- give it the key/items interface - creates some factory functions for const generation - genutils methods - method for getting module constants - method for throwing errors with a print string - updates to function names - clean up interpreter launch a bit
667 lines
22 KiB
C
667 lines
22 KiB
C
/**
|
|
* $Id$
|
|
*
|
|
* Blender.Noise BPython module implementation.
|
|
* This submodule has functions to generate noise of various types.
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* This is a new part of Blender.
|
|
*
|
|
* Contributor(s): eeshlo
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/************************/
|
|
/* Blender Noise Module */
|
|
/************************/
|
|
|
|
#include <Python.h>
|
|
|
|
#include "BLI_blenlib.h"
|
|
#include "DNA_texture_types.h"
|
|
#include "constant.h"
|
|
|
|
/*-----------------------------------------*/
|
|
/* 'mersenne twister' random number generator */
|
|
/* Period parameters */
|
|
#define N 624
|
|
#define M 397
|
|
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
|
|
#define UMASK 0x80000000UL /* most significant w-r bits */
|
|
#define LMASK 0x7fffffffUL /* least significant r bits */
|
|
#define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
|
|
#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))
|
|
|
|
static unsigned long state[N]; /* the array for the state vector */
|
|
static int left = 1;
|
|
static int initf = 0;
|
|
static unsigned long *next;
|
|
|
|
PyObject *Noise_Init(void);
|
|
|
|
/* initializes state[N] with a seed */
|
|
static void init_genrand( unsigned long s )
|
|
{
|
|
int j;
|
|
state[0] = s & 0xffffffffUL;
|
|
for( j = 1; j < N; j++ ) {
|
|
state[j] =
|
|
( 1812433253UL *
|
|
( state[j - 1] ^ ( state[j - 1] >> 30 ) ) + j );
|
|
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
|
|
/* In the previous versions, MSBs of the seed affect */
|
|
/* only MSBs of the array state[]. */
|
|
/* 2002/01/09 modified by Makoto Matsumoto */
|
|
state[j] &= 0xffffffffUL; /* for >32 bit machines */
|
|
}
|
|
left = 1;
|
|
initf = 1;
|
|
}
|
|
|
|
static void next_state( void )
|
|
{
|
|
unsigned long *p = state;
|
|
int j;
|
|
|
|
/* if init_genrand() has not been called, */
|
|
/* a default initial seed is used */
|
|
if( initf == 0 )
|
|
init_genrand( 5489UL );
|
|
|
|
left = N;
|
|
next = state;
|
|
|
|
for( j = N - M + 1; --j; p++ )
|
|
*p = p[M] ^ TWIST( p[0], p[1] );
|
|
|
|
for( j = M; --j; p++ )
|
|
*p = p[M - N] ^ TWIST( p[0], p[1] );
|
|
|
|
*p = p[M - N] ^ TWIST( p[0], state[0] );
|
|
}
|
|
|
|
/*------------------------------------------------------------*/
|
|
|
|
static void setRndSeed( int seed )
|
|
{
|
|
if( seed == 0 )
|
|
init_genrand( time( NULL ) );
|
|
else
|
|
init_genrand( seed );
|
|
}
|
|
|
|
/* float number in range [0, 1) */
|
|
static float frand( )
|
|
{
|
|
unsigned long y;
|
|
|
|
if( --left == 0 )
|
|
next_state( );
|
|
y = *next++;
|
|
|
|
/* Tempering */
|
|
y ^= ( y >> 11 );
|
|
y ^= ( y << 7 ) & 0x9d2c5680UL;
|
|
y ^= ( y << 15 ) & 0xefc60000UL;
|
|
y ^= ( y >> 18 );
|
|
|
|
return ( float ) y / 4294967296.f;
|
|
}
|
|
|
|
/* returns random unit vector */
|
|
static void randuvec( float v[3] )
|
|
{
|
|
float r;
|
|
v[2] = 2.f * frand( ) - 1.f;
|
|
if( ( r = 1.f - v[2] * v[2] ) > 0.f ) {
