < nVaryingC; ++c)
X[r+i*_paramDimensionA][c] += XX[r][c+_nNonvaryingC];
} // end for (k)
} // end if
if (nVaryingB > 0 && nVaryingC > 0)
{
Matrix<double> YY(_paramDimensionB, _paramDimensionC);
makeZeroMatrix(Y);
for (int k = 0; k < _nMeasurements; ++k)
{
int const j = _correspondingParamB[k] - _nNonvaryingB;
// Ignore the non-varying parameters
if (j < 0) continue;
multiply_At_B(Bk[k], Ck[k], YY);
for (int r = 0; r < _paramDimensionB; ++r)
for (int c = 0; c < nVaryingC; ++c)
Y[r+j*_paramDimensionB][c] += YY[r][c+_nNonvaryingC];
} // end for (k)
} // end if
if (currentIteration == 0)
{
// Initialize lambda as tau*max(JtJ[i][i])
double maxEl = -1e30;
if (nVaryingA > 0)
{
for (int i = 0; i < nVaryingA; ++i)
for (int l = 0; l < _paramDimensionA; ++l)
maxEl = std::max(maxEl, Ui[i][l][l]);
}
if (nVaryingB > 0)
{
for (int j = 0; j < nVaryingB; ++j)
for (int l = 0; l < _paramDimensionB; ++l)
maxEl = std::max(maxEl, Vj[j][l][l]);
}
if (nVaryingC > 0)
{
for (int l = 0; l < nVaryingC; ++l)
maxEl = std::max(maxEl, Z[l][l]);
}
lambda = tau * maxEl;
if (optimizerVerbosenessLevel >= 2)
cout << "SparseLevenbergOptimizer: initial lambda = " << lambda << endl;
} // end if (currentIteration == 0)
} // end if (computeDerivatives)
for (int i = 0; i < nVaryingA; ++i)
{
for (int l = 0; l < _paramDimensionA; ++l) diagUi[i][l] = Ui[i][l][l];
} // end for (i)
for (int j = 0; j < nVaryingB; ++j)
{
for (int l = 0; l < _paramDimensionB; ++l) diagVj[j][l] = Vj[j][l][l];
} // end for (j)
for (int l = 0; l < nVaryingC; ++l) diagZ[l] = Z[l][l];
// Augment the diagonals with lambda (either by the standard additive update or by multiplication).
#if !defined(USE_MULTIPLICATIVE_UPDATE)
for (int i = 0; i < nVaryingA; ++i)
for (unsigned l = 0; l < _paramDimensionA; ++l)
Ui[i][l][l] += lambda;
for (int j = 0; j < nVaryingB; ++j)
for (unsigned l = 0; l < _paramDimensionB; ++l)
Vj[j][l][l] += lambda;
for (unsigned l = 0; l < nVaryingC; ++l)
Z[l][l] += lambda;
#else
for (int i = 0; i < nVaryingA; ++i)
for (unsigned l = 0; l < _paramDimensionA; ++l)
Ui[i][l][l] = std::max(Ui[i][l][l] * (1.0 + lambda), 1e-15);
for (int j = 0; j < nVaryingB; ++j)
for (unsigned l = 0; l < _paramDimensionB; ++l)
Vj[j][l][l] = std::max(Vj[j][l][l] * (1.0 + lambda), 1e-15);
for (unsigned l = 0; l < nVaryingC; ++l)
Z[l][l] = std::max(Z[l][l] * (1.0 + lambda), 1e-15);
#endif
this->fillSparseJtJ(Ui, Vj, Wn, Z, X, Y);
bool success = true;
double rho = 0.0;
{
int const nCols = _JtJ_Parent.size();
int const nnz = _JtJ.getNonzeroCount();
int const lnz = _JtJ_Lp.back();
vector<int> Li(lnz);
vector<double> Lx(lnz);
vector<double> D(nCols), Y(nCols);
vector<int> workPattern(nCols), workFlag(nCols);
int * colStarts = (int *)_JtJ.getColumnStarts();
int * rowIdxs = (int *)_JtJ.getRowIndices();
double * values = _JtJ.getValues();
int const d = ldl_numeric(nCols, colStarts, rowIdxs, values,
&_JtJ_Lp[0], &_JtJ_Parent[0], &_JtJ_Lnz[0],
&Li[0], &Lx[0], &D[0],
&Y[0], &workPattern[0], &workFlag[0],
NULL, NULL);
if (d == nCols)
{
ldl_perm(nCols, &deltaPerm[0], &Jt_e[0], &_perm_JtJ[0]);
ldl_lsolve(nCols, &deltaPerm[0], &_JtJ_Lp[0], &Li[0], &Lx[0]);
ldl_dsolve(nCols, &deltaPerm[0], &D[0]);
ldl_ltsolve(nCols, &deltaPerm[0], &_JtJ_Lp[0], &Li[0], &Lx[0]);
ldl_permt(nCols, &delta[0], &deltaPerm[0], &_perm_JtJ[0]);
}
else
{
if (optimizerVerbosenessLevel >= 2)