|
|
float a = (float)(6.283185307f * frand( ));
|
|
r = (float)sqrt( r );
|
|
v[0] = (float)(r * cos( a ));
|
|
v[1] = (float)(r * sin( a ));
|
|
} else
|
|
v[2] = 1.f;
|
|
}
|
|
|
|
static PyObject *Noise_random( PyObject * self )
|
|
{
|
|
return Py_BuildValue( "f", frand( ) );
|
|
}
|
|
|
|
static PyObject *Noise_randuvec( PyObject * self )
|
|
{
|
|
float v[3];
|
|
randuvec( v );
|
|
return Py_BuildValue( "[fff]", v[0], v[1], v[2] );
|
|
}
|
|
|
|
/*---------------------------------------------------------------------*/
|
|
|
|
/* Random seed init. Only used for MT random() & randuvec() */
|
|
|
|
static PyObject *Noise_setRandomSeed( PyObject * self, PyObject * args )
|
|
{
|
|
int s;
|
|
if( !PyArg_ParseTuple( args, "i", &s ) )
|
|
return NULL;
|
|
setRndSeed( s );
|
|
Py_INCREF( Py_None );
|
|
return Py_None;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* General noise */
|
|
|
|
static PyObject *Noise_noise( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z;
|
|
int nb = 1;
|
|
if( !PyArg_ParseTuple( args, "(fff)|ii", &x, &y, &z, &nb ) )
|
|
return NULL;
|
|
return Py_BuildValue( "f",
|
|
2.0 * BLI_gNoise( 1.0, x, y, z, 0, nb ) - 1.0 );
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* General Vector noise */
|
|
|
|
static void vNoise( float x, float y, float z, int nb, float v[3] )
|
|
{
|
|
/* Simply evaluate noise at 3 different positions */
|
|
v[0] = (float)(2.0 * BLI_gNoise( 1.f, x + 9.321f, y - 1.531f, z - 7.951f, 0,
|
|
nb ) - 1.0);
|
|
v[1] = (float)(2.0 * BLI_gNoise( 1.f, x, y, z, 0, nb ) - 1.0);
|
|
v[2] = (float)(2.0 * BLI_gNoise( 1.f, x + 6.327f, y + 0.1671f, z - 2.672f, 0,
|
|
nb ) - 1.0);
|
|
}
|
|
|
|
static PyObject *Noise_vNoise( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z, v[3];
|
|
int nb = 1;
|
|
if( !PyArg_ParseTuple( args, "(fff)", &x, &y, &z, &nb ) )
|
|
return NULL;
|
|
vNoise( x, y, z, nb, v );
|
|
return Py_BuildValue( "[fff]", v[0], v[1], v[2] );
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
/* General turbulence */
|
|
|
|
static float turb( float x, float y, float z, int oct, int hard, int nb,
|
|
float ampscale, float freqscale )
|
|
{
|
|
float amp, out, t;
|
|
int i;
|
|
amp = 1.f;
|
|
out = (float)(2.0 * BLI_gNoise( 1.f, x, y, z, 0, nb ) - 1.0);
|
|
if( hard )
|
|
out = (float)fabs( out );
|
|
for( i = 1; i < oct; i++ ) {
|
|
amp *= ampscale;
|
|
x *= freqscale;
|
|
y *= freqscale;
|
|
z *= freqscale;
|
|
t = (float)(amp * ( 2.0 * BLI_gNoise( 1.f, x, y, z, 0, nb ) - 1.0 ));
|
|
if( hard )
|
|
t = (float)fabs( t );
|
|
out += t;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static PyObject *Noise_turbulence( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z;
|
|
int oct, hd, nb = 1;
|
|
float as = 0.5, fs = 2.0;
|
|
if( !PyArg_ParseTuple
|
|
( args, "(fff)ii|iff", &x, &y, &z, &oct, &hd, &nb, &as, &fs ) )
|
|
return NULL;
|
|
return Py_BuildValue( "f", turb( x, y, z, oct, hd, nb, as, fs ) );
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/* Turbulence Vector */
|
|
|
|
static void vTurb( float x, float y, float z, int oct, int hard, int nb,
|
|
float ampscale, float freqscale, float v[3] )
|
|
{
|
|
float amp, t[3];
|
|
int i;
|
|
amp = 1.f;
|
|
vNoise( x, y, z, nb, v );
|
|
if( hard ) {
|
|
v[0] = (float)fabs( v[0] );
|
|
v[1] = (float)fabs( v[1] );
|
|
v[2] = (float)fabs( v[2] );
|
|
}
|
|
for( i = 1; i < oct; i++ ) {
|
|
amp *= ampscale;
|
|
x *= freqscale;
|
|
y *= freqscale;
|
|
z *= freqscale;
|
|
vNoise( x, y, z, nb, t );
|
|
if( hard ) {
|
|
t[0] = (float)fabs( t[0] );
|
|
t[1] = (float)fabs( t[1] );
|
|
t[2] = (float)fabs( t[2] );
|
|
}
|
|
v[0] += amp * t[0];
|
|
v[1] += amp * t[1];
|
|
v[2] += amp * t[2];
|
|
}
|
|
}
|
|
|
|
static PyObject *Noise_vTurbulence( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z, v[3];
|
|
int oct, hd, nb = 1;
|
|
float as = 0.5, fs = 2.0;
|
|
if( !PyArg_ParseTuple
|
|
( args, "(fff)ii|iff", &x, &y, &z, &oct, &hd, &nb, &as, &fs ) )
|
|
return NULL;
|
|
vTurb( x, y, z, oct, hd, nb, as, fs, v );
|
|
return Py_BuildValue( "[fff]", v[0], v[1], v[2] );
|
|
}
|
|
|
|
/*---------------------------------------------------------------------*/
|
|
|
|
/* F. Kenton Musgrave's fractal functions */
|
|
|
|
static PyObject *Noise_fBm( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z, H, lac, oct;
|
|
int nb = 1;
|
|
if( !PyArg_ParseTuple
|
|
( args, "(fff)fff|i", &x, &y, &z, &H, &lac, &oct, &nb ) )
|
|
return NULL;
|
|
return Py_BuildValue( "f", mg_fBm( x, y, z, H, lac, oct, nb ) );
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
|
|
static PyObject *Noise_multiFractal( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z, H, lac, oct;
|
|
int nb = 1;
|
|
if( !PyArg_ParseTuple
|
|
( args, "(fff)fff|i", &x, &y, &z, &H, &lac, &oct, &nb ) )
|
|
return NULL;
|
|
return Py_BuildValue( "f",
|
|
mg_MultiFractal( x, y, z, H, lac, oct, nb ) );
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
|
|
static PyObject *Noise_vlNoise( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z, d;
|
|
int nt1 = 1, nt2 = 1;
|
|
if( !PyArg_ParseTuple
|
|
( args, "(fff)f|ii", &x, &y, &z, &d, &nt1, &nt2 ) )
|
|
return NULL;
|
|
return Py_BuildValue( "f", mg_VLNoise( x, y, z, d, nt1, nt2 ) );
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static PyObject *Noise_heteroTerrain( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z, H, lac, oct, ofs;
|
|
int nb = 1;
|
|
if( !PyArg_ParseTuple
|
|
( args, "(fff)ffff|i", &x, &y, &z, &H, &lac, &oct, &ofs, &nb ) )
|
|
return NULL;
|
|
return Py_BuildValue( "f",
|
|
mg_HeteroTerrain( x, y, z, H, lac, oct, ofs,
|
|
nb ) );
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static PyObject *Noise_hybridMFractal( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z, H, lac, oct, ofs, gn;
|
|
int nb = 1;
|
|
if( !PyArg_ParseTuple
|
|
( args, "(fff)fffff|i", &x, &y, &z, &H, &lac, &oct, &ofs, &gn,
|
|
&nb ) )
|
|
return NULL;
|
|
return Py_BuildValue( "f",
|
|
mg_HybridMultiFractal( x, y, z, H, lac, oct, ofs,
|
|
gn, nb ) );
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
|
|
static PyObject *Noise_ridgedMFractal( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z, H, lac, oct, ofs, gn;
|
|
int nb = 1;
|
|
if( !PyArg_ParseTuple
|
|
( args, "(fff)fffff|i", &x, &y, &z, &H, &lac, &oct, &ofs, &gn,
|
|
&nb ) )
|
|
return NULL;
|
|
return Py_BuildValue( "f",
|
|
mg_RidgedMultiFractal( x, y, z, H, lac, oct, ofs,
|
|
gn, nb ) );
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static PyObject *Noise_voronoi( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z, da[4], pa[12];