cout << "SparseLevenbergOptimizer: LDL decomposition failed. Increasing lambda." << endl;
success = false;
}
}
if (success)
{
double const deltaSqrLength = sqrNorm_L2(delta);
if (optimizerVerbosenessLevel >= 2)
cout << "SparseLevenbergOptimizer: ||delta||^2 = " << deltaSqrLength << endl;
double const paramLength = this->getParameterLength();
if (this->applyUpdateStoppingCriteria(paramLength, sqrt(deltaSqrLength)))
{
status = LEVENBERG_OPTIMIZER_SMALL_UPDATE;
goto end;
}
// Copy the updates from delta to the respective arrays
int pos = 0;
for (int i = 0; i < _nNonvaryingA; ++i) makeZeroVector(deltaAi[i]);
for (int i = _nNonvaryingA; i < _nParametersA; ++i)
for (int l = 0; l < _paramDimensionA; ++l, ++pos)
deltaAi[i][l] = delta[pos];
for (int j = 0; j < _nNonvaryingB; ++j) makeZeroVector(deltaBj[j]);
for (int j = _nNonvaryingB; j < _nParametersB; ++j)
for (int l = 0; l < _paramDimensionB; ++l, ++pos)
deltaBj[j][l] = delta[pos];
makeZeroVector(deltaC);
for (int l = _nNonvaryingC; l < _paramDimensionC; ++l, ++pos)
deltaC[l] = delta[pos];
saveAllParameters();
if (nVaryingA > 0) updateParametersA(deltaAi);
if (nVaryingB > 0) updateParametersB(deltaBj);
if (nVaryingC > 0) updateParametersC(deltaC);
this->evalResidual(residuals2);
for (int k = 0; k < _nMeasurements; ++k)
scaleVectorIP(weights[k], residuals2[k]);
double const newErr = squaredResidual(residuals2);
rho = err - newErr;
if (optimizerVerbosenessLevel >= 2)
cout << "SparseLevenbergOptimizer: |new residual|^2 = " << newErr << endl;
#if !defined(USE_MULTIPLICATIVE_UPDATE)
double const denom1 = lambda * deltaSqrLength;
#else
double denom1 = 0.0f;
for (int i = _nNonvaryingA; i < _nParametersA; ++i)
for (int l = 0; l < _paramDimensionA; ++l)
denom1 += deltaAi[i][l] * deltaAi[i][l] * diagUi[i-_nNonvaryingA][l];
for (int j = _nNonvaryingB; j < _nParametersB; ++j)
for (int l = 0; l < _paramDimensionB; ++l)
denom1 += deltaBj[j][l] * deltaBj[j][l] * diagVj[j-_nNonvaryingB][l];
for (int l = _nNonvaryingC; l < _paramDimensionC; ++l)
denom1 += deltaC[l] * deltaC[l] * diagZ[l-_nNonvaryingC];
denom1 *= lambda;
#endif
double const denom2 = innerProduct(delta, Jt_e);
rho = rho / (denom1 + denom2);
if (optimizerVerbosenessLevel >= 2)
cout << "SparseLevenbergOptimizer: rho = " << rho
<< " denom1 = " << denom1 << " denom2 = " << denom2 << endl;
} // end if (success)
if (success && rho > 0)
{
if (optimizerVerbosenessLevel >= 2)
cout << "SparseLevenbergOptimizer: Improved solution - decreasing lambda." << endl;
// Improvement in the new solution
decreaseLambda(rho);
computeDerivatives = true;
}
else
{
if (optimizerVerbosenessLevel >= 2)
cout << "SparseLevenbergOptimizer: Inferior solution - increasing lambda." << endl;
restoreAllParameters();
increaseLambda();
computeDerivatives = false;
// Restore diagonal elements in Ui, Vj and Z.
for (int i = 0; i < nVaryingA; ++i)
{
for (int l = 0; l < _paramDimensionA; ++l) Ui[i][l][l] = diagUi[i][l];
} // end for (i)
for (int j = 0; j < nVaryingB; ++j)
{
for (int l = 0; l < _paramDimensionB; ++l) Vj[j][l][l] = diagVj[j][l];
} // end for (j)
for (int l = 0; l < nVaryingC; ++l) Z[l][l] = diagZ[l];
} // end if
} // end for
end:;
if (optimizerVerbosenessLevel >= 2)
cout << "Leaving SparseLevenbergOptimizer::minimize()." << endl;
} // end SparseLevenbergOptimizer::minimize()
#endif // defined(V3DLIB_ENABLE_SUITESPARSE)
} // end namespace V3D