|
|
int dtype = 0;
|
|
float me = 2.5; /* default minkovsky exponent */
|
|
if( !PyArg_ParseTuple( args, "(fff)|if", &x, &y, &z, &dtype, &me ) )
|
|
return NULL;
|
|
voronoi( x, y, z, da, pa, me, dtype );
|
|
return Py_BuildValue( "[[ffff][[fff][fff][fff][fff]]]",
|
|
da[0], da[1], da[2], da[3],
|
|
pa[0], pa[1], pa[2],
|
|
pa[3], pa[4], pa[5],
|
|
pa[6], pa[7], pa[8], pa[9], pa[10], pa[12] );
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static PyObject *Noise_cellNoise( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z;
|
|
if( !PyArg_ParseTuple( args, "(fff)", &x, &y, &z ) )
|
|
return NULL;
|
|
return Py_BuildValue( "f", cellNoise( x, y, z ) );
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
static PyObject *Noise_cellNoiseV( PyObject * self, PyObject * args )
|
|
{
|
|
float x, y, z, ca[3];
|
|
if( !PyArg_ParseTuple( args, "(fff)", &x, &y, &z ) )
|
|
return NULL;
|
|
cellNoiseV( x, y, z, ca );
|
|
return Py_BuildValue( "[fff]", ca[0], ca[1], ca[2] );
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* For all other Blender modules, this stuff seems to be put in a header file.
|
|
This doesn't seem really appropriate to me, so I just put it here, feel free to change it.
|
|
In the original module I actually kept the docs stings with the functions themselves,
|
|
but I grouped them here so that it can easily be moved to a header if anyone thinks that is necessary. */
|
|
|
|
static char random__doc__[] = "() No arguments.\n\n\
|
|
Returns a random floating point number in the range [0, 1)";
|
|
|
|
static char randuvec__doc__[] =
|
|
"() No arguments.\n\nReturns a random unit vector (3-float list).";
|
|
|
|
static char setRandomSeed__doc__[] = "(seed value)\n\n\
|
|
Initializes random number generator.\n\
|
|
if seed is zero, the current time will be used instead.";
|
|
|
|
static char noise__doc__[] = "((x,y,z) tuple, [noisetype])\n\n\
|
|
Returns general noise of the optional specified type.\n\
|
|
Optional argument noisetype determines the type of noise, STDPERLIN by default, see NoiseTypes.";
|
|
|
|
static char vNoise__doc__[] = "((x,y,z) tuple, [noisetype])\n\n\
|
|
Returns noise vector (3-float list) of the optional specified type.\
|
|
Optional argument noisetype determines the type of noise, STDPERLIN by default, see NoiseTypes.";
|
|
|
|
static char turbulence__doc__[] =
|
|
"((x,y,z) tuple, octaves, hard, [noisebasis], [ampscale], [freqscale])\n\n\
|
|
Returns general turbulence value using the optional specified noisebasis function.\n\
|
|
octaves (integer) is the number of noise values added.\n\
|
|
hard (bool), when false (0) returns 'soft' noise, when true (1) returns 'hard' noise (returned value always positive).\n\
|
|
Optional arguments:\n\
|
|
noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.\n\
|
|
ampscale sets the amplitude scale value of the noise frequencies added, 0.5 by default.\n\
|
|
freqscale sets the frequency scale factor, 2.0 by default.";
|
|
|
|
static char vTurbulence__doc__[] =
|
|
"((x,y,z) tuple, octaves, hard, [noisebasis], [ampscale], [freqscale])\n\n\
|
|
Returns general turbulence vector (3-float list) using the optional specified noisebasis function.\n\
|
|
octaves (integer) is the number of noise values added.\n\
|
|
hard (bool), when false (0) returns 'soft' noise, when true (1) returns 'hard' noise (returned vector always positive).\n\
|
|
Optional arguments:\n\
|
|
noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.\n\
|
|
ampscale sets the amplitude scale value of the noise frequencies added, 0.5 by default.\n\
|
|
freqscale sets the frequency scale factor, 2.0 by default.";
|
|
|
|
static char fBm__doc__[] =
|
|
"((x,y,z) tuple, H, lacunarity, octaves, [noisebasis])\n\n\
|
|
Returns Fractal Brownian Motion noise value(fBm).\n\
|
|
H is the fractal increment parameter.\n\
|
|
lacunarity is the gap between successive frequencies.\n\
|
|
octaves is the number of frequencies in the fBm.\n\
|
|
Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
|
|
|
|
static char multiFractal__doc__[] =
|
|
"((x,y,z) tuple, H, lacunarity, octaves, [noisebasis])\n\n\
|
|
Returns Multifractal noise value.\n\
|
|
H determines the highest fractal dimension.\n\
|
|
lacunarity is gap between successive frequencies.\n\
|
|
octaves is the number of frequencies in the fBm.\n\
|
|
Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
|
|
|
|
static char vlNoise__doc__[] =
|
|
"((x,y,z) tuple, distortion, [noisetype1], [noisetype2])\n\n\
|
|
Returns Variable Lacunarity Noise value, a distorted variety of noise.\n\
|
|
distortion sets the amount of distortion.\n\
|
|
Optional arguments noisetype1 and noisetype2 set the noisetype to distort and the noisetype used for the distortion respectively.\n\
|
|
See NoiseTypes, both are STDPERLIN by default.";
|
|
|
|
static char heteroTerrain__doc__[] =
|
|
"((x,y,z) tuple, H, lacunarity, octaves, offset, [noisebasis])\n\n\
|
|
returns Heterogeneous Terrain value\n\
|
|
H determines the fractal dimension of the roughest areas.\n\
|
|
lacunarity is the gap between successive frequencies.\n\
|
|
octaves is the number of frequencies in the fBm.\n\
|
|
offset raises the terrain from 'sea level'.\n\
|
|
Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
|
|
|
|
static char hybridMFractal__doc__[] =
|
|
"((x,y,z) tuple, H, lacunarity, octaves, offset, gain, [noisebasis])\n\n\
|
|
returns Hybrid Multifractal value.\n\
|
|
H determines the fractal dimension of the roughest areas.\n\
|
|
lacunarity is the gap between successive frequencies.\n\
|
|
octaves is the number of frequencies in the fBm.\n\
|
|
offset raises the terrain from 'sea level'.\n\
|
|
gain scales the values.\n\
|
|
Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
|
|
|
|
static char ridgedMFractal__doc__[] =
|
|
"((x,y,z) tuple, H, lacunarity, octaves, offset, gain [noisebasis])\n\n\
|
|
returns Ridged Multifractal value.\n\
|
|
H determines the fractal dimension of the roughest areas.\n\
|
|
lacunarity is the gap between successive frequencies.\n\
|
|
octaves is the number of frequencies in the fBm.\n\
|
|
offset raises the terrain from 'sea level'.\n\
|
|
gain scales the values.\n\
|
|
Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
|
|
|
|
static char voronoi__doc__[] =
|
|
"((x,y,z) tuple, distance_metric, [exponent])\n\n\
|
|
returns a list, containing a list of distances in order of closest feature,\n\
|
|
and a list containing the positions of the four closest features\n\
|
|
Optional arguments:\n\
|
|
distance_metric: see DistanceMetrics, default is DISTANCE\n\
|
|
exponent is only used with MINKOVSKY, default is 2.5.";
|
|
|
|
static char cellNoise__doc__[] = "((x,y,z) tuple)\n\n\
|
|
returns cellnoise float value.";
|
|
|
|
static char cellNoiseV__doc__[] = "((x,y,z) tuple)\n\n\
|
|
returns cellnoise vector/point/color (3-float list).";
|
|
|
|
static char Noise__doc__[] = "Blender Noise and Turbulence Module\n\n\
|
|
This module can be used to generate noise of various types.\n\
|
|
This can be used for terrain generation, to create textures,\n\
|
|
make animations more 'animated', object deformation, etc.\n\
|
|
As an example, this code segment when scriptlinked to a framechanged event,\n\
|
|
will make the camera sway randomly about, by changing parameters this can\n\
|
|
look like anything from an earthquake to a very nervous or maybe even drunk cameraman...\n\
|
|
(the camera needs an ipo with at least one Loc & Rot key for this to work!):\n\
|
|
\n\
|
|
\tfrom Blender import Get, Scene, Noise\n\
|
|
\n\
|
|
\t####################################################\n\
|
|
\t# This controls jitter speed\n\
|
|
\tsl = 0.025\n\
|
|
\t# This controls the amount of position jitter\n\
|
|
\tsp = 0.1\n\
|
|
\t# This controls the amount of rotation jitter\n\
|
|
\tsr = 0.25\n\
|
|
\t####################################################\n\
|
|
\n\
|
|
\ttime = Get('curtime')\n\
|
|
\tob = Scene.GetCurrent().getCurrentCamera()\n\
|
|
\tps = (sl*time, sl*time, sl*time)\n\
|
|
\t# To add jitter only when the camera moves, use this next line instead\n\
|
|
\t#ps = (sl*ob.LocX, sl*ob.LocY, sl*ob.LocZ)\n\
|
|
\trv = Noise.vTurbulence(ps, 3, 0, Noise.NoiseTypes.NEWPERLIN)\n\
|
|
\tob.dloc = (sp*rv[0], sp*rv[1], sp*rv[2])\n\
|
|
\tob.drot = (sr*rv[0], sr*rv[1], sr*rv[2])\n\
|
|
\n";
|
|
|
|
/* Just in case, declarations for a header file */
|
|
/*
|
|
static PyObject *Noise_random(PyObject *self);
|
|
static PyObject *Noise_randuvec(PyObject *self);
|
|
static PyObject *Noise_setRandomSeed(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_noise(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_vNoise(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_turbulence(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_vTurbulence(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_fBm(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_multiFractal(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_vlNoise(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_heteroTerrain(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_hybridMFractal(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_ridgedMFractal(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_voronoi(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_cellNoise(PyObject *self, PyObject *args);
|
|
static PyObject *Noise_cellNoiseV(PyObject *self, PyObject *args);
|
|
*/
|
|
|
|
static PyMethodDef NoiseMethods[] = {
|
|
{"setRandomSeed", ( PyCFunction ) Noise_setRandomSeed, METH_VARARGS,
|
|
setRandomSeed__doc__},
|
|
{"random", ( PyCFunction ) Noise_random, METH_NOARGS, random__doc__},
|
|
{"randuvec", ( PyCFunction ) Noise_randuvec, METH_NOARGS,
|
|
randuvec__doc__},
|
|
{"noise", ( PyCFunction ) Noise_noise, METH_VARARGS, noise__doc__},
|
|
{"vNoise", ( PyCFunction ) Noise_vNoise, METH_VARARGS, vNoise__doc__},
|
|
{"turbulence", ( PyCFunction ) Noise_turbulence, METH_VARARGS,
|
|
turbulence__doc__},
|
|
{"vTurbulence", ( PyCFunction ) Noise_vTurbulence, METH_VARARGS,
|
|
vTurbulence__doc__},
|
|
{"fBm", ( PyCFunction ) Noise_fBm, METH_VARARGS, fBm__doc__},
|
|
{"multiFractal", ( PyCFunction ) Noise_multiFractal, METH_VARARGS,
|
|
multiFractal__doc__},
|
|
{"vlNoise", ( PyCFunction ) Noise_vlNoise, METH_VARARGS,
|
|
vlNoise__doc__},
|
|
{"heteroTerrain", ( PyCFunction ) Noise_heteroTerrain, METH_VARARGS,
|
|
heteroTerrain__doc__},
|
|
{"hybridMFractal", ( PyCFunction ) Noise_hybridMFractal, METH_VARARGS,
|
|
hybridMFractal__doc__},
|
|
{"ridgedMFractal", ( PyCFunction ) Noise_ridgedMFractal, METH_VARARGS,
|
|
ridgedMFractal__doc__},
|
|
{"voronoi", ( PyCFunction ) Noise_voronoi, METH_VARARGS,
|
|
voronoi__doc__},
|
|
{"cellNoise", ( PyCFunction ) Noise_cellNoise, METH_VARARGS,
|
|
cellNoise__doc__},
|
|
{"cellNoiseV", ( PyCFunction ) Noise_cellNoiseV, METH_VARARGS,
|
|
cellNoiseV__doc__},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
PyObject *Noise_Init(void)
|
|
{
|
|
PyObject *NoiseTypes, *DistanceMetrics,
|
|
*md =
|
|
Py_InitModule3( "Blender.Noise", NoiseMethods, Noise__doc__ );
|
|
|
|
/* use current time as seed for random number generator by default */
|
|
setRndSeed( 0 );
|
|
|
|
/* Constant noisetype dictionary */
|
|
NoiseTypes = PyConstant_New( );
|
|
if( NoiseTypes ) {
|
|
BPy_constant *nt = ( BPy_constant * ) NoiseTypes;
|
|
PyConstant_Insert( nt, "BLENDER",
|
|
PyInt_FromLong( TEX_BLENDER ) );
|
|
PyConstant_Insert( nt, "STDPERLIN",
|
|
PyInt_FromLong( TEX_STDPERLIN ) );
|
|
PyConstant_Insert( nt, "NEWPERLIN",
|
|
PyInt_FromLong( TEX_NEWPERLIN ) );
|
|
PyConstant_Insert( nt, "VORONOI_F1",
|
|
PyInt_FromLong( TEX_VORONOI_F1 ) );
|
|
PyConstant_Insert( nt, "VORONOI_F2",
|
|
PyInt_FromLong( TEX_VORONOI_F2 ) );
|
|
PyConstant_Insert( nt, "VORONOI_F3",
|
|
PyInt_FromLong( TEX_VORONOI_F3 ) );
|
|
PyConstant_Insert( nt, "VORONOI_F4",
|
|
PyInt_FromLong( TEX_VORONOI_F4 ) );
|
|
PyConstant_Insert( nt, "VORONOI_F2F1",
|
|
PyInt_FromLong( TEX_VORONOI_F2F1 ) );
|
|
PyConstant_Insert( nt, "VORONOI_CRACKLE",
|
|
PyInt_FromLong( TEX_VORONOI_CRACKLE ) );
|
|
PyConstant_Insert( nt, "CELLNOISE",
|
|
PyInt_FromLong( TEX_CELLNOISE ) );
|
|
PyModule_AddObject( md, "NoiseTypes", NoiseTypes );
|
|
}
|
|
|
|
/* Constant distance metric dictionary for voronoi */
|
|
DistanceMetrics = PyConstant_New( );
|
|
if( DistanceMetrics ) {
|
|
BPy_constant *dm = ( BPy_constant * ) DistanceMetrics;
|
|
PyConstant_Insert( dm, "DISTANCE",
|
|
PyInt_FromLong( TEX_DISTANCE ) );
|
|
PyConstant_Insert( dm, "DISTANCE_SQUARED",
|
|
PyInt_FromLong( TEX_DISTANCE_SQUARED ) );
|
|
PyConstant_Insert( dm, "MANHATTAN",
|
|
PyInt_FromLong( TEX_MANHATTAN ) );
|
|
PyConstant_Insert( dm, "CHEBYCHEV",
|
|
PyInt_FromLong( TEX_CHEBYCHEV ) );
|
|
PyConstant_Insert( dm, "MINKOVSKY_HALF",
|
|
PyInt_FromLong( TEX_MINKOVSKY_HALF ) );
|
|
PyConstant_Insert( dm, "MINKOVSKY_FOUR",
|
|
PyInt_FromLong( TEX_MINKOVSKY_FOUR ) );
|
|
PyConstant_Insert( dm, "MINKOVSKY",
|
|
PyInt_FromLong( TEX_MINKOVSKY ) );
|
|
PyModule_AddObject( md, "DistanceMetrics", DistanceMetrics );
|
|
}
|
|
|
|
return md;
|
|
}
|